A GPU-enabled version of tensorflow can always be installed in a user environment. But if you should wish to avoid going through the installation, a cluster-wide version is available.
You can load, use, and test it by typing the following:
conda activate tensorflow-gpu python >>> import torch >>> print('Torch Version: '+torch.__version__) >>> print('CUDA Availability: '+str(torch.cuda.is_available())) >>> print('GPU Name: '+str(torch.cuda.get_device_name(0)))
Here is the actual information you will see:
(base)$ conda activate tensorflow-gpu (tensorflow-gpu)$ python Python 3.7.15 (default, Nov 24 2002, 21:12:53) [GCC 11.2.0] :: Anaconda, Inc. on linux Type "help", "copyright", "credits" or "license" for more information. >>> import torch >>> print('Torch Version: '+torch.__version__) Torch Version: 1.13.1 >>> print('CUDA Availability: '+str(torch.cuda.is_available())) CUDA Availability: True >>> print('GPU Name: '+str(torch.cuda.get_device_name(0))) GPU Name: NVIDIA A100-SXM4-80GB >>> print('GPU Name: '+str(torch.cuda.get_device_name(1))) GPU Name: NVIDIA A100-SXM4-80GB >>> print('GPU Name: '+str(torch.cuda.get_device_name(2))) GPU Name: NVIDIA A100-SXM4-80GB >>> print('GPU Name: '+str(torch.cuda.get_device_name(3))) GPU Name: NVIDIA A100-SXM4-80GB >>> print('GPU Name: '+str(torch.cuda.get_device_name(4))) GPU Name: NVIDIA A100-SXM4-80GB >>> print('GPU Name: '+str(torch.cuda.get_device_name(5))) GPU Name: NVIDIA A100-SXM4-80GB >>> print('GPU Name: '+str(torch.cuda.get_device_name(6))) GPU Name: NVIDIA A100-SXM4-80GB >>> print('GPU Name: '+str(torch.cuda.get_device_name(7))) GPU Name: NVIDIA A100-SXM4-80GB >>> quit()