Considering an Insecticide For Your Small Grain?

Alan Leslie1, Agriculture Agent; Kelly Hamby2, Extension Specialist; and Galen Dively, Professor Emeritus2
1University of Maryland Extension, Charles County
2University of Maryland, Department of Entomology

This time of year, anyone growing small grains will be planning to apply fungicides to manage Fusarium head blight, and many will consider tank-mixing an insecticide to control any insect pest problems at the same time. These tank mixes are an appealing option to reduce the time, fuel, and damage to the crop from having to make a second pass over the field later on in the season. In addition, with many synthetic pyrethroids now available as cheaper generic versions, the costs associated with adding an insecticide to the tank may seem like cheap insurance against possible pest outbreaks. However, to ensure that this added investment gives you a return with increased yields, you should still follow an integrated pest management approach and base the decision to add an insecticide on scouting and documentation of an existing pest problem. Below, we outline several possible insect pests that could be controlled with an insecticide applied with fungicides over small grains, and summarize situations where that application may be warranted, and when it may not.

Aphids. Aphid populations need to be controlled in the fall to reduce Barley Yellow Dwarf Virus incidence in small grains. Spring insecticide applications will not reduce incidence of the disease. Only a few aphid species tend to feed on grain heads, and can reduce yield from head emergence through milk stage (Fig. 1). After the soft dough stage, no economic losses occur. Aphid populations are generally kept in check by insect predators and parasitoids, and thresholds for chemical control of aphids in the spring require at least 25 aphids per grain head (with 90% of heads infested) or 50 per head (50% heads infested) and low numbers of natural enemies. Applying a broad spectrum insecticide when aphid pressure is not above threshold tends to kill off beneficial predatory and parasitic species, which can allow aphid populations to flare up, as they are no longer being suppressed by their natural enemies.

aphids on wheat head
Figure 1. Aphids feeding on wheat head.

True armyworm and grass sawfly. Both true armyworm (Fig. 2) and grass sawfly (Fig. 3) are sporadic pests of small grains and their pest pressure and feeding damage can vary widely from year to year. Automatically applying an insecticide to target these pests is not likely to be a cost-effective strategy since they are not pests that reliably cause economic injury. When these pests are present in high numbers, they are capable of causing significant yield loss through their behavior of clipping grain heads. Scouting should be done to check for the presence of these two pests and insecticide treatment is only needed if they exceed threshold values of one larva per linear foot for armyworm and 0.4 larvae per linear foot for grass sawflies.

armyworm and sawfly larave
Figure 2. True armyworm larva (top). Figure 3. Grass sawfly larva (bottom).

Hessian fly. Cultural methods are the best way to control Hessian fly in small grain, such as planting after the fly-free date, selecting resistant varieties, and using crop rotation to disrupt their population growth. Spring feeding by the fly larvae can cause stems to break, reducing yields. There are no effective rescue treatments for Hessian fly; insecticides targeting fly larvae are ineffective since they are well protected from sprays by feeding inside of the leaf sheath (Fig. 4). If this year’s crop is damaged, it is imperative that fly-resistant varieties are planted after the fly-free date next year.

Hessian fly larvae feeding inside wheat stem
Figure 4. Hessian fly larvae feeding inside of wheat leaf sheath.

           Cereal leaf beetle. This species is widespread in Maryland and is typically present in small grains, though it only occasionally reaches levels that injure crops. Cereal leaf beetle larvae chew the upper surfaces of leaves, leaving them skeletonized (Fig. 5). Larvae can cause yield loss if the flag leaf is severely skeletonized before grain-fill is completed. Insecticides with good residual activity tank mixed and applied with fungicides can potentially control populations of cereal leaf beetles, protect the flag leaf, and improve the yield of the crop if beetle pressure is high. However, predicting whether populations will reach damaging levels is not straightforward, and scouting should be used to guide spray decisions. If a field has 25 or more larvae plus eggs per 100 tillers, and there are more larvae than eggs, then chemical control is needed. In Maryland, a parasitoid wasp species (Anaphes flavipes) may parasitize 70-98% of cereal leaf beetle eggs, so if a field is dominated by eggs with few larvae, insecticide may not be needed. Additionally, feeding by cereal leaf beetle will not cause economic damage after the hard dough stage. So far, we have received no reports of economic levels of cereal leaf beetle in the region.

Cereal leaf beetle feeding on leaf
Figure 5. Cereal leaf beetle larva and feeding damage.

In conclusion, tank mixing an insecticide with your fungicide application can pay off if you have economically damaging levels of an insect pest, but applying any insecticide without a pest problem will not pay off. If populations are present, seem to be increasing, and you will not be harvesting soon, you could gamble. The risks of that gamble include losing money on an unnecessary input cost, secondary pest outbreaks if natural enemy populations are wiped out, or the target pest outbreaks anyway because the application was poorly timed. Scouting fields regularly to document pest pressure and using IPM thresholds as a guide for using chemical controls is the best way to hedge your bets when deciding whether to add an insecticide to the tank this spring.

For more information on tank-mixing insecticides with small grain fungicide applications, check out current research updates from Dr. Dominic Reisig at North Carolina State University: https://smallgrains.ces.ncsu.edu/2019/03/aphids-in-wheat/

https://entomology.ces.ncsu.edu/2015/04/should-you-spray-cereal-leaf-beetle/

And Dr. David Owens at the University of Delaware:

https://www.udel.edu/academics/colleges/canr/cooperative-extension/fact-sheets/cereal-leaf-beetle/

 

 

Pyrethroid insecticide effects on pests and beneficials in field corn

Maria Cramer, Edwin Afful, Galen Dively, and Kelly Hamby
Department of Entomology, University of Maryland

Overview

Background: Due to their low cost, pyrethroid insecticides are often applied when other chemical applications are made. For example, they may be included in tank mixes with herbicides in early whorl corn and with fungicides during tasseling. These pyrethroid sprays often target stink bugs; however, the timing of these treatments is not ideal for stink bug management. Pyrethoid insecticides may harm beneficial insects that help keep pest populations in check and repeated use of pyrethroids can contribute to insecticide resistance.

Methods: In this study, we examined the effect of Bifenture EC® (pyrethroid active ingredient: bifenthrin) applied with herbicides in V6 corn and with fungicides in tasseling corn. We evaluated impacts on pests and beneficials at both application timings. Yield was measured at harvest.

Preliminary Results:  At both application timings, Bifenture EC® did not improve insect pest management because pests were not present at economic levels. We did not find evidence for flare-ups of aphids or spider mites, but a rainy late summer made it unlikely that we would see many of these pests. There were no yield differences between the treatments.

Background

As a result of the low cost of pyrethroid insecticides, preventative applications are common, especially in tank mixes with other routine chemical inputs, such as herbicides and fungicides. However, lower grain prices and low insect pest pressure make it less likely that pyrethroid applications will provide economic returns. Bt hybrids1 and neonicotinoid seed treatments control many of the pests targeted by pyrethroid insecticides. Because they have broad spectrum activity, pyrethroids can negatively impact natural enemies2 which can result in flare-ups of secondary pests3. Tank mix timings may be less effective than applying when insect populations reach threshold. For example, when pyrethroids are combined with herbicide applications, they are too late to control early-season stink bugs and other seedling pests. When pyrethroids are combined with fungicide sprays at tasseling, few insect pests are present at damaging levels. Stink bugs may feed on the developing ear at this time, causing deformed “cowhorned” ears; however, this is rarely a problem in Maryland and stink bug damage is generally not economic throughout a field because feeding is primarily concentrated at the field edge4. Insecticide applications at tasseling have a high potential to affect beneficial insects, especially pollinators and natural enemies that are attracted to corn pollen.

Objectives: Our objectives were to determine the effect of pyrethroids applied preventatively in tank-mixes on corn pests, beneficials, and yield.

Methods: This study was conducted in 2018 and 2019 at the University of Maryland research farm in Beltsville, MD. For each application timing, we planted four replicate plots of a standard Bt field corn hybrid, DeKalb 55-84 RIB (SmartStax RIB complete Bt insect control in addition to fungicide and insecticide seed treatments) at 29,999 seeds per acre. Standard agronomic practices for the region were used.

The herbicide timing compared two treatments:

  1. Herbicide alone (22 oz/acre Roundup WeatherMAX®, 0.5 oz/acre Cadet®, 3 lb/acre ammonium sulfate
  2. Herbicide (same as above) + Insecticide (Bifenture EC® 6.4 oz/acre)

Treatments were applied at V6/V7. We visually surveyed corn plants for pest and beneficial insects before and after application. We also placed sentinel European corn borer (ECB) egg masses in the field to assess predation rates before and after treatment.

The fungicide timing compared two treatments:

  1. Fungicide alone (Trivapro® 13.7 oz/acre)
  2. Fungicide (same as above) + Insecticide (Bifenture EC® 6.4 oz/acre)

Treatments were applied at green silk. We inspected the ear zone and silks for pests and beneficial insects before application. After application, we recorded the number of ears with pest damage and the kernel area damaged. We also counted stink bug adults and cowhorned ears. Six weeks after application, we visually assessed plants for spider mite and aphid colonies.

Sampling for pests and beneficials (left) and; sentinel European corn borer egg mass (right).
Sampling for pests and beneficials (left) and; sentinel European corn borer egg mass (right).

Results

In the herbicide-timing study in 2019 we observed no effect on beneficial insects from the treatments (Figure 1). The most abundant beneficial species were minute pirate bugs and pink spotted lady beetles, which are very mobile and may have recolonized treated plots after treatment. Similarly, treatments did not affect predation on the sentinel egg masses, suggesting that the pyrethroid application may not have affected predators’ ability to locate and consume eggs. Across the treatments, 30-50% of egg masses were consumed by predators.

Minute pirate bug on European corn borer egg mass.
Minute pirate bug on European corn borer egg mass.

The treatments did not impact the number of beneficials at the herbicide timing (N.S.). The pyrethroid insecticide significantly reduced the number of plant hoppers and plant bugs from less than 4 per plant on average to less than 2 per plant (significantly different p<0.05, *), though these insects are not economic pests at this stage. There were never more than 2 stink bugs per 90 plants, well below the treatment threshold of 13 per 100 plants4.

In the fungicide-timing study in 2019, beneficials, especially minute pirate bugs, were abundant at the time of application (3 in every 10 plants), while stink bugs, the presumed target pest, were very rare (1 stink bug in every 68 plants). In 2018, stink bugs were similarly scarce. Overall pest abundance was low (1 in every 35 plants). After application, there was no difference in the incidence or amount of the corn ear damaged by worms, stink bugs, or sap beetles between treatments. Average stink bug and earworm incidence was roughly 1 in 10 ears, while sap beetle was even less frequent. Cowhorned ears and adult stink bugs were almost non-existent in both treatments.

Six weeks after application we found no differences in aphid or spider mite populations between the treatments, suggesting that pyrethroid applications at tasseling did not cause secondary pest outbreaks. We sampled after a period of dry weather; however, the late summer was rainy at Beltsville, which likely suppressed spider mite and aphid populations. Under drought-stress, reductions in the natural enemy population from pyrethroid use might contribute to flare-ups of aphids and spider mites.

Figure 1. Herbicide timing. July 3, 2019, Beltsville MD. Mean number of insects per 10 plants in V7 corn after treatment. N.S.=not significant. H=herbicide; P=pyrethroid.

Yield

For the herbicide timing and fungicide-timing (Figure 2) studies, treatments did not affect yields in either 2018 or 2019.

Conclusions

Figure 2. Herbicide timing (left) and fungicide timing (right), 2018 and 2019, Beltsville MD. Mean yield per acre under two treatments. Yields were not significantly different by treatment in either study. For the fungicide-timing study, 2019 yields were significantly higher than in 2018. N.S.=Not Significant. H=Herbicide; F=Fungicide; P=Pyrethroid.

Results from the 2018 and 2019 studies suggest that pyrethroid applications do not provide yield benefits in corn when tank-mixed with herbicides or fungicides, likely due to the lack of insect pest pressure at these spray timings. Beneficial insects were abundant in the crop at each of these timings and did not appear to be affected by the pyrethroids in the herbicide plots. Repeated preventative use of pyrethroids in the same field could potentially hinder the natural biocontrol of corn pests.

Lady beetle larva (a predatory insect) in silks.
Lady beetle larva (a predatory insect) in silks.

Sources

1 DiFonzo, C. 2017. Handy Bt Trait Table for U.S. Corn Production, http://msuent.com/assets/pdf/BtTraitTable15March2017.pdf

2Croft, B.A., M.E. Whalon. 1982. Selective toxicity of pyrethroid insecticides to arthropod natural enemies and pests of agricultural crops. Entomophaga. 27(1): 3-21.

3Reisig, D.C., J.S. Bacheler, D.A. Herbert, T. Kuhar, S. Malone, C. Philips, R. Weisz. 2012.Efficacy and value of prophylactic vs. integrated pest management approaches for management of cereal leaf beetle (Coleoptera: Chrysomelidae) in wheat and ramifications for adoption by growers. J. Econ. Entomol. 105(5): 1612-1619

4Reisig, D.C. 2018. New stink bug thresholds in corn, https://entomology.ces.ncsu.edu/2018/04/new-stink-bug-thresholds-in-corn/