Considering an Insecticide For Your Small Grain?

Alan Leslie1, Agriculture Agent; Kelly Hamby2, Extension Specialist; and Galen Dively, Professor Emeritus2
1University of Maryland Extension, Charles County
2University of Maryland, Department of Entomology

This time of year, anyone growing small grains will be planning to apply fungicides to manage Fusarium head blight, and many will consider tank-mixing an insecticide to control any insect pest problems at the same time. These tank mixes are an appealing option to reduce the time, fuel, and damage to the crop from having to make a second pass over the field later on in the season. In addition, with many synthetic pyrethroids now available as cheaper generic versions, the costs associated with adding an insecticide to the tank may seem like cheap insurance against possible pest outbreaks. However, to ensure that this added investment gives you a return with increased yields, you should still follow an integrated pest management approach and base the decision to add an insecticide on scouting and documentation of an existing pest problem. Below, we outline several possible insect pests that could be controlled with an insecticide applied with fungicides over small grains, and summarize situations where that application may be warranted, and when it may not.

Aphids. Aphid populations need to be controlled in the fall to reduce Barley Yellow Dwarf Virus incidence in small grains. Spring insecticide applications will not reduce incidence of the disease. Only a few aphid species tend to feed on grain heads, and can reduce yield from head emergence through milk stage (Fig. 1). After the soft dough stage, no economic losses occur. Aphid populations are generally kept in check by insect predators and parasitoids, and thresholds for chemical control of aphids in the spring require at least 25 aphids per grain head (with 90% of heads infested) or 50 per head (50% heads infested) and low numbers of natural enemies. Applying a broad spectrum insecticide when aphid pressure is not above threshold tends to kill off beneficial predatory and parasitic species, which can allow aphid populations to flare up, as they are no longer being suppressed by their natural enemies.

aphids on wheat head
Figure 1. Aphids feeding on wheat head.

True armyworm and grass sawfly. Both true armyworm (Fig. 2) and grass sawfly (Fig. 3) are sporadic pests of small grains and their pest pressure and feeding damage can vary widely from year to year. Automatically applying an insecticide to target these pests is not likely to be a cost-effective strategy since they are not pests that reliably cause economic injury. When these pests are present in high numbers, they are capable of causing significant yield loss through their behavior of clipping grain heads. Scouting should be done to check for the presence of these two pests and insecticide treatment is only needed if they exceed threshold values of one larva per linear foot for armyworm and 0.4 larvae per linear foot for grass sawflies.

armyworm and sawfly larave
Figure 2. True armyworm larva (top). Figure 3. Grass sawfly larva (bottom).

Hessian fly. Cultural methods are the best way to control Hessian fly in small grain, such as planting after the fly-free date, selecting resistant varieties, and using crop rotation to disrupt their population growth. Spring feeding by the fly larvae can cause stems to break, reducing yields. There are no effective rescue treatments for Hessian fly; insecticides targeting fly larvae are ineffective since they are well protected from sprays by feeding inside of the leaf sheath (Fig. 4). If this year’s crop is damaged, it is imperative that fly-resistant varieties are planted after the fly-free date next year.

Hessian fly larvae feeding inside wheat stem
Figure 4. Hessian fly larvae feeding inside of wheat leaf sheath.

           Cereal leaf beetle. This species is widespread in Maryland and is typically present in small grains, though it only occasionally reaches levels that injure crops. Cereal leaf beetle larvae chew the upper surfaces of leaves, leaving them skeletonized (Fig. 5). Larvae can cause yield loss if the flag leaf is severely skeletonized before grain-fill is completed. Insecticides with good residual activity tank mixed and applied with fungicides can potentially control populations of cereal leaf beetles, protect the flag leaf, and improve the yield of the crop if beetle pressure is high. However, predicting whether populations will reach damaging levels is not straightforward, and scouting should be used to guide spray decisions. If a field has 25 or more larvae plus eggs per 100 tillers, and there are more larvae than eggs, then chemical control is needed. In Maryland, a parasitoid wasp species (Anaphes flavipes) may parasitize 70-98% of cereal leaf beetle eggs, so if a field is dominated by eggs with few larvae, insecticide may not be needed. Additionally, feeding by cereal leaf beetle will not cause economic damage after the hard dough stage. So far, we have received no reports of economic levels of cereal leaf beetle in the region.

Cereal leaf beetle feeding on leaf
Figure 5. Cereal leaf beetle larva and feeding damage.

In conclusion, tank mixing an insecticide with your fungicide application can pay off if you have economically damaging levels of an insect pest, but applying any insecticide without a pest problem will not pay off. If populations are present, seem to be increasing, and you will not be harvesting soon, you could gamble. The risks of that gamble include losing money on an unnecessary input cost, secondary pest outbreaks if natural enemy populations are wiped out, or the target pest outbreaks anyway because the application was poorly timed. Scouting fields regularly to document pest pressure and using IPM thresholds as a guide for using chemical controls is the best way to hedge your bets when deciding whether to add an insecticide to the tank this spring.

For more information on tank-mixing insecticides with small grain fungicide applications, check out current research updates from Dr. Dominic Reisig at North Carolina State University: https://smallgrains.ces.ncsu.edu/2019/03/aphids-in-wheat/

https://entomology.ces.ncsu.edu/2015/04/should-you-spray-cereal-leaf-beetle/

And Dr. David Owens at the University of Delaware:

https://www.udel.edu/academics/colleges/canr/cooperative-extension/fact-sheets/cereal-leaf-beetle/

 

 

Mild Winters Favor Greenbug Aphids and Winter Grain Mite in Small Grains and Orchardgrass

Kelly Hamby, Terry Patton, and Galen Dively
Department of Entomology, University of Maryland College Park

Summary. Weather stations in Baltimore, MD recorded the 3rd warmest winter on record in 81 years from Dec 2019 to February 2020, with 10% of our 30 year average snowfall (NOAA National Climate Report). Insects that overwinter as immatures or adults in above-ground protected areas are typically favored by mild winters, especially species that are not cold-hardy because much of the population would typically die during the winter. However, the lack of snowfall can also reduce overwintering survival because snow can insulate against freezing temperatures. Mild winter conditions favor green bug aphids and winter grain mite outbreaks in small grains and orchardgrass, and these pest populations can build rapidly. Fortunately, mild winters also favor many beneficial natural enemies. Greenbug aphid outbreaks have been observed in central Maryland orchardgrass (see Figure 1), and greenbugs have also been observed in Delaware. Overall, aphid populations have been spotty in Delaware and promising natural enemy activity has been observed (UD Weekly Crop Update, March 20). However, close surveillance is necessary when greenbug is the predominate species because greenbug injects toxic saliva during feeding and can be very destructive. It is important to carefully scout your fields for aphids multiple times to determine whether populations are building or crashing on your farm. Management interventions may be necessary to prevent economic losses. Winter grain mites may also be a problem this year and scouting close to the soil surface is necessary to catch this issue in a timely manner.

Figure 1. Heavy aphid populations have been observed in orchardgrass in central Maryland.
Figure 3. Aphid damage to orchardgrass in central Maryland.

Cereal Aphids and Greenbugs. Multiple species of aphid occur in Maryland small grains and orchardgrass (see Figure 2) and aphids can vector barley yellow dwarf virus. Bird-cherry oat aphids vector the most severe strain and may need to be managed in the fall to prevent damage from barley yellow dwarf, especially in intensive management wheat. Although the direct damage from aphid feeding is generally similar across species, it is especially important to record species if greenbugs are present. Greenbug saliva contains enzymes that break down cell walls, so their feeding is most damaging. They initially cause spotting on the leaf followed by discoloration and eventual leaf and root death if feeding continues. Grain cultivars vary in their tolerance for greenbug damage. One of the first noticeable symptoms of aphid outbreaks are circular yellow to brown spots with dead plants in the center (see Figure 3); however, aphid damage may be confused with moisture stress and/or nitrogen deficiency so make sure to scout for aphids especially in areas that are showing stress symptoms. Scout a minimum of 1 linear row foot in 10 sites, the more row feet and locations the better, and estimate the number of aphids per foot of row. The rule of thumb treatment threshold for small grains is to treat if counts exceed 150 per linear foot throughout most of the field, with few natural enemies detected (e.g., mummy aphids, lady beetles, fungal infections). One natural enemy to every 50 to 100 aphids can be enough to control the population. This threshold may be lower if greenbugs are the predominant aphid and greenbug populations should be carefully monitored. Foliar insecticides including pyrethroids (Group 3A), neonicotinoids (Group 4A), and organophosphates (Group 1B) can be used to control aphids.

Figure 2. Common cereal aphids. Notice color and length of antennae and cornicles (tail pipes). Greenbugs are light green with a dark green stripe, with black tips of the legs, cornicles, and antennae. Photos: Various Extension websites.

Winter Grain Mite. Winter grain mites are a cool season pest of small grains and orchardgrass that cause a silvery leaf discoloration from feeding damage that punctures individual plant cells. Feeding can also stunt plants. Winter mites have a dark brown to black body with bright reddish-orange legs (see Figure 4). Somewhat uniquely, their anal opening is on the upper surface and can appear as a tan to orange spot that is more visible under magnification. Two generations of winter grain mite occur per year and are active from the fall to early summer. They oversummer in the egg stage, with the first generation hatching around October and adult populations peaking in December or January. The second generation peaks from March to April and produces the oversummering eggs. Because spring eggs result in fall populations, rotating the crop away from grasses and managing wild grasses around field edges can be helpful to reduce populations. Adult activity occurs when temperatures are between 40 and 75°F, and they prefer cool, cloudy calm weather. Therefore, winter grain mites are easier to see during these conditions, and more likely to be higher on the plant during the early morning or late evening. If you are scouting on a hot, dry day or in the middle of the day, you should check under residue where the soil is moist, and may need to dig 4 or 5 inches into the soil to find the mites. Winter grain mite does not typically cause economic damage, and no thresholds have been developed. If large portions of a field show symptoms and mites are present, treatment may be warranted. No products are specifically labeled for winter grain mite; however, products labeled for brown mite such as dimethoate (Group 1B, in wheat only) are likely to be effective. Warrior II (pyrethroid, Group 3A) may also provide suppression.

Figure 4. Winter grain mite adult.

References and Useful Extension Articles:

Kansas State University Wheat Pests, Winter Grain Mite, https://entomology.k-state.edu/extension/insect-information/crop-pests/wheat/winter-grain-mite.html

NOAA National Climate Report Supplemental Material, https://www.ncdc.noaa.gov/sotc/national/202002/

Oklahoma State World of Wheat Blog, Winter grain mites in northcentral OK, https://osuwheat.com/2015/01/06/winter-grain-mites-in-northcentral-ok/

University of Delaware Weekly Crop Update March 20,2020. Agronomic Crop Insect Scouting, https://sites.udel.edu/weeklycropupdate/?p=14510

University of Delaware Fact Sheets and Publications, Winter Grain Mite Management in Small Grains, https://www.udel.edu/academics/colleges/canr/cooperative-extension/fact-sheets/winter-grain-mite/

Virginia Tech Insect Control in Field Crops, ENTO-335C, https://www.pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/456/456-016/ENTO-335C.pdf