Optics for AXIS

William W. Zhang NASA Goddard Space Flight Center

William W. Zhang AXIS Workshop

Next Generation X-ray Optics Team

K. D. Allgood¹, M.P. Biskach¹, J. Bonafede¹, K.W. Chan², M. Hlinka¹, J.D. Kearney¹, L.D. Kolos, J.R. Mazzarella¹, R.S.
 McClelland¹, H. Mori², A. Numata¹, T. Okajima, L.G. Olsen, R.E. Riveros², T.T. Saha, M.V. Sharpe¹, P.M. Solly¹, W.W. Zhang

NASA Goddard Space Flight Center ¹ Stinger Ghaffarian Technologies, Inc.

² University of Maryland, Baltimore County

J.M. Carter, J.A. Gaskin, W.D. Jones, J.J. Kolodziejczak, S.L. O'Dell NASA Marshall Space Flight Center

Key Features of AXIS Optics

High angular resolution

- 0.5" HPD on axis, similar to Chandra's
- Can be better, but at expense of FOV

• Large field of view (FOV)

- 15 arc-min diameter with 0.5" PSF
- Cf. **4** arc-mins of Chandra-ACIS-I

• Large effective area

- 10X Chandra's at 1 keV
- 15X Chandra's at 10 keV

Eff. Area vs. Energy (optics only)

William W. Zhang AXIS Workshop

Effective Area Ratio vs. Energy

William W. Zhang AXIS Workshop

PSF vs. Off-axis Angle

Chandra

AXIS

Optics Top Level Error Budget

Parameter or Process		Contribution to HPD (")	Notes
Mirror Segment	Axial figure (sag)	0.1	Shown as of June 2017
	Axial figure (other than sag)	0.2	Shown as of June 2017
	Focus (roundness, cone angle and its variation)	0.2	Probably can be shown by 2018
	Coating (distortion to axial figure and focus)	0.1	Difficult to assess due to inssuficient data.
Integration of	Alignment	0.1	By 2019
segments to meta-shells	Bonding	0.2	Difficult to assess. Emphasis of work in coming years. Tallest pole!!!
Integration of meta-shells to assembly		0.1	Can be done relatively easily.
Launch shift		0.1	Need to be looked at.
Thermal gradients		0.1	Shown by analysis as of June 2017.
Gravity release		0.1	Shown by analysis as of June 2017.
Mirror Assembly Fabrication Total		0.4	RSS of all above numbers.
Mirror Assembly Optical Design Total		0.3	Timo Saha's design memo.
Mirror Assembly On-Orbit Performance		0.5	RSS of above two numbers.

Outline of Presentation

Optical design

- Fundamental geometry and physics
- AXIS mirror design

Technology

- Substrate fabrication
- Coating
- Alignment and bonding
- Engineering
 - Structural, thermal, and optical performance

Making the case to the Decadal

- Case for technical readiness
- Case for cost and schedule

Optical Design

Geometry and Physics (1/2)

• X-rays reflect only at grazing angles

- Grazing angles decrease with energy
- \rightarrow Field of view decreases with energy

• An X-ray telescope is really a "light bucket"

- Many concentric shells
- X-rays from different shells add incoherently

Geometry and Physics (2/2)

- Diffraction limits are a weighted average of many shells
 - Each shell's diffraction limit is proportional to f / (H*r*E), where f is focal length, H shell length, r shell radius, and E x-ray energy
 - Each shell's effective area is proportional to H*r*R²(E,r/f), R is reflectivity and depends on E and r/f.

• Off-axis PSF is weighted mean of many shells

 Each shell's being proportional to theta²*H/r, where theta is off-axis angle

Practical Implications

• On-axis PSF conflicts with FOV

- Good on-axis PSF demands long shells
- Good off-axis PSF demands short shells
- Dichotomy of Soft and Hard X-rays for a nearly diffraction-limited Telescope
 - Soft X-rays: poor on-axis PSF because of diffraction, but large FOV because of geometry
 - Hard X-rays: good on-axis PSF because of diffraction, but small FOV because of geometry and basic physics

An Example Design for AXIS

Parameters	Values
Focal length (mm)	9,000
Outer Diameter (mm)	1,500
Inner Diameter (mm)	400
Mirror Segment Axial Length (mm)	200
Mirror Segment Thickness (mm)	0.5 (1.0)
Unobstructed FOV (arcmin)	15
Coating	iridium
No. of shells	163
Diffraction limits (arcsec 90%dia.)	0.2 @ 1 keV
Mass of Mirror Assembly (kg)	~500 (~1,000)

Takeaway Messages

Under reasonable assumptions:

Focal length: 9 meters Outer diameter: 1.5 meter Mirror thickness: 0.5 mm

- AXIS can have effective areas (optics + detector)
 - >5,000 cm² at 1 keV
 - >1,000 cm² at 5 keV

AXIS's PSF and FOV

- More or less uniform 0.5" HPD in a 15-armin dia. FOV
- Better PSF on-axis at expense of off-axis PSF.
 For example, 0.1" on-axis, 1.5" at 6-arcmin off-axis

Technology

The Meta-Shell Paradigm

Mirror Segment

Meta-shell

Mirror Assembly

- Each mirror segment is fabricated, qualified, and then aligned by and bonded to four spacers which kinematically constrain it.
- Several hundred mirror segments are aligned and bonded to form a meta-shell.
- A dozen or so meta-shells of different diameters form the final mirror assembly

Three Basic Elements

Segment or Substrates

- Figure quality, including micro-roughness
- Thickness and mass

Coating

- High reflectance
- No figure degradation

• Alignment and Bonding

- Locating and orienting each mirror segment
- Keeping it there for good
- Doing so without causing figure distortion

Substrate Fabrication

Material: mono-crystalline silicon

- Free of stress
- Low density: 2.35 g/cm³
- High thermal conductivity: 150 W m⁻¹ K⁻¹
- High elastic modulus: 130 188 Gpa
- Low thermal expansion: 2.6 ppm/K
- Commercial availability
- Best studied and understood material

• Fabrication process: polishing

- Grinding, lapping, slicing, acid etching, full-aperture polishing, & sub-aperture polishing, etc.
- Best possible figure and finish quality
- Mass production and robotics to minimize cost

Fabrication Steps

Monocrystalline silicon block

Conical form generated

Light-weighted substrate

150 mm

Etched substrate

Polished mirror substrate William W. Zhang AXIS Workshop

Trimmed mirror substrate

Status of Substrate Fabrication

Slope Power Spectral Density

Image Performance Prediction of a Pair Silicon Mirrors: 0.44" HPD

Substrate Fabrication Summary

- Can realize any optical design
 - Wolter-I
 - Wolter-Schwarzschild
 - Or any other: equal-curvature, polynomial, etc.
- Can make substrates better than Chandra's
 - Better micro-roughness \rightarrow better-behaving PSF
 - Thickness from 0.5 to 1.5mm (cf. Chandra's 10-25mm)
- Use no special or custom equipment
 - All equipment are commercial off the shelf.
 - All tooling can be made in ordinary machine shops.
- High throughput and low cost
 - Fabrication process is highly amenable to automation & mass production

Coating

 Coating is an essential part of a strategy to meet effective area requirements

- A good coating is a necessity, not an option

- Noble metal coating
 - Au: Low stress $\leftarrow \rightarrow$ Low reflectivity
 - Pt: Medium stress $\leftarrow \rightarrow$ Medium reflectivity
 - Ir: High stress $\leftarrow \rightarrow$ High reflectivity
- Other possibilities
 - An iridium layer plus an overcoat of B_4C or Al_2O_3

Effect of 15nm Pt Coating

P-V Sag change 54 nm \rightarrow 0.32" in HPD change

William W. Zhang AXIS Workshop

Solutions being Pursued

- Balance front and back
 - Investigating Pt coating now
 - If successful with Pt, will investigate Ir
- Balance thin-film stress on the front with SiO₂ stress on the back
 - Coatings typically have compressive stress
 - SiO₂ also has compressive stress. Its growth can be controlled to an accuracy of 1 nm.
- Polish a figure error in the substrate that will cancel distortion caused by coating stress, if the effect of coating stress is highly repeatable & stable.

Approach to Alignment & Bonding

- Use **kinematic mount** to minimize/eliminate distortion to mirror segments
- Use finite element analysis to optimize locations of supports
- Use epoxy as adhesive only, not as a filler of any space that is not precisely controlled
- Use gravity, the most repeatable force, as the nesting force

Minimal Constraints

- Three spacers or posts fully determine the orientation of a flat mirror:
 - pitch, yaw, & x by gravity
 - roll, y, and z by friction
- Four spacers or posts fully determine the orientation of an Xray mirror:
 - pitch, yaw, x, and y by gravity
 - z and roll by friction
- Use vibration of optimal frequency and amplitude to overcome friction

Proof of Concept

• Placement repeatability

- The same mirror from placement to placement
- From one mirror to another of the same prescription
- Stability over long periods of time: ~10 hours

• Precision machining of posts

- Current precision at 25 nm, limited by metrology
- Enables sub-arcsecond mirrror alignment

• Bonding mirror with epoxy

- Preserves alignment: no indication of alignment shift
- Preserves figure: only localized distortions due to epoxy cure stress

Proof of Concept Module

Accomplished as of May 2017

Single pair of mirrors aligned, bonded, and X-ray tested.

Expected to be accomplished by December 2017

Multiple pairs of mirrors aligned, bonded, and X-ray tested.

William W. Zhang AXIS Workshop

X-ray Test Result

Engineering: Structural, Thermal, & Systems

William W. Zhang AXIS Workshop

Meta-Shell Approach

- Meta-shell integrates many four spacer mounted segments
 - Interlocking layers of mirror segments bonded onto a central structural shell (silicon)
 - Mirrors are cantilevered off structural shell similar to NuSTAR
 - Brick-like buildup spreads the load
- Once complete, meta-shell is similar to a full shell with an order of magnitude more collecting area
 - Structurally stiff (all silicon)
 - Rotationally symmetric
 - Insensitive to tilt
 - Leverage Chandra and XMM-Newton heritage

• Integrated on a precision air bearing

- Creates an optical axis reference
- Post heights determined by Hartmann test
- Bonded in distortion 0.05" HPD (gravity release error)
 William W. Zhang AXIS Workshop

Mirror Assembly

- Multiple concentric meta-shells coaligned and mounted into a carrier structure
 - Similar to Chandra (CAP) and XMM-Newton (Spider)
 - Aluminum structure (or CFRP)
 - Co-align and bond meta-shells using Chandra techniques (CDA with retroreflecting flat)
 - Chandra-like flexure mount allows for mechanical isolation
- Heated stray-light / thermal baffles integral to carrier structure (Aluminum)
- Mount within Interface Ring that provides interface to telescope/ spacecraft (Aluminum)
- Un-heated thermal baffles (G10)

Meta-shell #1 🔨

Meta-shell #15

Structural Analysis

- Analysis and test show weak point is innermost bond
- Bond stress is determined by:
 - Bond / spacer diameter
 - Number of segments around the circumference, i.e., number of bonds per layer
 - Number of layers
- Mathematic model of bond stress developed
 - Determines feasible meta-shell designs
 - Verified by detail FEA and coupon tests
- Deterministic method to derive all meta-shell design parameters

Prototype Environmental Testing

• Developed conservative preliminary requirements

- Quasi-static design loads for IXO CLA with 2.0 MUF
- Random loads from GEVS
- Shock loads from Falcon 9

Cantilevered mass prototype

- Dummy mass simulates layers of mirrors
- Single silicon segment with four spacer bonds
- Survived required random vibration
- Survived required shock (200 g)
- Silicon is strong (if treated properly), has good damping, and bonds well

Meta-shell mechanical mock-up

- Aluminum and glass meta-shell
- Bonded flexures
- 3 layers (54 mirrors, 432 bonds)
- Survived required random vibration
- Survived required quasi-static load (12.3 g)

Thermal Control

Follow Chandra approach

- Optics operate at 20°C (baseline, colder possible)
- Heat lost to cold space is replaced by heaters surrounding the optical cavity
- View to cold space is limited by thermal baffle vanes (heated and un-heated)
- Design verified by preliminary Structural Thermal Optical Performance (STOP) analysis
 - Thermal model predicts temperatures
 - Temperatures mapped to structural FEM
 - Distortion predictions ray-traced
- Low CTE and high thermal conductivity of silicon result in low thermal sensitivity
 - Minimal gradients over a mirror segment
 - Current result 0.16" HPD, room for optimization
 - Best STOP result from IXO 6.6" HPD with glass

Summary of Engineering

Meta-shell approach

- Advantages of full shell optics but with an order of magnitude more collecting area
- Preliminary structural, thermal, and optical analysis completed to mature the system design
 - Shows 0.5" mission is feasible
- Prototype load testing demonstrates the meta-shells are robust
- Development continues: design, analysis, testing

Making the Case to the Decadal

William W. Zhang AXIS Workshop

Need to convince the Decadal!

• Performance

- Effective area
- Angular resolution

Mass

- Mass is money!
- AXIS mirror assembly ~ 500 kg

Cost/Schedule

- Should be less than \$160M + 30%=\$200M in RY\$.
 (Cf. Chandra's FY99\$600M for 1,500kg → \$0.4M/kg). AXIS's mirror is also \$0.4M/kg, but with RY\$.
- Must be done in less than 5 years, preferably in 4 years.

Between Now and Decadal

- Empirically demonstrate that mirror segments meeting (or close to meeting) requirements can be made
 - Repeatedly (high yield),
 - Quickly (production rate), and
 - Cost effectively
- Build and test small mirror modules
 - Basic alignment & bonding procedure is sound & efficient
 - They meet performance and environmental requirements
- Build and test reasonably-defined meta-shells
 - Meet (or close to meet) both performance and environmental tests
 - Reach **TRL-5** by 2020
 - Show a clear path to TRL-6 once the observatory is defined with sufficient fidelity

Mirror Assembly Production (1/2)

~15,000 mirror segments → ~6 meta-shells → 1 mirror assembly

~2-3 mirror fabricators → ~1-2 meta-shell makers → 1 integrator/tester

Distributed production \rightarrow Competition \rightarrow Cost/Schedule risk reduction

William W. Zhang AXIS Workshop

Mirror Assembly Production (2/2)

- One prime contractor with TBD sub-contractors
 - Two to four parallel lines of production of mirror substrates
 - Two parallel lines of meta-shell construction
 - One mirror assembly integrator and tester (I&T)
- Detailed production facility and schedule
 - All needed information in hand for making step-bystep or blow-by-blow schedule
- Detailed grass-roots cost estimate
 - Production and engineering costs understood
 - Management cost to be estimated based on past experience

Acknowledgements

This work has been funded by NASA through ROSES/SAT and ROSES/APRA.