Math 120 Review Sheet

This note contains the most important definitions, theorems, problem solving techniques and concepts that you need to know for the final exam. You should only consider this note as a survey of the material covered in class. Do not ignore your notes, problem sets or your textbook. This review sheet should help you study the most important concepts faster.

Chapter 12

For locating points in the 3-dimensional space we need 3 numbers. To get these three numbers we need three axes called x, y and z-axis. We usually consider x and y axes to be horizontal and the z-axis to be vertical. The direction of the z-axis is determined by the right-hand rule shown in the picture below.

Right-hand rule

Coordinate planes

The three axes make three coordinate planes called $x y, x z$ and $y z$ planes shown in the above picture. These coordinate planes divide the 3-dimensional space into eight octants. The first octant is the octant determined by the positive axes. For any point P in the 3-D space the x coordinate of P is the directed distance of P to the $y z$ - plane. Similarly one can define the y coordinate and the z-coordinate of P. We assign to any point in the space a triple (a, b, c), where a, b, and c are the x, y and z coordinates of P, respectively. Similarly for any triple (a, b, c) of real numbers you can find a point P in the space. This coordinate system is called a three dimensional rectangular (or Cartesian) coordinate system.

Distance Formula: The distance between any two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ in the 3-D space is calculated by $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}$.

Equation of a Sphere: The equation of a sphere of radius r centered at $\left(x_{0}, y_{0}, z_{0}\right)$ is given by

$$
\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}=r \text { or }\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2} .
$$

Often times we work with spheres centered at the origin. In which case equation of the sphere is given by, $x^{2}+y^{2}+z^{2}=r^{2}$.

Definition: A vector is a concept used for a quantity that has both a magnitude and a direction. Vectors are usually represented by a directed segment using an arrow. The arrow indicates the direction. The arrow shows the direction from the initial point or tail of this vector to its terminal point or tip. Two vectors with the same length and same direction are called equal vectors.

Definition: If \vec{v} and \vec{u} are two vectors positioned in a way that the initial point of \vec{v} is the same as the terminal point of \vec{u}, then $\vec{u}+\vec{v}$ is the vector whose initial point is the initial point of \vec{u} and its terminal point is the terminal point of \vec{v}. This definition is summarized in the picture below as the Triangle Law:

The Triangle Law

The Parallelogram Law

If the initial points of \vec{u} and \vec{v} are the same, then we can draw a vector equal to \vec{v} from the terminal point of \vec{u} and use the Triangle Law. This law -shown in the above picture- is called the Parallelogram Law.

Definition: By a scalar we mean a real number. For a scalar c and a vector \vec{u}, we can define the scalar multiple $c \vec{u}$ to be a vector whose length is equal to $|c|$ times the length of \vec{u} and whose direction is the same as the direction of \vec{u} if $c>0$ and opposite the direction of \vec{u} if $c<0$. If $c=0$, the vector $c \vec{u}$ is the zero vector.

Definition: Two non-zero vectors are parallel if they are scalar multiples of one another. The vector $(-1) \vec{u}$ is called the negative of \vec{u} and is denoted by $-\vec{u}$. The difference $\vec{u}-\vec{v}$ is defined to be the sum $\vec{u}+(-\vec{v})$.

Definition: If the initial point of a vector \vec{u} is placed at the origin and its terminal point has coordinates (x, y, z) then these coordinates are called the components of \vec{u} and we write
$\vec{u}=\langle x, y, z\rangle$.

If coordinates of the initial point of vector \vec{u} are $\left(x_{1}, y_{1}, z_{1}\right)$ and coordinates of its terminal point are $\left(x_{2}, y_{2}, z_{2}\right)$ then $\vec{u}=<x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}>$.

The length or magnitude of a vector \vec{u} is denoted by $|\vec{u}|$.
Given two vectors $\vec{u}=<x, y, z>$ and $\vec{v}=<a, b, c>$ and a scalar d, we have:

- $\vec{u}+\vec{v}=\langle x+a, y+b, z+c\rangle$
- $\vec{u}-\vec{v}=\langle x-a, y-b, z-c>$
- $d \vec{u}=<d x, d y, d z>$
- $|\vec{u}|=\sqrt{x^{2}+y^{2}+z^{2}}$

For any positive integer n, we denote by V_{n} the set of all ordered n-tuples $\vec{u}=$ $<x_{1}, x_{2}, \cdots, x_{n}>$ where $x_{1}, x_{2}, \cdots, x_{n}$ are real numbers. These real numbers are called components of \vec{u}.

Properties of Sum and Scalar Multiplication: For any three vectors \vec{u}, \vec{v} and \vec{w} in V_{n} and scalars c and d, we have the following:

- $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
- $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
- $\vec{u}+\overrightarrow{0}=\vec{u}$
- $\vec{u}+(-\vec{u})=\overrightarrow{0}$
- $c(\vec{u}+\vec{v})=c \vec{u}+c \vec{v}$
- $(c+d) \vec{u}=c \vec{u}+d \vec{u}$
- $(c d) \vec{u}=c(d \vec{u})$
- $1 \cdot \vec{u}=\vec{u}$

Definition: The vectors $\vec{i}=<1,0,0>, \vec{j}=<0,1,0>$ and $\vec{k}=<0,0,1>$ are called the standard basis vectors.

Note: Any vector $\vec{u}=\langle x, y, z>$ can be written as $\vec{u}=x \vec{i}+y \vec{j}+z \vec{k}$.

Definition: A vector is called a unit vector if its length is 1.

Note: If $\vec{u} \neq \overrightarrow{0}$ then the vector $\vec{u} /|\vec{u}|$ is the unit vector that has the same direction as \vec{u}.
Definition: The dot product of two vectors $\vec{u}=<x_{1}, y_{1}, z_{1}>$ and $\vec{v}=<x_{2}, y_{2}, z_{2}>$ is the number $\vec{u} \cdot \vec{v}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$. This is sometimes called the scalar product, or the inner product of
\vec{u} and \vec{v}.

Properties of the Dot Product: Let \vec{u}, \vec{v} and \vec{w} be three vectors and c be a scalar, then:

- $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$
- $\vec{u} \cdot \vec{u}=|\vec{u}|^{2}$
- $\vec{u} \cdot \overrightarrow{0}=0$
- $\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}$
- $c(\vec{u} \cdot \vec{v})=(c \vec{u}) \cdot \vec{v}=\vec{u} \cdot(c \vec{v})$

Theorem: Let θ be the angle between vectors \vec{u} and \vec{v}, then $\vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos \theta$.
Note: Given components of two vectors you can use the above formula to find the cosine of the angle between these two vectors, which may be used to evaluate this angle.

Definition: Two non-zero vectors are called orthogonal or perpendicular if the angle between them is $\pi / 2$.

Note: Two non-zero vectors are orthogonal if and only if their dot product is zero.
Definition: The direction angles of a non-zero vector $\vec{u}=<a, b, c>$ are the angles α, β and γ (in $[0, \pi]$) that \vec{u} makes with the positive x, y and z-axes. The cosines of these angles are called the direction cosines of \vec{u}.

Note: Given the above notations we have: $\cos \alpha=a /|\vec{u}|, \cos \beta=b /|\vec{u}|, \cos \gamma=c /|\vec{u}|$.

The vector projection of a vector \vec{b} onto a vector \vec{a}, shown in the picture below, is denoted by $\operatorname{proj}_{\vec{a}} \vec{b}$. The scalar projection of \vec{b} onto \vec{a} (or the component of \vec{b} along \vec{a}) is defined to be the signed magnitude of this vector projection and is denoted by $\operatorname{comp}_{\vec{a}} \vec{b}$.

Vector projections

Scalar projection

These two quantities can be evaluated from the following formulas:

$$
\operatorname{proj}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{a}} \vec{a} \text { and } \operatorname{comp}_{\vec{a}} \vec{b}=\vec{a} \cdot \vec{b} /|\vec{a}| .
$$

Definition: For any four real numbers a, b, c and d, define the determinant of order $\mathbf{2}$ by

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

A determinant of order 3 is defined in terms of determinants of order 2 as follows:

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{cc}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{cc}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
$$

Definition: The cross product $\vec{a} \times \vec{b}$ of two vectors $\vec{a}=<a_{1}, a_{2}, a_{3}>$ and $\vec{b}=<b_{1}, b_{2}, b_{3}>$ is defined as the following determinant of order 3 :

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Note: Cross products are vectors but dot products are scalars. You cannot add vectors and scalars. So an expression like $\vec{u} \times \vec{v}+\vec{u} \cdot \vec{v}$ does not have any meaning.

The scalar triple product of \vec{u}, \vec{v} and \vec{w} is $\vec{u} \cdot(\vec{v} \times \vec{w})$.
Properties of Cross Products: Let \vec{u}, \vec{v} and \vec{w} be three vectors in 3-D space and c be a scalar. Then:

- $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}
- $\vec{v} \times \vec{u}=-\vec{u} \times \vec{v}$
- If θ is the angle between \vec{u} and $\vec{v},(0 \leq \theta \leq \pi)$ then $|\vec{u} \times \vec{v}|=|\vec{u} \| \vec{v}| \sin \theta$
- The non-zero vectors \vec{u} and \vec{v} are parallel if and only if $\vec{u} \times \vec{v}=0$
- The length of $\vec{u} \times \vec{v}$ equals the area of the parallelogram determined by \vec{u} and \vec{v}
- $(c \vec{u}) \times \vec{v}=c(\vec{u} \times \vec{v})=\vec{u} \times(c \vec{v})$
- $\vec{u} \times(\vec{v}+\vec{w})=\vec{u} \times \vec{v}+\vec{u} \times \vec{w}$
- $(\vec{v}+\vec{w}) \times \vec{u}=\vec{v} \times \vec{u}+\vec{w} \times \vec{u}$
- $\vec{u} \cdot(\vec{v} \times \vec{w})=(\vec{u} \times \vec{v}) \cdot \vec{w}$
- $\vec{u} \times(\vec{v} \times \vec{w})=(\vec{u} \cdot \vec{w}) \vec{v}-(\vec{u} \cdot \vec{v}) \vec{w}$ [You do not need to memorize this identity.]
- $|\vec{u} \cdot(\vec{v} \times \vec{w})|$ is the volume of the parallelepiped determined by vectors \vec{u}, \vec{v} and \vec{w}

Definition: A non-zero vector $\vec{u}=\langle a, b, c>$ is called a direction vector of a line L if \vec{u} is parallel to L. Numbers a, b and c are called direction numbers of L.

Equations of a Line: Let L be a line passing through $\left(x_{0}, y_{0}, z_{0}\right)$ with direction vector $\vec{u}=\langle a, b, c>$. The following are different equations of L.

- $\vec{r}=\overrightarrow{r_{0}}+t \vec{u}$, where $\overrightarrow{r_{0}}=<x_{0}, y_{0}, z_{0}>$, and t is a real number. (vector equation of L)
- $x=x_{0}+t a, y=y_{0}+t b, z=z_{0}+t c$, where t is a real number. (parametric equations of L)
- $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$. If $a=0$ this should be written as $x=x_{0}$ and $\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$ (symmetric equations of L)

Note: To find an equation of a line through two points first you need to find its direction vector by subtracting these two points and then use one of the above formulas.

Let $\vec{a}=<a_{1}, a_{2}, a_{3}>$ and $\vec{b}=<b_{1}, b_{2}, b_{3}>$ be two vectors. The line segment from $\left(a_{1}, a_{2}, a_{3}\right)$ to $\left(b_{1}, b_{2}, b_{3}\right)$ is given by $\vec{r}=(1-t) \vec{a}+t \vec{b}$ where $0 \leq t \leq 1$.

Note: To check if two lines are parallel find their direction vectors and check if they are scalar multiples of one another.

Definition: Two lines are called skew lines if they are not parallel and they do not intersect.

Definition: A vector \vec{n} is called a normal vector of a plane if it is orthogonal to the plane, i.e. \vec{n} is orthogonal to all vectors in that plane.

Equations of a Plane: Let $A\left(x_{0}, y_{0}, z_{0}\right)$ be a point on a plane P and $\vec{n}=\langle a, b, c>$ be a normal vector of P. Two equations of P are as follows:

- $\vec{n} \cdot \vec{r}=\vec{n} \cdot \overrightarrow{r_{0}}$ where $\overrightarrow{r_{0}}=<x_{0}, y_{0}, z_{0}>$ (vector equation of P)
- $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$ (scalar equation of $\left.P\right)$

The second equation can be rewritten as $a x+b y+c z+d=0$ where $d=-a x_{0}-b y_{0}-c z_{0}$. This equation is called a linear equation of P.

Note: To check if two planes are parallel check if their normal vectors are scalar multiples of one another.

Note: To find an equation of a plane passing through three given points A, B and C, find two vectors inside this plane by connecting two of these points (e.g. $\overrightarrow{A B}$ and $\overrightarrow{A C}$). Then find the cross product of these vectors to find a normal vector to this plane. Then use the above formula.

Note: The distance D from a point (x, y, z) to the plane $a x+b y+c z+d=0$ is calculated by:

$$
D=\frac{|a x+b y+c z+d|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

Chapter 13

Definition: A vector function is a function whose domain is a subset of real numbers and whose range is a set of vectors.

Definition: If $\vec{r}(t)=<f(t), g(t), h(t)>$ is a vector function, then

$$
\lim _{t \rightarrow a} \vec{r}(t)=<\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} h(t)>.
$$

Definition: A vector function \vec{r} is called continuous at a if $\lim _{t \rightarrow a} \vec{r}(t)=\vec{r}(a)$.
Definition: If $\vec{r}(t)=<f(t), g(t), h(t)>$ is a continuous vector function on an interval I, then the set of all points (x, y, z) in the space such that $x=f(t), y=g(t)$ and $z=h(t)$ where $t \in I$ is called a space curve. These equations are called parametric equations of this space curve.

Note: To identify a space curve it is best to find a relation between x, y and z. For example to identify the curve $<\sin t, \cos t, \cos t>$ notice that the curve is on the cylinder $x^{2}+y^{2}=1$ and on the plane $y=z$.

Definition: Derivative and integral of a vector function $\vec{r}(t)=<f(t), g(t), h(t)>$ is defined similar to its limits by looking at the components:

$$
\begin{gathered}
\vec{r}^{\prime}(t)=<f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)> \\
\int_{a}^{b} \vec{r}(t) d t=<\int_{a}^{b} f(t) d t, \int_{a}^{b} g(t) d t, \int_{a}^{b} h(t) d t>
\end{gathered}
$$

Definition: The tangent line to the space curve $\vec{r}(t)$ at a point P is a line through P and parallel to the tangent vector $\vec{r}^{\prime}(t)$.

Differentiation Rules: Assume \vec{u} and \vec{v} are two vector functions, c is a scalar and f is a real-valued function. Then

- $\quad \frac{d}{d t}(\vec{u}(t) \pm \vec{v}(t))=\vec{u}^{\prime}(t) \pm \vec{v}^{\prime}(t)$
- $\quad \frac{d}{d t}(c \vec{u}(t))=c \vec{u}^{\prime}(t)$
- $\quad \frac{d}{d t}(f(t) \vec{u}(t))=f^{\prime}(t) \vec{u}(t)+f(t) \vec{u}^{\prime}(t)$
- $\quad \frac{d}{d t}(\vec{u}(t) \cdot \vec{v}(t))=\vec{u}^{\prime}(t) \cdot \vec{v}(t)+\vec{u}(t) \cdot \vec{v}^{\prime}(t)$
- $\frac{d}{d t}(\vec{u}(t) \times \vec{v}(t))=\vec{u}^{\prime}(t) \times \vec{v}(t)+\vec{u}(t) \times \vec{v}^{\prime}(t)$
- $\frac{d}{d t}(\vec{u}(f(t)))=f^{\prime}(t) \vec{u}^{\prime}(f(t))$

For a space curve given by $\vec{r}(t)$ where $a \leq t \leq b$, its length is evaluated by $\int_{a}^{b}\left|\vec{r}^{\prime}(t)\right| d t$. The arc length function s is given by $s(t)=\int_{a}^{t}\left|\vec{r}^{\prime}(u)\right| d u$.

To parametrize a curve with respect to arc length evaluate s from the above formula. Then find t in terms of s by solving the equation for t and then use that to evaluate \vec{r} as a function of s.

Definition: If the position vector of a moving particle at time t is given by $\vec{r}(t)$ its velocity is given by $\vec{v}(t)=\vec{r}^{\prime}(t)$. Its speed is the scalar $|\vec{v}(t)|$. Its acceleration is given by $\vec{a}(t)=\vec{r}^{\prime \prime}(t)=\vec{v}^{\prime}(t)$.

Chapter 14

Definition: A function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number $f(x, y)$. The graph of f is the set of all (x, y, z) in the 3-D space when $z=f(x, y)$.

Definition: The level curves of a function f of two variables are the curves with equations $f(x, y)=c$, where c is a constant.

Note: Functions of 3 or more variables are defined in the same manner. We can define level surfaces of a 3 variable function is a surface given by $f(x, y, z)=c$, where c is a constant.

Definition: Let f be a function of two variables. We say $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ if $f(x, y)$ can be made arbitrarily close to L (i.e. $|f(x, y)-L|$ can be made arbitrarily small) when (x, y) is made sufficiently close to (a, b), but not equal to (a, b) (i.e. $(x-a)^{2}+(y-b)^{2}$ is made sufficiently small but not zero).

Note: Assume

- $f(x, y) \rightarrow L_{1}$ as $(x, y) \rightarrow(a, b)$ along a curve C_{1} and
- $f(x, y) \rightarrow L_{2}$ as $(x, y) \rightarrow(a, b)$ along a curve C_{2} and
- $L_{1} \neq L_{2}$

Then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ does not exists.

Definition: A function $f(x, y)$ is called continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

Note: Limits and continuity are defined in the similar manner for functions of 3 or more variables.

Definition: A function f is called a polynomial of two variables if $f(x, y)$ is the sum of terms of the form $c x^{n} y^{m}$, where c is a constant and n and m are non-negative integers. A rational function of 2 variables is the ratio of two polynomials of 2 variables. Similarly you can define polynomials and rational function of 3 or more variables.

Note: All polynomials and rational functions of 2 or more variable are continuous on their domains.

Note: To evaluate $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ try the following:

1. Use the direct substitution property (i. e. number plugging) if the function is continuous.
2. If $(a, b) \neq(0,0)$, take $u=x-a$ and $v=y-b$ and write $f(x, y)$ as a function $g(u, v)$ of u and v. Then we can write the limit as $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=\lim _{(u, v) \rightarrow(0,0)} g(u, v)$. So we need to evaluate limits when approaching $(0,0)$.
3. When approaching $(0,0)$, try evaluating the limit along different lines through the origin. i.e. approach the origin along $y=m x$ and $x=0$. If you get different limits then the limit does not exists and we are done. If all limits are the same try different curves like $y=x^{2}, x=y^{2}$, etc. If two of the limits are different then the limit does not exist. If all limits are the same then suspect the limit exists and try to prove it using the next steps.
4. Write x and y in polar coordinates $x=r \cos \theta$ and $y=r \sin \theta$. As $(x, y) \rightarrow(0,0)$, we know $r \rightarrow 0$. Simplify this expression and try evaluating this limit using methods for evaluating limits of functions of one variable r, e. g. the Squeeze Theorem. Make sure to notice θ changes and could be any angle. If you want to plug in $r=0$ and the expression involves θ, you need to first use the Squeeze Theorem to get functions depending only on r.

Definition: Partial derivative of $f(x, y)$ with respect to x at (a, b) is given by

$$
\begin{gathered}
f_{x}(a, b)=g^{\prime}(a) \text { where } g(x)=f(x, b) \\
\text { or } \\
f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}
\end{gathered}
$$

Similarly you can define the partial derivative of f with respect to y at (a, b) denoted by $f_{y}(a, b)$.
For a function f of two variables x and y, the partial derivative functions f_{x} and f_{y} are defined by $f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}$ and $f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}$. Alternative notations for partial derivatives are $f_{x}, D_{x} f, D_{1} f$ and $\frac{\partial f}{\partial x}$.

Note: To find f_{x}, regard y as a constant and differentiate $f(x, y)$ with respect to x. To find f_{y}, regard x as a constant and differentiate $f(x, y)$ with respect to y.

Similar to the above definitions we can define partial derivatives for functions of 3 or more variables. For instance derivative of a function of 3 variables with respect to x is defined as

$$
f_{x}(x, y, z)=\lim _{h \rightarrow 0} \frac{f(x+h, y, z)-f(x, y, z)}{h}
$$

Definition: For a function of 2 variables f, the functions f_{x} and f_{y} are functions of 2 variables. Partial derivatives of f_{x} and f_{y} are called second partial derivatives of f. We use the following notations:

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}}=f_{x x}=f_{11}=\left(f_{x}\right)_{x} \\
& \frac{\partial^{\prime} f}{\partial y^{2}}=f_{y y}=f_{22}=\left(f_{y}\right)_{y} \\
& \frac{\partial^{2} f}{\partial x y}=f_{y x}=f_{21}=\left(f_{y}\right)_{x} \\
& \frac{\partial^{2} f}{\partial y \partial x}=f_{x y}=f_{12}=\left(f_{x}\right)_{y}
\end{aligned}
$$

Note that for evaluating $f_{x y}$ (or $\frac{\partial^{2} f}{\partial y \partial x}$) we first differentiate f with respect to x and then we differentiate f_{x} with respect to y.

Clairaut's Theorem: Suppose $f(x, y)$ is defined on a disk D that contains (a, b). If the functions $f_{x y}$ and $f_{y x}$ are continuous on D, then $f_{x y}(a, b)=f_{y x}(a, b)$.

Tangent Plane: Suppose f has continuous partial derivatives. Assume $P\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the surface $z=f(x, y)$. An equation of the tangent plane to the surface $z=f(x, y)$ at P is $z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$.

Definition: Linear Approximation or Tangent Plane Approximation of a 2 variable function f at (a, b) is the approximation given by $f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$.

Definition: If $z=f(x, y)$, then f is differentiable at (a, b) if $\Delta z=f(a+\Delta x, b+\Delta y)-f(a, b)$ can
be expressed in the form:
$\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y$ where $\epsilon_{1} \rightarrow 0$ and $\epsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$.
Theorem: If f_{x} and f_{y} exist and are continuous near (a, b), then f is differentiable at (a, b).

The Chain Rule:

1. Assume $f(x, y)$ is differentiable and $x=g(t)$ and $y=h(t)$ are differentiable functions of t. Then f is a differentiable function of t and $\frac{d f}{d t}=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} \frac{d y}{d t}$.
2. Assume $f(x, y)$ is differentiable and $x=g(s, t)$ and $y=h(s, t)$ are differentiable functions of s and t. Then f is a differentiable function of s and t and $\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} \frac{d y}{d s}$ and $\frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$.
3. Suppose f is a differentiable function of $x_{1}, x_{2}, \cdots, x_{n}$ and each x_{i} is a differentiable function of $t_{1}, t_{2}, \cdots, t_{m}$. Then f is a differentiable function of $t_{1}, t_{2}, \cdots, t_{m}$ and $\frac{\partial f}{\partial t_{i}}=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{1}}+\frac{\partial f}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{i}}+\cdots+\frac{\partial f}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{i}}$.

Implicit Differentiation: If y as a function of x is given by $F(x, y)=0$ then $\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}$.
Definition: The directional derivative of a function $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\vec{u}=<a, b>$ is defined by $D_{\vec{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}$.

Note: If a non-zero vector \vec{u} is not a unit vector, to find the directional derivative of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ in the direction of \vec{u}, you need to evaluate $D_{\vec{v}} f\left(x_{0}, y_{0}\right)$ where $\vec{v}=\vec{u} /|\vec{u}|$.

Definition: The gradient of a function $f(x, y)$ is defined as $\nabla f(x, y)=<f_{x}(x, y), f_{y}(x, y)>$.

Theorem: If $f(x, y)$ is differentiable then it has a directional derivative in any direction and for a unit vector \vec{u}, we have $D_{\vec{u}} f(x, y)=<f_{x}(x, y), f_{y}(x, y)>\cdot \vec{u}=\nabla f(x, y) \cdot \vec{u}$.

Similarly one can define directional derivatives for functions of 3 or more variables as follows:

Definition: For a unit vector \vec{u} in 3-D space and a function f of 3 variables x, y and z we define the directional derivative of f at $\left(x_{0}, y_{0}, z_{0}\right)$ in the direction \vec{u} by ,

$$
D_{\vec{u}} f(\vec{a})=\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{u})-f(\vec{a})}{h}
$$

where $\vec{a}=<x_{0}, y_{0}, z_{0}>$.
Theorem: Assume (x, y) is a point on the plane. Assume $f(x, y)$ is a differentiable function. The maximum value of $D_{\vec{i}} f(x, y)$ is $|\nabla f(x, y)|$ and occurs when \vec{u} has the same direction as the
gradient vector $\nabla f(x, y)$. The same holds for functions of 3 variables.

Equation of tangent planes to level surfaces: Let F be a 3 variable function. Assume c is a constant and $P\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the level surface $F(x, y, z)=c$. Then $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is a normal line to the tangent plane to this level surface at P. An equation of this tangent plane is given by $F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0$.

Equation of normal line to level surface $F(x, y, z)=c$ is given by:

$$
\frac{x-x_{0}}{F_{x}\left(x_{0}, y_{0}, z_{0}\right)}=\frac{y-y_{0}}{F_{y}\left(x_{0}, y_{0}, z_{0}\right)}=\frac{z-z_{0}}{F_{z}\left(x_{0}, y_{0}, z_{0}\right.} \text {. }
$$

Definition: A function f of two variables has a local minimum at (a, b) if $f(a, b) \leq f(x, y)$ for any (x, y) near (a, b). The number $f(a, b)$ is called a local minimum value. Similarly f has a local maximum at (a, b) if $f(a, b) \geq f(x, y)$ for any (x, y) near (a, b). The number $f(a, b)$ is called a local maximum value. Similar to functions of one variable if these inequalities hold for all values of (x, y) we say f has an absolute minimum or absolute maximum at (a, b).

Definition: A point (a, b) is called a critical point of f, if $f_{x}(a, b)=f_{y}(a, b)=0$ or if one of these partial derivatives does not exist.

Theorem: If f has a local maximum or minimum at (a, b), then f has a critical point at (a, b).

Second Derivatives Test: Assume the second partial derivatives of f are continuous on a disk centered at (a, b). Suppose (a, b) is a critical point of f and let

$$
D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}
$$

1. If $D>0$ and $f_{x x}(a, b)>0$ then f has a local minimum at (a, b).
2. If $D>0$ and $f_{x x}(a, b)<0$ then f has a local maximum at (a, b).
3. If $D<0$, then $f(a, b)$ is not a local maximum or a local minimum. In this case we say f has a saddle point at (a, b).

Note: If $D=0$, the test is inconclusive, i.e. f could have a local minimum, a local maximum or a saddle point at (a, b).

Note: To remember the formula of D you can write it as a determinant:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}
$$

Definition: A subset E of plane or space is called bounded if there is a circle or a sphere that contains all points of E. The subset E is called closed if it contains its boundary.

Extreme Value Theorem: Let E be a closed and bounded subset of the plane or 3-D space. If f is a 2 variable or 3 variable function continuous on E, then there are points $x, y \in E$ such that f has an absolute maximum at x and an absolute minimum at y on E.

Note: Let E be a closed and bounded subset of the plane. Assume f is a continuous function on E. To find the absolute maximum and minimum values of f on E,

1. Find the values of f at the critical points of f in E.
2. Find the extreme values of f on the boundary of E.
3. The largest value of the values from the above 2 steps is the absolute maximum value of f on E and the smallest value of the values of the above 2 steps is the absolute minimum value of f on E.

Method of Lagrange Multipliers: To find the maximum and minimum values of $f(x, y, z)$ subject to the constraint $g(x, y, z)=k$:

1. Find all values of x, y and z and λ such that $\nabla f(x, y, z)=\lambda \nabla g(x, y, z)$ and $g(x, y, z)=k$.
2. Evaluate f at all points (x, y, z) that result from the first step. The largest of these values is the maximum value of f and the smallest value is the minimum value of f.

Note: The Method of Lagrange Multipliers can be used only when the extreme values exist and $\nabla g \neq \overrightarrow{0}$ on the surface $g(x, y, z)=k$.

Note: If there are 2 constraints $g(x, y, z)=k$ and $h(x, y, z)=c$, then we need to solve the following equation in the first step: $\nabla f(x, y, z)=\lambda \nabla g(x, y, z)+\mu \nabla h(x, y, z)$. The second step remains the same. In this case we need to make sure the extreme values exist and $\nabla g(x, y, z)$ and $\nabla h(x, y, z)$ are not zero and are not parallel.

Chapter 15

Definition: Let $R=I \times J$ be a rectangle in the $x y$ - plane. Let n and m be two positive integers. Divide the interval I into n sub-intervals of equal length with endpoints $x_{0}, x_{1}, \cdots, x_{n}$ and divide J into m sub-intervals of equal length whose endpoints are $y_{0}, y_{1}, \cdots, y_{m}$. These points divide R into $m n$ rectangles. Pick a sample point $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ inside the rectangle number (i, j). Let ΔA be the area of each of these sub-rectangles. The double integral of f over R is defined to be

$$
\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

Definition: The sum $\sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A$ is called a double Riemann Sum.

Note: If $f(x, y) \geq 0$ then the volume of the solid that lies above the rectangle R and below the surface $z=f(x, y)$ is given by the double integral $\iint_{R} f(x, y) d A$.

Midpoint Rule: $\iint_{R} f(x, y) d A \approx \sum_{i=1}^{n} \sum_{j=1}^{m} f\left(\overline{x_{i}}, \overline{y_{j}}\right) \Delta A$ where $\overline{x_{i}}$ and $\overline{y_{j}}$ are the midpoints of $i-$ th and j-th sub-intervals of I and J, respectively.

Definition: Let D be any bounded plane region. Assume R is a rectangle containing D. For any function f over D define a new function $F(x, y)$ over R to be the same as $f(x, y)$ when $(x, y) \in D$ and zero when $(x, y) \notin D$. The double integral of f over D is defined to be the double integral of F over $R: \iint_{D} f(x, y) d A=\iint_{R} F(x, y) d A$.

Definition: For any region R, the average value of f over D is defined as $f_{\text {ave }}=$ $\frac{1}{A(D)} \iint_{D} f(x, y) d A$, where $A(D)$ is the area of D.

Properties of Double Integrals: For a constant c and two functions f and g we have:

- $\iint_{D} f(x, y)+g(x, y) d A=\iint_{D} f(x, y) d A+\iint_{D} g(x, y) d A$
- $\iint_{D} c f(x, y) d A=c \iint_{D} f(x, y) d A$
- $\iint_{D} f(x, y) d A \geq \iint_{D} g(x, y) d A$ if $f(x, y) \geq g(x, y)$ for any $(x, y) \in D$
- $\iint_{D} f(x, y) d A=\iint_{D_{1}} f(x, y) d A+\iint_{D_{2}} f(x, y) d A$, where D is the union of D_{1} and D_{2} and they do not overlap except possibly at their boundaries.
- $\iint_{D} 1 d A=A(D)$, the area of region D.

Definition: Starting with an integrable function of two variables $f(x, y)$ on a rectangle $R=$ $[a, b] \times[c, d]$, we can integrate f with respect to y to get a function of x, i. e. define $A(x)=$
$\int_{c}^{d} f(x, y) d y$. Since this, itself, is a function of x, we can integrate that with respect to x to get a constant number, i. e. $\int_{a}^{b} A(x) d x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x$. This is called an iterated integral.

Fubini's Theorem: Assume a, b, c and d are constants. If f is continuous on the rectangle $R=[a, b] \times[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y .
$$

Note: For two continuous functions f and g we have,

$$
\iint_{R} f(x) g(y) d A=\int_{a}^{b} f(x) d x \times \int_{c}^{d} g(y) d y .
$$

Definition: A plane region D is said to be of type I if it lies between the graphs of two continuous functions of x, i. e. there are two constants a and b and two continuous functions $g_{1}(x)$ and $g_{2}(x)$ such that $D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$.

Some type I regions

Definition: A region of type II is a region on the plane that can be expressed as

$$
D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}
$$

for two constants c and d and two functions $h_{1}(y)$ and $h_{2}(y)$.
Note: The double integral over a type I region D as above is evaluated by,

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x .
$$

The double integral over a type II region D as above is evaluated by,

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

For a type I region, to find a and b, find the maximum and minimum possible values of x coordinates of points inside D. Fixing a number x between a and b, find the maximum and minimum values of y, i.e. look at the vertical line through $(x, 0)$ and find functions $g_{1}(x)$ and $g_{2}(x)$.

Similarly for type II regions to find c and d, find maximum and minimum values of y coordinates of points in D and then look at horizontal lines.

Change to Polar Coordinates in Double Integrals: Let f be a continuous function on a polar rectangle R given by $0 \leq a \leq r \leq b$ and $\alpha \leq \theta \leq \beta$, where $0 \leq \beta-\alpha \leq 2 \pi$. Then

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Note: One common error when switching from rectangular coordinates (x, y) to polar coordinates (r, θ) is forgetting the additional factor of r on the right hand side of the above equality.

Note: If f is continuous on a polar region $D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}$, then

$$
\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta .
$$

Note: To find α and β for a region D, find maximum and minimum possible values of θ for all points in D. Make sure all values between α and β are possible values of θ. Then fix θ and look at the ray through the origin corresponding to θ. Find the maximum and minimum values of r for such θ. These would give us the functions $h_{2}(\theta)$ and $h_{1}(\theta)$. Make sure any value between $h_{1}(\theta)$ and $h_{2}(\theta)$ is an r value for some point in D.

Chapter 16

Definition: Let D be subset of the $x y$-plane (or the $x y z$-space). A 2-dimensional (or 3-dimensional) vector field F is a function that assigns a vector $F(x, y)$ (or $F(x, y, z)$) to any $(x, y)($ or $(x, y, z))$ in D.

Note: For any scalar function $f(x, y, z)$ the gradient ∇f is a vector field.

Definition: A vector field F is called conservative if it is the gradient of a scalar function, i. e. $F=\nabla f$ for some function f. This function f is called a potential function for F.

Definition: A plane or space curve C given by $\vec{r}(t)$ over an interval I is called smooth if $\vec{r}^{\prime}(t)$ exists for all $t \in I$ and $\vec{r}^{\prime}(t) \neq \overrightarrow{0}$.

Assume C is a smooth curve given by $\vec{r}(t)=\langle x(t), y(t)\rangle, t \in[a, b]$. Divide the interval $[a, b]$ into sub-intervals of equal length and in each sub-interval pick a smaple real number t_{i}^{*} and set $x_{i}^{*}=x\left(t_{i}^{*}\right)$ and $y_{i}^{*}=y\left(t_{i}^{*}\right)$. Let $\Delta s_{1}, \Delta s_{2}, \cdots, \Delta s_{n}$ be the lengths of corresponding sub-arcs.

Definition: If f is defined on a smooth curve C given by $\vec{r}(t)=\langle x(t), y(t)\rangle$, then the line integral of f along C with respect to arc length, x or y are defined as follows:

$$
\begin{gathered}
\int_{C} f(x, y) d s=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i} \text { (Line integral with respect to arc length.) } \\
\int_{C} f(x, y) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta x_{i} \text { (Line integral with respect to } x . \text {) } \\
\int_{C} f(x, y) d y=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta y_{i} \quad \text { (Line integral with respect to } y . \text {.) }
\end{gathered}
$$

Definition: A curve C is called piecewise smooth, if it is a finite union of smooth curves. If $C=C_{1} \cup C_{2} \cup \cdots \cup C_{n}$ where C_{i} 's are smooth curves, then the integral of a function f over C is defined to be the sum of integrals of f over C_{i} 's.

Evaluating Line Integrals:

- $\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$.
- $\int_{C} f(x, y) d x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t$
- $\int_{C} f(x, y) d y=\int_{a}^{b} f(x(t), y(t)) y^{\prime}(t) d t$

Definition: Line integrals in space are defined similarly. Assume the space curve C is given by $\vec{r}(t), a \leq t \leq b$ and $f(x, y, z)$ is a function defined on C, the integral of f along C is evaluated by:

- $\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t))\left|\vec{r}^{\prime}(t)\right| d t$ (Line integral with respect to arc length.)
- $\int_{C} f(x, y, z) d x=\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t$ (Line integral with respect to x.)
- $\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) d t$ (Line integral with respect to y.)

Line Integrals of Vector Fields: Let F be a continuous vector field defined on a smooth curve C given by a vector function $\vec{r}(t), a \leq t \leq b$. Then the line integral of F along C is defined as,

$$
\int_{C} F \cdot d \vec{r}=\int_{a}^{b} F(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t=\int_{C} F \cdot \vec{T} d s, \text { where } \vec{T}(t)=\vec{r}^{\prime}(t) /\left|\vec{r}^{\prime}(t)\right| .
$$

Note: When line integrals with respect to x, y or z occur together we may write them as one integral as below: $\int_{C} P d x+Q d y+R d z$ is the same as $\int_{C} P d x+\int_{C} Q d y+\int_{C} R d z$.

The Fundamental Theorem of Line Integrals: Let C be a smooth curve given by $\vec{r}(t)$, $a \leq t \leq b$. Let f be a differentiable function of two or three variables whose gradient is continuous on C. Then $\int_{C} \nabla f \cdot d \vec{r}=f(\vec{r}(b))-f(\vec{r}(a))$.

Definition: Let F be a vector field with domain D. The line integral $\int_{C} F \cdot d \vec{r}$ is said to be independent of path if $\int_{C_{1}} F \cdot d \vec{r}=\int_{C_{2}} F \cdot d \vec{r}$ for any two path C_{1} and C_{2} in D that have the same initial and terminal points.

Definition: A curve C is called closed if its terminal point is the same as its initial point.

Theorem: $\int_{C} F \cdot d \vec{r}$ is independent of path in D if and only if $\int_{C} F \cdot d \vec{r}=0$ for any closed path C in D.

Definition: A plane set D is said to be open if for every point P in D, there is a disk around P that lies entirely in D. It is said to be connected if any two points inside D can be joined by a path inside D.

Theorem: Suppose F is a vector field that is continuous on an open and connected plane set D. If $\int_{C} F \cdot d \vec{r}$ is independent of path in D, then F is a conservative vector field on D.

Theorem: If $F(x, y)=<P(x, y), Q(x, y)>$ is a conservative vector field and P and Q have
continuous first-order partial derivatives on a domain D. Then throughout D we have $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$.
Definition: A curve is called simple if it does not intersect itself anywhere between its endpoints.

Definition: A plane region D is called simply-connected if it is connected and each simple closed curve in D encloses only points of D.

Theorem: Let $F=<P(x, y), Q(x, y)>$ be a vector field on an open, simply-connected plane region D. Suppose P and Q have continuous first-order partial derivatives and $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ throughout D, then F is conservative.

Definition: Positive orientation of a simple closed curve C is a single counterclockwise traversal of C.

(a) Positive orientation

(b) Negative orientation

Green's Theorem: Let C be a positively oriented piecewise-smooth simple closed curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region containing D, then:

$$
\int_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A .
$$

Sometimes we use the notation $\oint_{C} P d x+Q d y$ to indicate C is positively oriented. We may also use $\int_{\partial D} P d x+Q d y$ to indicate a positive orientation of the boundary of D is used.

Note: When using the Green's Theorem make sure all conditions are satisfied. A very common error is to use the Green's Theorem when the vector field is not defined or is not continuous inside D.

Definition: Let D be a plane region (possibly with holes). An orientation of the boundary ∂D is a
positive orientation if the region is on the left when this boundary is traversed.

Note: Green's Theorem is true for more general regions and a positive orientation discussed above. In general Green's Theorem can be stated as,

$$
\int_{\partial D} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Definition: For a 3-D vector field $F=<P, Q, R>$ we define curl of F, denoted by curl F, to be the following vector field.

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right| \\
& =\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathbf{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathbf{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k} \\
& =\operatorname{curl} \mathbf{F}
\end{aligned}
$$

Theorem: If f is a 3 variable function whose second order partial derivatives are continuous, then $\operatorname{curl}(\nabla f)=\overrightarrow{0}$.

Theorem: If F is a vector field defined on the whole 3-D space whose components have continuous partial derivatives and $\operatorname{curl} F=\overrightarrow{0}$, then F is conservative.

Note: To find a potential function for a conservative vector field $F=\langle P, Q, R\rangle$,

1. Write $P=f_{x}, Q=f_{y}, R=f_{z}$
2. Regard y and z as constants and integrate P with respect to x. You will then find $f=\int P d x+g(y, z)$. Notice that since we regard y and z as constants we need to add a function of y and z (i.e. $g(y, z)$) instead of a constant.
3. Differentiate the above identity with respect to y to get f_{y}. Use that to solve $f_{y}=Q$ by simplifying both sides first and then integrating with respect to y (considering z as a constant). Doing that you will be able to evaluate $g(y, z)$ up to a function $h(z)$ of only z. Now plug that back into the equation for f to evaluate f.
4. Use the expression that you get for f and the last identity $f_{z}=R$ to evaluate a potential function f by integrating both sides with respect to z.

Definition: For a vector field $F=<P, Q, R>\operatorname{define} \operatorname{div} F=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$.

Using the "del" notation we have: $\operatorname{div} F=\nabla \cdot F$.

Theorem: If F is a 3-D vector field whose components have continuous second-order partial derivatives, then $\operatorname{div}(\operatorname{curl} F)=0$.

Definition: The set of all points (x, y, z) such that $x=x(u, v), y=y(u, v)$ and $z=z(u, v)$ where u, v are in a plane set D form a surface S called a parametric surface and these equations are called parametric equations of S.

Note: Lets consider the surface S obtained by rotating the curve $y=f(x) \geq 0$ for $a \leq x \leq b$ about the x-axis. Parametric equations of this surface of revolution is given by:

$$
x=x, y=f(x) \cos \theta, z=f(x) \sin \theta .
$$

Definition: A parametric surface S given by the position vector $\vec{r}(u, v)$ is called smooth if $\overrightarrow{r_{u}} \times \overrightarrow{r_{v}} \neq \overrightarrow{0}$ for any u and v, where $\overrightarrow{r_{u}}$ is the vector whose components are partial derivatives of components of \vec{r} with respect to u and similarly for $\overrightarrow{r_{v}}$.

Definition: The tangent plane to S is a plane that contains the tangent vectors $\overrightarrow{r_{u}}$ and $\overrightarrow{r_{v}}$.

Note: A normal vector to the tangent plane is given by $\overrightarrow{r_{u}} \times \overrightarrow{r_{v}}$.

Definition: Let S be a smooth parametric surface given by $\vec{r}(u, v)$ where $(u, v) \in D$. Assume S is covered just once as (u, v) ranges throughout the parameter domain D. Then the surface area of S is evaluated by

$$
A(S)=\iint_{D}\left|\overrightarrow{r_{u}} \times \overrightarrow{r_{v}}\right| d A
$$

Surface area of the graph of a function: Let S be the surface $z=f(x, y)$, where $(x, y) \in D$.
The area of S is evaluated by $A(S)=\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A$.

Surface Integrals: Let S be a smooth surface given by $\vec{r}(u, v)$ where $(u, v) \in D$ and assume S is covered only once as (u, v) ranges through D. Then

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(\vec{r}(u, v))\left|\overrightarrow{r_{u}} \times \overrightarrow{r_{v}}\right| d A .
$$

If S is the surface given by $z=g(x, y)$, then

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(x, y, g(x, y)) \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A .
$$

Definition: If it is possible to choose a unit normal vector $\vec{n}(x, y, z)$ at every point (x, y, z) on a
surface S so that \vec{n} varies continuously over S, then S is called an oriented surface and the given choice of \vec{n} provides S with an orientation. For any oriented surface there are two possible orientations.

For a smooth parametric surface S given by $\vec{r}(u, v)$, an orientation of S is given by $\vec{n}=\left(\overrightarrow{r_{u}} \times \overrightarrow{r_{v}}\right) /\left|\overrightarrow{r_{u}} \times \overrightarrow{r_{v}}\right|$. We can take $-\vec{n}$ to get another orientation of the same surface. If S is the graph of $g(x, y)$, then $\vec{n}=\left(-\frac{\partial g}{\partial x} \vec{i}-\frac{\partial g}{\partial y} \vec{j}+\vec{k}\right) / \sqrt{1+\left(\frac{\partial g}{\partial x}\right)^{2}+\left(\frac{\partial g}{\partial y}\right)^{2}}$ gives an orientation of S. Since in this orientation the \vec{k}-component is positive this orientation is called the upward orientation.

Definition: A surface S is called a closed surface if it is the boundary of a solid E. A positive orientation of a closed surface S is the one that normal vectors point outward. Inward orientation is called a negative orientation.

Positive orientation

Negative orientation

Definition: Let F be a continuous vector field defined on an oriented surface S with unit normal vector \vec{n}, then the surface integral of F over S is

$$
\iint_{S} F \cdot d S=\iint_{S} F \cdot \vec{n} d S
$$

This integral is also called the flux of F across S.

If the parametric surface S is given by $\vec{r}(u, v)$ where $(u, v) \in D$ then

$$
\iint_{S} F \cdot d S=\iint_{D} F \cdot\left(\overrightarrow{r_{u}} \times \overrightarrow{r_{v}}\right) d A
$$

If S is given by $z=g(x, y)$, where $(x, y) \in D$ and $F=<P, Q, R>$, then

$$
\iint_{S} F \cdot d S=\iint_{D}\left(-P \frac{\partial g}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A .
$$

Definition: Let S be an oriented surface with an orientation \vec{n} and let C be the boundary of S. An orientation of C is called a positive orientation if when you walk in the positive direction around C with your head pointing in the direction of \vec{n}, then the surface S will always be on your left.

Note: Notice that an orientation for the boundary C is positive only relative to an orientation of S. if you change the orientation of S from \vec{n} to $-\vec{n}$, then you need to change the orientation of C to get a positive orientation.

Stoke's Theorem: Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let F be a vector field whose components have continuous partial derivatives on an open region in 3-D space that contains S. Then

$$
\int_{C} F \cdot d \vec{r}=\iint_{S} \operatorname{curl} F \cdot d S
$$

Note: Given a surface S with an orientation, its boundary along with a positive orientation relative to the orientation of S is usually denoted by ∂S.

Sections 15.6-15.8

Surface Areas of Graphs: The area of a surface given by $z=f(x, y),(x, y) \in D$ is evaluated by

$$
A(S)=\iint_{D} \sqrt{1+\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}} d A
$$

Fubini's Theorem for Triple Integrals: Let a, b, c, d, e and f be constants. If g is a continuous function on the rectangular box $B=[a, b] \times[c, d] \times[e, f]$, then

$$
\iint_{B} \int_{g} g(x, y, z) d V=\int_{a}^{b} \int_{c}^{d} \int_{e}^{f} g(x, y, z) d z d y d x .
$$

Note: In the above integration you can change the order of integration, but if you do make sure to change the limits of integration, too.

Definition: A solid region E is said to be of type 1 if it lies between the graphs of two continuous functions of x and y, that is,

$$
E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}
$$

A solid region E is of type $\mathbf{2}$ if it is of the form

$$
E=\left\{(x, y, z) \mid(y, z) \in D, u_{1}(y, z) \leq x \leq u_{2}(y, z)\right\}
$$

A solid region E is of type 3 if it is of the form

$$
E=\left\{(x, y, z) \mid(x, z) \in D, u_{1}(x, z) \leq y \leq u_{2}(x, z)\right\} .
$$

Evaluating Triple Integrals for Regions of Type 1: Let E be a solid of type 1 given above, then

$$
\iint_{E} \int f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d A
$$

The inside integral is a single integral that may be evaluated using methods of integration. The outside double integral may be evaluated using methods of evaluating double integrals such as polar coordinates or Fubini's Theorem. If D is given by

$$
D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\} .
$$

Then

$$
\iiint_{E} f(x, y, z) d V=\int_{a}^{b} \int_{g_{1}(x)}^{b} g_{u_{1}(x, y)}^{g_{2}(x) u_{2}(x, y)} f(x, y, z) d z d y d x
$$

Similarly we can evaluate triple integrals over regions of type 2 and 3.

Note: The volume of a solid E is the triple integral of 1 over $E: \iint_{E} 1 d V=V(E)$.

If the density of a solid E at (x, y, z) is given by $\rho(x, y, z)$, then its mass is evaluated by

$$
m(E)=\iint_{E} \int \rho(x, y, z) d V
$$

If $(\bar{x}, \bar{y}, \bar{z})$ is the center of mass or the centroid of this solid then

$$
\begin{aligned}
& \bar{x}=\frac{1}{m(E)} \iint_{E} \int x \rho(x, y, z) d V \\
& \bar{y}=\frac{1}{m(E)} \iint_{E} \int y \rho(x, y, z) d V \\
& \bar{z}=\frac{1}{m(E)} \iint_{E} \int z \rho(x, y, z) d V
\end{aligned}
$$

Definition: Any point P in three-dimensional space can be represented by an ordered triple (r, θ, z), where r and θ are polar coordinates of the projection of P onto the $x y$ - plane and is the directed distance from the $x y$ - plane to P. The ordered triple r, θ, and z are called the cylindrical coordinates of P.

Cylindrical coordinates and Cartesian coordinates are related by the following equations:

$$
\begin{aligned}
& x=r \cos \theta, y=r \sin \theta, z=z, \\
& r^{2}=x^{2}+y^{2}, \tan \theta=\frac{y}{x}, z=z .
\end{aligned}
$$

Evaluating Triple Integrals with Cylindrical Coordinates: Let E be a type 1 region given by $E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}$. Assume that D is a polar regions given by $D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}$. Then

$$
\iint_{E} \int f(x, y, z) d V=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} u_{u_{1}(r \cos x} \int_{1, r \sin x)} f u_{1}(r \cos x, r \sin x, z) r d z d r d \theta .
$$

This formula is called the formula for triple integration in cylindrical coordinates.

Note: The above formula is used mostly when the projection of the solid on one of the coordinate planes is a polar region (such as a circle, a half-circle, a washer, a sector of a circle, etc.).

Definition: The spherical coordinates (ρ, θ, φ) of a point P in space are shown in the following picture, where ρ is the distance from the origin O to P, θ is the same angle as in cylindrical coordinates, and φ is the angle between the positive z-axis and the line segment $O P$. Note that $\rho \geq 0,0 \leq \theta \leq 2 \pi$ and $0 \leq \varphi \leq \pi$.

For a constant c, graphs of $\rho=c, \theta=c$ and $\varphi=c$ are spheres, half-planes and cones:

$\rho=c$, a sphere

$\theta=c$, a half-plane

$0<c<\pi / 2$

$\pi / 2<c<\pi$

$$
\phi=c, \text { a half-cone }
$$

Spherical coordinates and Cartesian coordinates are related by the following formulas:

$$
x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi, \rho^{2}=x^{2}+y^{2}+z^{2} .
$$

Definition: A solid E in the space is called a spherical wedge if there are constants a, b, c, d, α and β such that:

$$
E=\{(\rho, \theta, \varphi) \mid a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \varphi \leq d\} .
$$

Evaluating Triple Integrals with Spherical Coordinates:

- If E is the spherical wedge given above, then

$$
\iint_{E} \int f(x, y, z) d V=\int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^{2} \sin \varphi d \rho d \theta d \varphi .
$$

Note: A common error is forgetting the factor $\rho^{2} \sin \varphi$ when switching from Cartesian coordinates to spherical coordinates. Also make sure the order of integration coresponds to the limits of integrals.

- If E is a more general region given by

$$
E=\left\{(\rho, \theta, \varphi) \mid a \leq \varphi \leq b, \alpha \leq \theta \leq \beta, g_{1}(\theta, \varphi) \leq \rho \leq g_{2}(\theta, \varphi)\right\} .
$$

Then

$$
\iint_{E} \int f(x, y, z) d V=\int_{a}^{b} \int_{\alpha g_{1}(\theta, \varphi)}^{\beta g_{2}(\theta, \varphi)} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^{2} \sin \varphi d \rho d \theta d \varphi .
$$

- If E is a more general region given by

$$
E=\left\{(\rho, \theta, \varphi) \mid a \leq \varphi \leq b, g_{1}(\varphi) \leq \theta \leq g_{2}(\varphi), h_{1}(\theta, \varphi) \leq \rho \leq h_{2}(\theta, \varphi)\right\} .
$$

Then

$$
\iint_{E} \int f(x, y, z) d V=\int_{a}^{b} \int_{g_{1}(\varphi)}^{g_{2}(\varphi)} \int_{h_{1}(\theta, \varphi)}^{h_{2}(\theta, \varphi)} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^{2} \sin \varphi d \rho d \theta d \varphi .
$$

Note: We generally use spherical coordinates to evaluate triple integrals when the solid is similar to a cone, a sphere or the solid is formed by intersecting spheres, cones and planes.

Note: To find the limits of integration, $a, b, g_{1}(\varphi), g_{2}(\varphi), h_{1}(\theta, \varphi)$ and $h_{2}(\theta, \varphi)$ follow these steps:

1. Find the maximum and minimum possible values for φ. These values are a and b above. Make sure all of the values between a and b are possible values for φ.
2. Consider a fixed angle φ-that gives us a cone- and find all possible values of θ. The maximum and minimum values would give us the functions $g_{1}(\varphi)$ and $g_{2}(\varphi)$. Make sure
all values between $g_{1}(\varphi)$ and $g_{2}(\varphi)$ are possible values of θ. These functions $g_{1}(\varphi)$ and $g_{2}(\varphi)$ may or may not depend on φ, but they should not depend on ρ.
3. Considering a fixed value for θ and a fixed value for φ-which determines a half-line through the origin- find maximum and minimum values of ρ. These would determine $h_{1}(\theta, \varphi)$ and $h_{2}(\theta, \varphi)$. Make sure all values between $h_{1}(\theta, \varphi)$ and $h_{2}(\theta, \varphi)$ are possible values of ρ.

Note: You can use a different order of integration, but to do that you need to follow the above 3 steps with a different order for coordinates, ρ, θ and φ.

Section 16.9

The Divergence Theorem: Let E be a simple solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let F be a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then

$$
\iint_{S} F \cdot d S=\iint_{E} \int_{E} d i v F d V .
$$

Note: When using the Divergence Theorem make sure all conditions are satisfied. A very common error is to use the Divergence Theorem when the vector field is not defined or is not continuous inside E.

Methods of Evaluating Surface Integrals of Vector Fields: To evaluate $\iint_{S} F \cdot d S$,

1. If S is a closed surface consider using the Divergence Theorem. This is particularly useful when the vector field F is complicated but its divergence has a simpler formula.
2. If S is not closed but the divergence of F is simple consider closing the surface with a simple surface S_{1}. Then use the Divergence Theorem to evaluate the integral over $S \cup S_{1}$ and subtract $\iint_{S_{1}} F \cdot d S$ from this integral.
3. If S the graph of a function with upward orientation, consider using the formula

$$
\iint_{S} F \cdot d S=\iint_{D}\left(-P \frac{\partial g}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A .
$$

If the orientation is downward multiply the above quantity with a negative sign.
4. If F is the curl of a vector field, consider using the Stoke's Theorem.

Methods of Evaluating Line Lntegrals of Vector Fields: To evaluate a line integral $\int_{C} F \cdot d \vec{r}$,

1. If you can parametrize C consider using the formula $\int_{C} F \cdot d \vec{r}=\int_{a}^{b} F(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t$.
2. If C is a closed plane curve consider using the Green's Theorem.
3. If C in a plane curve but not closed, consider closing it with a simple curve (or a line segment) C_{1} and use the Green's Theorem to evaluate the line integral over $C \cup C_{1}$ and C_{1} and take the difference of these two numbers.
4. If C is a closed space curve consider using the Stoke's Theorem.
5. If C in a space curve but not closed, consider closing it with a simple curve (or a line segment) C_{1} and use the Stoke's Theorem to evaluate the line integral over $C \cup C_{1}$ and C_{1} and take the difference of these two numbers.
6. If F is conservative, i.e. $F=\nabla f$, then consider using the Fundamental Theorem of Line Integrals.
