
Math 120 Review Sheet

ThiV QRWe cRQWaiQV Whe PRVW iPSRUWaQW defiQiWiRQV, WheRUePV, SURbOeP VROYiQg WechQiTXeV aQd

cRQceSWV WhaW \RX Qeed WR NQRZ fRU Whe fiQaO e[aP. YRX VhRXOd RQO\ cRQVideU WhiV QRWe aV a

surve\ Rf Whe PaWeUiaO cRYeUed iQ cOaVV. DR QRW igQRUe \RXU QRWeV, SURbOeP VeWV RU \RXU We[WbRRN.

ThiV UeYieZ VheeW VhRXOd heOS \RX VWXd\ Whe PRVW iPSRUWaQW cRQceSWV faVWeU.

Chapter 12

FRU ORcaWiQg SRiQWV iQ Whe 3-diPeQViRQaO VSace Ze Qeed 3 QXPbeUV. TR geW WheVe WhUee QXPbeUV

Ze Qeed WhUee a[eV caOOed  aQd a[iV. We XVXaOO\ cRQVideU  aQd  a[eV WR be hRUi]RQWaO, \[   ] − [ \

aQd Whe a[iV WR be YeUWicaO. The diUecWiRQ Rf Whe a[iV iV deWeUPiQed b\ Whe right-hand rule ] −  ] −

VhRZQ iQ Whe SicWXUe beORZ.

The WhUee a[eV PaNe WhUee coordinate planes caOOed  aQd  SOaQeV VhRZQ iQ Whe abRYe\, [][  ]\

SicWXUe. TheVe cRRUdiQaWe SOaQeV diYide Whe 3-diPeQViRQaO VSace iQWR eighW octants. The first

octant iV Whe RcWaQW deWeUPiQed b\ Whe SRViWiYe a[eV. FRU aQ\ SRiQW  iQ Whe 3-D VSace Whe P [

coordinate Rf  iV Whe diUecWed diVWaQce Rf  WR Whe SOaQe. SiPiOaUO\ RQe caQ defiQe Whe P P ]  \ −  \ −

cRRUdiQaWe aQd Whe cRRUdiQaWe Rf  We aVVigQ WR aQ\ SRiQW iQ Whe VSace a WUiSOe  ] − .P a, b, c),(   

ZheUe aQd  aUe Whe  aQd  cRRUdiQaWeV Rf  UeVSecWiYeO\. SiPiOaUO\ fRU aQ\ WUiSOe, b,a   c , \[  ] ,P

 Rf UeaO QXPbeUV \RX caQ fiQd a SRiQW  iQ Whe VSace. ThiV cRRUdiQaWe V\VWeP iV caOOed aa, b, c)(   P

three dimensional rectangular (or Cartesian) coordinate s\stem.

Distance Formula: The diVWaQce beWZeeQ aQ\ WZR SRiQWV  aQd  iQ Whe 3-D[ , \ , ] )( �  �  � [ , \ , ] )( �  �  �

VSace iV caOcXOaWed b\ .  ෭([ ) \ ) ] )� − [�
� + ( � − \�

� + ( � − ]�
�
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ETXaWiRQ Rf a SSheUe: The equation of a sphere of radius  centered at  is given b\r [ , \ , ] )( 0  0  0

 or   √([ ) \ ) ] )− [0
2 + ( − \0

2 + ( − ]0
2  r [ ) \ ) ] ) .  ( − [0

2 + ( − \0
2 + ( − ]0

2  r2

Often times we work with spheres centered at the origin. In which case equation of the sphere is

given b\, .[2 + \2 + ]2  r2

DefiQiWiRQ: A YecWRU is a concept used for a quantit\ that has both a magnitude and a direction.

Vectors are usuall\ represented b\ a directed segment using an arrow. The arrow indicates the

direction. The arrow shows the direction from the iQiWiaO SRiQW or tail of this vector to its WeUPiQaO

SRiQW or tip. Two vectors with the same length and same direction are called eTXaO YecWRUV.

DefiQiWiRQ: If  and  are two vectors positioned in a wa\ that the initial point of  is the same v→  u→  v→

as the terminal point of  then  is the vector whose initial point is the initial point of  and,  u→  u→+ v→  u→

its terminal point is the terminal point of  This definition is summari]ed in the picture below as v.→

the TUiaQgOe LaZ:

If the initial points of  and  are the same, then we can draw a vector equal to  from the u→  v→  v→

terminal point of  and use the Triangle Law. This law -shown in the above picture-  is called the u→

PaUaOOeORgUaP LaZ.

DefiQiWiRQ: B\ a VcaOaU we mean a real number. For a scalar  and a vector  we can definec  u,→

the VcaOaU PXOWiSOe  to be a vector whose length is equal to  times the length of  andu  c → c෶  ෶  u→

whose direction is the same as the direction of  if  and opposite the direction of  if  u→ c ! 0  u→ .c � 0

If  the vector  is the ]ero vector.,c  0 u  c →

DefiQiWiRQ: Two non-]ero vectors are SaUaOOeO if the\ are scalar multiples of one another. The

vector  is called the QegaWiYe of  and is denoted b\  The diffeUeQce  is defined)u  (− 1 →  u→  − u.→  u→− v→

to be the sum ).  u→+ (− v→

DefiQiWiRQ: If the initial point of a vector  is placed at the origin and its terminal point has u→

coordinates  then these coordinates are called the components of  and we write[, \, ])(    u→
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< , \, ]  X→ = [   > .

If coordinates of the initial point of vector  are  and coordinates of its terminal point X→ [ , \ , ] )( 1  1  1

are  then [ , \ , ] )( 2  2  2 < , \ , ]  X→ = [2 − [1  2 − \1  2 − ]1 > .

The lengWh or magniWXde of a vector  is denoted by  X→ X෶.  ෶→

Given two vectors  and  and a scalar  we have:< , \, ]  X→ = [   > < , b, c  Y→ = a   > ,d

Ɣ < , \ , ]  X→+ Y→ = [ + a  + b  + c >

Ɣ < , \ , ]  X→− Y→ = [ − a  − b  − c >

Ɣ X < [, d\, d]  d → = d   >

Ɣ X෶  ෶→ =√[2 + \2 + ]2

For any positive integer  we denote by  the set of all ordered tuples ,n V n  n −  X→ =

 where  are real numbers. These real numbers are called, [ , [< [1  2 ā ā ā ,  n > , [ , [[1  2  ā ā ā ,  n

components of .  X→

PUopeUWieV of SXm and ScalaU MXlWiplicaWion: For any three vectors  and  in  and, Y  X→  →  Z→ V n

scalars  and  we have the following:c ,d

Ɣ  X→+ Y→ = Y→+ X→

Ɣ X ) X )  (→+ Y→ +Z→ =  →+ (Y
→

+Z→

Ɣ  X→+ 0
→

= X→

Ɣ )  X→+ (− X→ = 0
→

Ɣ (X ) X Y  c →+ Y→ = c →+ c→

Ɣ c )X X X  ( + d → = c →+ d →

Ɣ cd)X (dX)  ( → = c →

Ɣ  1 ā X→ = X→

DefiniWion: The vectors   and  are called the VWandaUd< , 0, 0 , j < , 1, 0  i
→

= 1   >  
→

= 0   > < , 0, 1  k
→

= 0   >

baViV YecWoUV.

NoWe: Any vector  can be written as < , \, ]  X→ = [   > i j k.  X→ = [
→
+ \

→
+ ]

→

DefiniWion: A vector is called a XniW YecWoU if its length is 1.

NoWe: If  then the vector  is the unit vector that has the same direction as =  X→ / 0
→

෶X෶  X→/ → .  X→

DefiniWion: The doW pUodXcW of two vectors  and  is the number< , , ]  X→ = [1  \1  1 > < , , ]  Y→ = [2  \2  2 >

 This is sometimes called the VcalaU pUodXcW, or the inneU pUodXcW of[ \ ] .  X→ ā Y→ = [1 2 + \1 2 + ]1 2
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 and  X→ .  Y→

PUopeUWieV of Whe DoW PUodXcW: Let  and  be three vectors and  be a scalar, then:, Y  X→  →  Z→ c

Ɣ  X→ · Y→ = Y→ · X→

Ɣ X෶  X→ · X→ = ෶→ 2

Ɣ  X→ · 0
→

= 0

Ɣ Y )  X→ · (→+Z→ = X→ · Y→+ X→ · Z→

Ɣ (X ) cX) cY)  c → · Y→ = ( → · Y→ = X→ · ( →

TheoUem: Let  be the angle between vectors  and  then θ  X→ ,  Y→ X෶෶Y෶ .  X→ · Y→ = ෶→ → cos θ

NoWe: Given components of two vectors you can use the above formula to find the cosine of the

angle between these two vectors, which may be used to evaluate this angle.

DefiniWion: Two non-zero vectors are called oUWhogonal or peUpendicXlaU if the angle between

them is 2.  ʌ/

NoWe: Two non-zero vectors are orthogonal if and only if their dot product is zero.

DefiniWion: The diUecWion angleV of a non-zero vector  are the angles  and < , b, c  X→ = a   > , βα  γ

(in ) that  makes with the positive  and axes. The cosines of these angles are0, ʌ][   X→ , \[   ] −

called the diUecWion coVineV of  X.→

NoWe: Given the above notations we have: ෶X෶, ෶X෶, ෶X෶.  cos α = a/ →  cos β = b/ →  cos γ = c/ →

The YecWoU pUojecWion of a vector  onto a vector , shown in the picture below, is denoted by b
→

 a→

 The VcalaU pUojecWion of  onWo  (or the componenW of  along ) is defined to beb.  proja→
→

 b
→

 a→  b
→

 a→

the signed magnitude of this vector projection and is denoted by omp b.  c a→
→
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These two quantities can be evaluated from the following formulas:

 and roj b a  p a→
→

=
∣a∣→ 2
a·b→ →

→ omp b ∣a∣.  c a→
→

= a→ · b
→
/ →

DefiniWion: For any four real numbers  and  define the deWeUminanW of oUdeU 2 by, b, ca   ,d

A deWeUminanW of oUdeU 3 is defined in terms of determinants of order 2 as follows:

DefiniWion: The cUoVV pUodXcW  of two vectors  and  is a→× b
→

< , a , a  a→ = a1  2  3 > < , b , b  b
→

= b1  2  3 >

defined as the following determinant of order 3:

NoWe: Cross products are vectors but dot products are scalars. You cannot add vectors and

scalars. So an expression like  does not have any meaning. X→× Y→+ X→ · Y→

The VcalaU WUiple pUodXcW of  and  is , Y  X→  →  Z→ Y ).  X→ · (→×Z→

PUopeUWieV of CUoVV PUodXcWV: Let  and  be three vectors in 3-D space and  be a Y  X,→ →  Z→ c

scalar. Then:

Ɣ  is orthogonal to both  and  X→× Y→  X→  Y→

Ɣ  Y→× X→ =− X→× Y→

Ɣ If  is the angle between  and  ( ) then θ  X→ ,  Y→  0 ื θ ื ʌ X ∣ X∣∣Y∣  ∣→× Y→ = ∣→ → sinθ

Ɣ The non-zero vectors  and  are parallel if and only if  X→  Y→  X→× Y→ = 0

Ɣ The length of  equals the area of the parallelogram determined by  and  X→× Y→  X→  Y→

Ɣ cX) (X ) cY)  ( → × Y→ = c →× Y→ = X→× ( →

Ɣ Y )  X→× (→+Z→ = X→× Y→+ X→×Z→

Ɣ Y )  (→+Z→ × X→ = Y→× X→+Z→ × X→

Ɣ Y ) X )  X→ · (→×Z→ = (→× Y→ · Z→

Ɣ  [You do not need to memorize this identity.]Y ) X )Y X )Z  X→× (→×Z→ = (→ · Z→ →− (→ · Y→ →

Ɣ  is the volume of the parallelepiped determined by vectors  and X Y )∣  ∣→ · (→×Z→ , Y  X→  →  Z→
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DefiniWion: A non-zero vector  is called a diUecWion YecWoU of a line  if  is< , b, c  u→ = a   > L  u→

parallel to  Numbers  and  are called diUecWion nXmbeUV of .L , ba  c .L

ETXaWionV of a Line: Let  be a line passing through  with direction vectorL [ , \ , ] )( 0  0  0

 The following are different equations of < , b, c  u→ = a   > . .L

Ɣ  where  and  is a real number. (vector equation of )u, r→ = r0
→ + t→ , \ , ] ,  r0

→ = < [0  0  0 > t L

Ɣ where  is a real number. (parametric equations of )a, \ b, ] c,[ = [0 + t  = \0 + t  = ]0 + t  t L

Ɣ  If  this should be written as  and  (symmetric.a
[ [− 0 = b

\ \− 0 = c
] ]− 0 a = 0 [ = [0 b

\ \− 0 = c
] ]− 0

equations of )L

NoWe: To find an equation of a line through two points first you need to find its direction vector by

subtracting these two points and then use one of the above formulas.

Let  and  be two vectors. The line segment from  to< , a , a  a→ = a1  2  3 > < , b , b  b
→

= b1  2  3 > a , a , a )( 1  2  3

 is given by  where b , b , b )( 1  2  3 1 )a b  r→ = ( − t →+ t
→

.  0 ื t ื 1

NoWe: To check if two lines are parallel find their direction vectors and check if they are scalar

multiples of one another.

DefiniWion: Two lines are called VkeZ lineV if they are not parallel and they do not intersect.

DefiniWion: A vector  is called a noUmal YecWoU of a plane if it is orthogonal to the plane, i.e.  n→  n→

is orthogonal to all vectors in that plane.

ETXaWionV of a Plane: Let  be a point on a plane  and  be a normal([ , \ , ] )A 0  0  0 P < , b, c  n→ = a   >

vector of  Two equations of  are as follows:.P P

Ɣ  where  (vector equation of ) n→ ā r→ = n→ ā r0
→ < , \ , ]  r0

→ = [0  0  0 > P

Ɣ (scalar equation of )([ ) (\ ) (] )  a − [0 + b − \0 + c − ]0 = 0 P

The second equation can be rewritten as  where  This[ \ ]a + b + c + d = 0 [ \ ] .  d =− a 0 − b 0 − c 0

equation is called a lineaU eTXaWion of .P

NoWe: To check if two planes are parallel check if their normal vectors are scalar multiples of one

another.

NoWe: To find an equation of a plane passing through three given points  and  find two, BA  ,C

vectors inside this plane by connecting two of these points (e.g.  and ). Then find the AB
→

 AC
→

cross product of these vectors to find a normal vector to this plane. Then use the above formula.
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NoWe: The distance  from a point  to the plane  is calculated by:D [ , \ , ] )(      [ \ ]a + b + c + d = 0

D =
√a +b +c2 2 2

∣a[ +b\ +c]+d∣  

ChapWeU 13

DefiniWion: A YecWoU fXncWion is a function whose domain is a subset of real numbers and

whose range is a set of vectors.

DefiniWion: If  is a vector function, then(t) < (t), g(t), h(t)  r→ = f   >

(t) < (t), (t), (t)  lim
t→a
r→ = lim

t→a
f  lim

t→a
g  lim

t→a
h > .

DefiniWion: A vector function  is called conWinXoXV at  if  r→ a (t) (a).  lim
t→a
r→ = r→

DefiniWion: If  is a continuous vector function on an interval  then the set(t) < (t), g(t), h(t)  r→ = f   > ,I

of all points  in the space such that  and  where  is called a[, \, ])(   (t), \ (t)[ = f  = g (t)] = h  t ∈ I

Vpace cXUYe. These equations are called parametric equations of this space curve.

NoWe: To identify a space curve it is best to find a relation between  and  For example to, \[  .]

identify the curve  notice that the curve is on the cylinder  and on, ,< sint  cos t  cos t > [2 + \2 = 1

the plane .\ = ]

DefiniWion: Derivative and integral of a vector function  is defined similar to(t) < (t), g(t), h(t)  r→ = f   >

its limits by looking at the components:

(t) < (t), g (t), h (t)  r→϶ = f ϶  ϶  ϶ >

(t) dt < (t) dt, (t) dt, (t) dt෾
b

a
r→ = ෾

b

a
f  ෾

b

a
g  ෾

b

a
h >  

DefiniWion: The WangenW line to the space curve  at a point  is a line through  and(t)  r→ P P

parallel to the tangent vector (t).  r→϶

DiffeUenWiaWion RXleV: Assume  and  are two vector functions,  is a scalar and  is a u→  v→ c f

real-valued function. Then

Ɣ (u(t) (t)) (t) (t)  d
dt

→ � v→ = u→϶ � v→϶
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Ɣ (cu(t)) u (t)  d
dt

→ = c →϶

Ɣ (f (t)u(t)) (t)u(t) (t)u (t)  d
dt

→ = f ϶ → + f →϶

Ɣ (u(t) (t)) (t) (t) (t) (t)  d
dt

→ ā v→ = u→϶ ā v→ + u→ ā v→϶

Ɣ (u(t) (t)) (t) (t) (t) (t)  d
dt

→ × v→ = u→϶ × v→ + u→ × v→϶

Ɣ (u(f (t))) (t)u (f (t))  d
dt

→ = f ϶ →϶

For a space curve given by  where  its length is evaluated by  The arc(t)  r→ ,  a ื t ื b r (t)∣ dt.∫
b

a
∣→϶

length function  is given by s (t) r (u)∣ du.s = ∫
t

a
∣→϶

To parametri]e a curve with respect to arc length evaluate  from the above formula. Thens

find  in terms of  by solving the equation for  and then use that to evaluate  as a function oft s t  r→

.s

Definition: If the position vector of a moving particle at time  is given by  its velocit\ ist (t)  r→

given by  Its speed is the scalar  Its acceleration is given by (t) (t).  v→ = r→϶ v(t)∣.  ∣→ (t) (t)  a→ = r→϶϶ (t).  = v→϶

Chapter 14

Definition: A function  of two variables is a rule that assigns to each ordered pair of realf

numbers  in a set  a unique real number  The graph of  is the set of all [, \)(  D ([, \).f  f [, \, ])(   

in the 3-D space  when ([, \).] = f  

Definition: The level curves of a function  of two variables are the curves with equationsf

 where  is a constant.([, \) ,f  = c c

Note: Functions of 3 or more variables are defined in the same manner. We can define level

surfaces of a 3 variable function is a surface given by  where  is a constant.([, \, ]) ,f   = c c

Definition: Let  be a function of two variables. We say  if  can bef ([, \)lim
([, \)→(a, b)

f  = L ([, \)f  

made arbitrarily close to  (i.e.  can be made arbitrarily small) when  is madeL f ([, \) ∣  ∣  − L [, \)(  

sufficiently close to  but not equal to  (i.e.  is made sufficiently smalla, b),(  a, b)(  [ ) \ )  ( − a 2 + ( − b 2

but not zero).

Note: Assume
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Ɣ  as  along a curve  and([, \)  f  → L1 [, \) a, b)  (  → (  C1

Ɣ  as  along a curve  and([, \)  f  → L2 [, \) a, b)  (  → (  C2

Ɣ =  L1 / L2

Then  does not exists.([, \)lim
([, \)→(a, b)

f  

Definition: A function  is called continuous at  if ([, \)f  a, b)(  ([, \) (a, b).lim
([, \)→(a, b)

f  = f  

Note: Limits and continuity are defined in the similar manner for functions of 3 or more variables.

Definition: A function  is called a pol\nomial of two variables if  is the sum of terms off ([, \)f  

the form  where  is a constant and  and  are non-negative integers. A rational[ \ ,c n m c n m

function of 2 variables is the ratio of two polynomials of 2 variables. Similarly you can define

polynomials and rational function of 3 or more variables.

Note: All polynomials and rational functions of 2 or more variable are continuous on their

domains.

Note: To evaluate  try the following:([, \)lim
([, \)→(a, b)

f  

1. Use the direct substitution property (i. e. number plugging) if the function is continuous.

2. If  take  and  and write  as a function  of a, b) = 0, 0), (  / (   u = [ ෥ a  v = \ ෥ b ([, \)f  (u, v)g  u

and  Then we can write the limit as  So we need to.v ([, \) (u, v).lim
([, \)→(a, b)

f  = lim
(u, v)→(0, 0)

g  

evaluate limits when approaching 0, 0).(  

3. When approaching  try evaluating the limit along different lines through the origin.0, 0),(  

i.e. approach the origin along  and  If you get different limits then the limit[\ = m .[ = 0

does not exists and we are done. If all limits are the same try different curves like

 etc. If two of the limits are different then the limit does not exist. If all limits, [ ,\ = [2  = \2

are the same then suspect the limit exists and try to prove it using the next steps.

4. Write  and  in polar coordinates  and  As  we know[ \ [ = r cos ș .\ = r sinș [, \) 0, 0), (  → (  

 Simplify this expression and try evaluating this limit using methods for evaluating.  r → 0

limits of functions of one variable  e. g. the Squeeze Theorem. Make sure to notice ,r ș

changes and could be any angle. If you want to plug in  and the expression involvesr = 0

 you need to first use the Squeeze Theorem to get functions depending only on ,ș .r

Definition: Partial derivative of  with respect to  at  is given by([, \)f  [ a, b)(  

 where (a, b) (a)f [  = g϶ ([) ([, b)g = f  

or

(a, b)f [  = lim
h→0 h

f(a+h, b) f(a, b)෥
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SiPiOaUO\ \RX caQ defiQe Whe SaUWiaO deUiYaWiYe Rf  ZiWh UeVSecW WR  aW  deQRWed b\ f \ a, b)(  (a, b).f \  

FRU a fXQcWiRQ  Rf WZR YaUiabOeV  aQd  Whe SaUWiaO deUiYaWiYe fXQcWiRQV  aQd  aUe defiQedf [ ,\ f [ f \

b\  aQd  AOWeUQaWiYe QRWaWiRQV fRU SaUWiaO([, \)f [  = lim
h→0 h

f([+h, \) f([, \)− ([, \) .f [  = lim
h→0 h

f([, \+h) f([, \)−

deUiYaWiYeV aUe  aQd , D f , D ff [  [  1 .∂f
∂[

Note: TR fiQd  UegaUd  aV a cRQVWaQW aQd diffeUeQWiaWe  ZiWh UeVSecW WR ,f [ \ ([, \)f  .[

TR fiQd  UegaUd  aV a cRQVWaQW aQd diffeUeQWiaWe  ZiWh UeVSecW WR ,f \ [ ([, \)f  .\

SiPiOaU WR Whe abRYe defiQiWiRQV Ze caQ defiQe SaUWiaO deUiYaWiYeV fRU fXQcWiRQV Rf 3 RU PRUe

YaUiabOeV. FRU iQVWaQce deUiYaWiYe Rf a fXQcWiRQ Rf 3 YaUiabOeV ZiWh UeVSecW WR  iV defiQed aV[

([, \, ])f [   = lim
h→0 h

f([+h, \, ]) f([, \, ])−

Definition: FRU a fXQcWiRQ Rf 2 YaUiabOeV  Whe fXQcWiRQV  aQd  aUe fXQcWiRQV Rf 2 YaUiabOeV.,f f [ f \

PaUWiaO deUiYaWiYeV Rf  aQd  aUe caOOed second partial derivatives Rf  We XVe Whe fROORZiQgf [ f \ .f

QRWaWiRQV:

f )∂ f2

∂[2 = f [[ = f 11 = ( [ [

f )∂ f2

∂\2 = f \\ = f 22 = ( \ \

f )∂ f2

∂[ ∂\ = f \[ = f 21 = ( \ [

f )∂ f2

∂\∂ [ = f [\ = f 12 = ( [ \

NRWe WhaW fRU eYaOXaWiQg  (RU ) Ze fiUVW diffeUeQWiaWe  ZiWh UeVSecW WR aQd WheQ Zef [\
∂ f2

∂\∂[ f [

diffeUeQWiaWe  ZiWh UeVSecW WR f [ .\

Clairaut¶s Theorem: SXSSRVe  iV defiQed RQ a diVN  WhaW cRQWaiQV  If Whe([, \)f  D a, b).(  

fXQcWiRQV  aQd  aUe cRQWiQXRXV RQ  WheQ f [\ f \[ ,D (a, b) (a, b).f [\  = f \[  

Tangent Plane: SXSSRVe  haV cRQWiQXRXV SaUWiaO deUiYaWiYeV. AVVXPe  iV a SRiQWf ([ , \ , ] )P 0  0  0

RQ Whe VXUface  AQ eTXaWiRQ Rf Whe WaQgeQW SOaQe WR Whe VXUface  aW  iV([, \).] = f  ([, \)] = f  P

([ , \ )([ ) ([ , \ )(\ ).  ] − ]0 = f [ 0  0 − [0 + f \ 0  0 − \0

Definition: Linear Approximation RU Tangent Plane Approximation Rf a 2 YaUiabOe fXQcWiRQ f

aW  iV Whe aSSUR[iPaWiRQ giYeQ b\ a, b)(  ([, \) (a, b) (a, b)([ ) (a, b)(\ ).  f  ป f  + f [  − a + f \  − b

Definition: If  WheQ  iV differentiable aW  if  caQ([, \),] = f  f a, b)(  ] (a [, b \)  ǻ = f + ǻ  + ǻ − (a, b)f  
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be e[pUeVVed in Whe foUm:

 ZheUe  and  aV ] (a, b)ǻ[ (a, b)ǻ\ ǻ[ ǻ\  ǻ = f [  + f \  + ˝1 + ˝2  ˝1 → 0  ˝2 → 0 ǻ[, ǻ\)(   → 0, 0).(  

Theorem: If  and  e[iVW and aUe conWinXoXV neaU  When  iV diffeUenWiable aW f [ f \ a, b),(  f a, b).(  

The Chain RXle:

1. AVVXme  iV diffeUenWiable and  and  aUe diffeUenWiable fXncWionV of ([, \)f  (t)[ = g (t)\ = h .t

Then  iV a diffeUenWiable fXncWion of  and f t .dt
df = ∂f

∂[ dt
d[ + ∂f

∂\ dt
d\

2. AVVXme  iV diffeUenWiable and  and  aUe diffeUenWiable fXncWionV([, \)f  (s, t)[ = g  (s, t)\ = h  

of  and  Then  iV a diffeUenWiable fXncWion of  and  and  ands .t f s t ∂s
∂f = ∂f

∂[ ds
d[ + ∂f

∂\ ds
d\

.∂t
∂f = ∂f

∂[ dt
d[ + ∂f

∂\ dt
d\

3. SXppoVe  iV a diffeUenWiable fXncWion of  and each  iV a diffeUenWiablef , [ ,[1  2  · · · ,[n [i

fXncWion of  Then  iV a diffeUenWiable fXncWion of  and, t , t .t1  2  · · · ,  m f , t , tt1  2  · · · ,  m

.∂f
∂ti

= ∂f
∂[1 ∂t1

∂[1 + ∂f
∂[2 ∂ti

∂[2 + · · · + ∂f
∂[n ∂ti

∂[n

ImpliciW DifferenWiaWion: If  aV a fXncWion of  iV giYen b\  When  \ [ ([, \)F  = 0 .  d[
d\ =− F \

F [

DefiniWion: The direcWional deriYaWiYe of a fXncWion  aW  in Whe diUecWion of a XniW([, \)f  [ , \ )( 0  0

YecWoU  iV defined b\ < , b  u→ = a  > f ([ , \ ) .Du→ 0  0 = lim
h→0 h

f([ +ha, \ +hb) f([ , \ )0 0 − 0 0

NoWe: If a non-]eUo YecWoU  iV noW a XniW YecWoU, Wo find Whe diUecWional deUiYaWiYe of  aW u→ ([, \)f  

 in Whe diUecWion of  \oX need Wo eYalXaWe  ZheUe [ , \ )( 0  0 ,  u→ f ([ , \ )Dv→ 0  0 ෶u෶.  v→ = u→/ →

DefiniWion: The gradienW of a fXncWion  iV defined aV ([, \)f  f ([, \) < ([, \), f ([, \)  ∇  = f [   \  > .

Theorem: If  iV diffeUenWiable When iW haV a diUecWional deUiYaWiYe in an\ diUecWion and foU a([, \)f  

XniW YecWoU  Ze haYe  u,→ f ([, \)Du→  = ([, \), f ([, \) · f ([, \) .  < f [   \  > u→ = ∇  · u→

SimilaUl\ one can define diUecWional deUiYaWiYeV foU fXncWionV of 3 oU moUe YaUiableV aV folloZV:

DefiniWion: FoU a XniW YecWoU  in 3-D Vpace and a fXncWion  of 3 YaUiableV  and  Ze define u→ f , \[  ]

Whe diUecWional deUiYaWiYe of  aW  in Whe diUecWion  b\ ,f [ , \ , ] )( 0  0  0  u→

f (a)Du→
→ = lim

h→0 h
f(a+hu) f(a)→ → − →

ZheUe < , \ , ]  a→ = [0  0  0 > .

Theorem: AVVXme  iV a poinW on Whe plane. AVVXme  iV a diffeUenWiable fXncWion. The[, \)(  ([, \)f  

ma[imXm YalXe of  iV  and occXUV Zhen  haV Whe Vame diUecWion aV Whef ([, \)Du→  ∇f ([, \)෶  ෶   u→
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gUadieQW YecWRU  The VaPe hROdV fRU fXQcWiRQV Rf 3 YaUiabOeV.f ([, \).  ∇  

Equation of tangent planes to level surfaces: LeW  be a 3 YaUiabOe fXQcWiRQ. AVVXPe  iV aF c

cRQVWaQW aQd  iV a SRiQW RQ Whe OeYeO VXUface   TheQ  iV a([ , \ , ] )P 0  0  0 ([, \, ]) .F   = c F([ , \ , ] )  ∇ 0  0  0

QRUPaO OiQe WR Whe WaQgeQW SOaQe WR WhiV OeYeO VXUface aW  AQ eTXaWiRQ Rf WhiV WaQgeQW SOaQe iV.P

giYeQ b\ ([ , \ , ] )([ ) ([ , \ , ] )(\ ) ([ , \ , ] )(] ) .  F [ 0  0  0 − [0 +F \ 0  0  0 − \0 +F ] 0  0  0 − ]0 = 0

Equation of normal line to level surface  iV giYeQ b\:([, \, ])F   = c

.
[ [− 0

F ([ , \ , ] )[ 0 0 0
=

\ \− 0

F ([ , \ , ] )\ 0 0 0
=

] ]− 0

F ([ , \ , ] )] 0 0 0

Definition: A fXQcWiRQ  Rf WZR YaUiabOeV haV a local minimum aW  if  fRUf a, b)(  (a, b) ([, \)  f  ื f  

aQ\  QeaU   The QXPbeU  iV caOOed a local minimum value. SiPiOaUO\   haV a[, \)(  a, b).(  (a, b)f  f

local ma[imum aW  if  fRU aQ\  QeaU   The QXPbeU  iVa, b)(  (a, b) ([, \)  f  ุ f  [, \)(  a, b).(  (a, b)f  

caOOed a local ma[imum value. SiPiOaU WR fXQcWiRQV Rf RQe YaUiabOe if WheVe iQeTXaOiWieV hROd fRU

aOO YaOXeV Rf  Ze Va\  haV aQ absolute minimum RU absolute ma[imum aW[, \)(  f a, b).(  

Definition: A SRiQW  iV caOOed a critical point Rf  if  RU if RQe Rf WheVea, b)(  ,f (a, b) (a, b)f [  = f \  = 0

SaUWiaO deUiYaWiYeV dReV QRW e[iVW.

Theorem: If  haV a ORcaO Pa[iPXP RU PiQiPXP aW  WheQ  haV a cUiWicaO SRiQW aW f a, b),(  f a, b).(  

Second Derivatives Test: AVVXPe Whe VecRQd SaUWiaO deUiYaWiYeV Rf  aUe cRQWiQXRXV RQ a diVNf

ceQWeUed aW  SXSSRVe  iV a cUiWicaO SRiQW Rf  aQd OeWa, b).(  a, b)(  f

(a, b)f (a, b) f (a, b)@  D = f [[  \\  − [ [\  2

1. If  aQd  WheQ  haV a ORcaO PiQiPXP aW D > 0 (a, b)f [[  > 0 f a, b).(  

2. If  aQd  WheQ  haV a ORcaO Pa[iPXP aW D > 0 (a, b)f [[  < 0 f a, b).(  

3. If  WheQ  iV QRW a ORcaO Pa[iPXP RU a ORcaO PiQiPXP. IQ WhiV caVe Ze Va\ ,D < 0 (a, b)f  f

haV a saddle point aW a, b).(  

Note: If  Whe WeVW iV iQcRQcOXViYe, i.e.  cRXOd haYe a ORcaO PiQiPXP, a ORcaO Pa[iPXP RU a,D = 0 f

VaddOe SRiQW aW a, b).(  

Note: TR UePePbeU  Whe fRUPXOa Rf  \RX caQ ZUiWe iW aV a deWeUPiQaQW:D
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Definition: A VXEVHW  RI SODQH RU VSDFH LV FDOOHG bounded LI WKHUH LV D FLUFOH RU D VSKHUH WKDWE

FRQWDLQV DOO SRLQWV RI  TKH VXEVHW  LV FDOOHG closed LI LW FRQWDLQV LWV ERXQGDU\..E E

E[treme Value Theorem: LHW  EH D FORVHG DQG ERXQGHG VXEVHW RI WKH SODQH RU 3-D VSDFH. IIE

 LV D 2 YDULDEOH RU 3 YDULDEOH IXQFWLRQ FRQWLQXRXV RQ  WKHQ WKHUH DUH SRLQWV  VXFK WKDWf ,E , \  [  ∈ E

 KDV DQ DEVROXWH PD[LPXP DW  DQG DQ DEVROXWH PLQLPXP DW   RQ f [ \ .E

Note: LHW  EH D FORVHG DQG ERXQGHG VXEVHW RI WKH SODQH. AVVXPH  LV D FRQWLQXRXV IXQFWLRQE f

RQ  TR ILQG WKH DEVROXWH PD[LPXP DQG PLQLPXP YDOXHV RI  RQ .E f ,E

1. FLQG WKH YDOXHV RI  DW WKH FULWLFDO SRLQWV RI  LQ f f .E

2. FLQG WKH H[WUHPH YDOXHV RI  RQ WKH ERXQGDU\ RI f .E

3. TKH ODUJHVW YDOXH RI WKH YDOXHV IURP WKH DERYH 2 VWHSV LV WKH DEVROXWH PD[LPXP YDOXH RI

 RQ  DQG WKH VPDOOHVW YDOXH RI WKH YDOXHV RI WKH DERYH 2 VWHSV LV WKH DEVROXWHf E

PLQLPXP YDOXH RI  RQ f .E

Method of Lagrange Multipliers: TR ILQG WKH PD[LPXP DQG PLQLPXP YDOXHV RI ([, \, ])f   

VXEMHFW WR WKH FRQVWUDLQW ([, \, ])g   = k :

1. FLQG DOO YDOXHV RI  DQG  DQG  VXFK WKDW  DQG , \[  ] Ȝ f ([, \, ]) ∇g([, \, ])  ∇   = Ȝ   ([, \, ]) .g   = k

2. EYDOXDWH  DW DOO SRLQWV  WKDW UHVXOW IURP WKH ILUVW VWHS. TKH ODUJHVW RI WKHVH YDOXHVf [, \, ])(   

LV WKH PD[LPXP YDOXH RI  DQG WKH VPDOOHVW YDOXH LV WKH PLQLPXP YDOXH RI f .f

Note: TKH MHWKRG RI LDJUDQJH MXOWLSOLHUV FDQ EH XVHG RQO\ ZKHQ WKH H[WUHPH YDOXHV H[LVW DQG

 RQ WKH VXUIDFH g =  ∇ / 0
→

([, \, ]) .g   = k

Note: II WKHUH DUH 2 FRQVWUDLQWV  DQG  WKHQ ZH QHHG WR VROYH WKH([, \, ])g   = k ([, \, ]) ,h   = c

IROORZLQJ HTXDWLRQ LQ WKH ILUVW VWHS:  TKH VHFRQG VWHSf ([, \, ]) ∇g([, \, ]) ∇h([, \, ]).  ∇   = Ȝ   + ȝ   

UHPDLQV WKH VDPH. IQ WKLV FDVH ZH QHHG WR PDNH VXUH WKH H[WUHPH YDOXHV H[LVW DQG g([, \, ])  ∇   

DQG  DUH QRW ]HUR DQG DUH QRW SDUDOOHO.h([, \, ])  ∇   

Chapter 15

Definition: LHW  EH D UHFWDQJOH LQ WKH SODQH. LHW  DQG  EH WZR SRVLWLYH LQWHJHUV.R = I × J \  [ ෥ n m

DLYLGH WKH LQWHUYDO  LQWR  VXE-LQWHUYDOV RI HTXDO OHQJWK ZLWK HQGSRLQWV  DQG GLYLGHI n , [ , [[0  1 · · · ,  n

 LQWR  VXE-LQWHUYDOV RI HTXDO OHQJWK ZKRVH HQGSRLQWV DUH  TKHVH SRLQWV  GLYLGHJ m , \ , \ .\0  1  · · · ,  m

 LQWR UHFWDQJOHV. PLFN D VDPSOH SRLQW  LQVLGH WKH UHFWDQJOH QXPEHU  LHW  EHR nm [ , \ )( *
ij  *

ij i, j).(  AΔ

WKH DUHD RI HDFK RI WKHVH VXE-UHFWDQJOHV. TKH GRXEOH LQWHJUDO RI  RYHU  LV GHILQHG WR EHf R

13



([, \) dA ([ , \ )ǻA.∫
 

 
∫
 

R
f  = lim

m, n→∞
∑
n

i=1
∑
m

j=1
f *

ij  *
ij

DefiniWion: The sum  is called a doXble Riemann SXm.([ , \ )ǻA∑
n

i=1
∑
m

j=1
f *

ij  *
ij

NoWe: If  then the volume of the solid that lies above the rectangle  and below the([, \)  f  ุ 0 R

surface  is given by the double integral  ([, \)] = f  ([, \) dA.∫
 

 
∫
 

R
f  

MidpoinW RXle:  where  and  are the midpoints of th and([, \) dA ([ , \ )ǻA∫
 

 
∫
 

R
f  ≈ ∑

n

i=1
∑
m

j=1
f i  j [i \j  i −

th sub-intervals of  and  respectively. j − I ,J

DefiniWion: Let  be any bounded plane region.  Assume  is a rectangle containing  ForD R .D

any function  over  define a new function  over  to be the same as  whenf D ([, \)F  R ([, \)f  

 and zero when  The double integral of  over  is defined to be the double[, \)  (  ∈ D [, \) ∈ .  (  / D f D

integral of  over F ([, \) dA ([, \) dA.R :  ∫
 

 
∫
 

D
f  = ∫

 

 
∫
 

R
F  

DefiniWion: For any region  the aYeUage YalXe of  over  is defined as ,R f D f ave =

 where  is the area of ([, \) dA,1
A(D) ∫

 

 
∫
 

D
f  (D)A .D

PUopeUWieV of DoXble InWegUalV: For a constant  and two functions   and  we have:c f g

Ɣ f ([, \) ([, \) dA f ([, \) dA g([, \) dA∫
 

 
∫
 

D 
  + g  = ∫

 

 
∫
 

D 
  + ∫

 

 
∫
 

D 
  

Ɣ cf ([, \) dA f ([, \) dA∫
 

 
∫
 

D 
  = c ∫

 

 
∫
 

D 
  

Ɣ  if  for any f ([, \) dA ([, \) dA∫
 

 
∫
 

D 
  ุ ∫

 

 
∫
 

D 
g  ([, \) ([, \)  f  ุ g  [, \)  (  ∈ D

Ɣ  where  is the union of  and and they([, \) dA ([, \) dA ([, \) dA,∫
 

 
∫
 

D 

f  = ∫
 

 
∫
 

D1

f  + ∫
 

 
∫
 

D2

f  D D1 D2

do not overlap except possibly at their boundaries.

Ɣ  the area of region  dA (D),∫
 

 
∫
 

D 

1 = A .D

DefiniWion: Starting with an integrable function of two variables  on a rectangle ([, \)f  R =

 we can integrate  with respect to  to get a function of  i. e. define a, b] c, d],[  × [  f \ ,[ ([)A =
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 Since WhiV, iWVelf, iV a fXncWion of  Ze can inWegUaWe WhaW ZiWh UeVpecW Wo   Wo geW a([, \) d\.∫
d

c
f  ,[ [

conVWanW nXmbeU, i. e.  ThiV iV called an iterated integral.([) d[ [ f ([, \) d\] d[.∫
b

a
A = ∫

b

a
∫
d

c
  

Fubini¶s Theorem: AVVXme  and  aUe conVWanWV. If  iV conWinXoXV on Whe UecWangle, b, ca   d f

 Whena, b] c, d],R = [  î [  

([, \) dA f ([, \) d\ d[ f ([, \) d[d\.∫
 

 
∫
 

R 
f  = ∫

b

a
∫
d

c
  = ∫

d

c
∫
b

a
  

Note: FoU WZo conWinXoXV fXncWionV  and  Ze haYe,f g

f ([)g(\) dA f ([) d[ g(\) d\.∫
 

 
∫
 

R 
 = ∫

b

a
 î ∫

d

c
 

Definition: A plane Uegion  iV Vaid Wo be of type I if iW lieV beWZeen Whe gUaphV of WZoD

conWinXoXV fXncWionV of  i. e. WheUe aUe WZo conVWanWV  and  and WZo conWinXoXV fXncWionV,[ a b

 and  VXch WhaW ([)g1 ([)g2 ([, \) ∣  a , g ([) ([)}.  D = {  ื [ ื b  1 ื \ ื g2

Definition: A Uegion of type II iV a Uegion on Whe plane WhaW can be e[pUeVVed aV   

([, \) ∣ c , h (\) (\)}  D = {  ื \ ื d  1 ื [ ื h2

foU WZo conVWanWV  and  and WZo fXncWionV  and c d (\)h1 (\).h2

Note: The doXble inWegUal oYeU a W\pe I Uegion  aV aboYe iV eYalXaWed b\,D

f([, \) dA f ([, \) d\ d[.∫
 

 
∫
 

D 
  = ∫

b

a
 ∫

g ([)2

g ([)1

  

The doXble inWegUal oYeU a W\pe II Uegion  aV aboYe iV eYalXaWed b\,D
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f ([, \) dA f ([, \) d[ d\.∫
 

 
∫
 

D 
  = ∫

d

c
 ∫

h (\)2

h (\)1

  

FRU a W\Se I UegiRQ, WR fiQd  aQd  fiQd Whe Pa[iPXP aQd PiQiPXP SRVVibOe YaOXeV Rf a ,b  [ −

cRRUdiQaWeV Rf SRiQWV iQVide  Fi[iQg a QXPbeU  beWZeeQ  aQd  fiQd Whe Pa[iPXP aQd.D [ a ,b

PiQiPXP YaOXeV Rf  i.e. ORRN aW Whe YeUWicaO OiQe WhURXgh  aQd fiQd fXQcWiRQV  aQd,\ [, 0)(  ([)g1

([).g2

SiPiOaUO\ fRU W\Se II UegiRQV WR fiQd  aQd  fiQd Pa[iPXP aQd PiQiPXP YaOXeV Rf c ,d  \ −

cRRUdiQaWeV Rf SRiQWV iQ  aQd WheQ ORRN aW hRUi]RQWaO OiQeV.D

Change Wo PolaU CooUdinaWeV in DoXble InWegUalV: LeW  be a cRQWiQXRXV fXQcWiRQ RQ a SROaUf

UecWaQgOe  giYeQ b\  aQd  ZheUe  TheQR  0 ื a ื r ื b , α ื θ ื β ʌ.  0 ื β − α ื 2

f ([, \) dA f (r , r ) r dr dθ.∫
 

 
∫
 

R 
  = ∫

β

α
∫
b

a
 cos θ  sinθ

NoWe: OQe cRPPRQ eUURU ZheQ VZiWchiQg fURP UecWaQgXOaU cRRUdiQaWeV  WR SROaU[, \)(  

cRRUdiQaWeV  iV fRUgeWWiQg Whe addiWiRQaO facWRU Rf  RQ Whe UighW haQd Vide Rf Whe abRYer, θ)(  r

eTXaOiW\.

NoWe: If  iV cRQWiQXRXV RQ a SROaU UegiRQ  WheQf (r, θ) ∣ α , h (θ) (θ)}, D = {  ื θ ื β  1 ื r ื h2

f ([, \) dA f (r , r ) r dr dθ.∫
 

 
∫
 

D 
  = ∫

β

α
 ∫

h (θ)2

h (θ)1

 cos θ  sinθ

NoWe: TR fiQd  aQd  fRU a UegiRQ  fiQd Pa[iPXP aQd PiQiPXP SRVVibOe YaOXeV Rf  fRU aOOα β ,D θ

SRiQWV iQ  MaNe VXUe aOO YaOXeV beWZeeQ  aQd  aUe SRVVibOe YaOXeV Rf  TheQ fi[  aQd ORRN.D α β .θ θ

aW Whe Ua\ WhURXgh Whe RUigiQ cRUUeVSRQdiQg WR  FiQd Whe Pa[iPXP aQd PiQiPXP YaOXeV Rf  fRU.θ r

VXch  TheVe ZRXOd giYe XV Whe fXQcWiRQV  aQd  MaNe VXUe aQ\ YaOXe beWZeeQ .θ (θ)h2 (θ).h1 (θ)h1

aQd  iV aQ  YaOXe fRU VRPe SRiQW iQ (θ)h2 r .D

ChapWeU 16

DefiniWion: LeW  be VXbVeW Rf Whe SOaQe (RU Whe VSace). A 2-diPeQViRQaO ( RUD \  [ − \]  [ −

3-diPeQViRQaO) YecWoU field  iV a fXQcWiRQ WhaW aVVigQV a YecWRU  (RU  WR aQ\F ([, \)F  ([, \, ]))F   

 (RU ) iQ [, \)(  [, \, ])(   .D

16



NoWe: For any scalar function  the gradient  is a vector field.([, \, ])f   f  ∇

DefiniWion: A vector field  is called conVeUYaWiYe if it is the gradient of a scalar function, i. e.F

 for some function  This function  is called a poWenWial fXncWion for f  F = ∇ .f f .F

DefiniWion: A plane or space curve  given by  over an interval  is called smooth if C (t)  r→ I (t)  r→϶

exists for all  and  t ∈ I (t) = .  r→϶ / 0
→

Assume  is a smooth curve given by   Divide the interval  intoC (t) < (t), \(t) ,  r→ = [  > a, b].  t ∈ [  a, b][  

sub-intervals of equal length and in each sub-interval pick a smaple real number   and setti*

 and  Let  be the lengths of corresponding sub-arcs.(t )[i* = [ i
* (t ).\i* = \ i

* s , ǻs , ǻsǻ 1  2  · · · ,  n

DefiniWion: If  is defined on a smooth curve   given by  then the line integralf C (t) < (t), \(t) ,  r→ = [  >

of  along   with respect to arc length,  or  are defined as follows:f C [ \

  (Line integral with respect to arc length.)f ([, \) ds ([ , \ )ǻs∫
 

 C
  = lim

n→∞
∑
n

i=1
f i

*  i
* i

  (Line integral with respect to .)f ([, \) d[ ([ , \ )ǻ[∫
 

 C
  = lim

n→∞
∑
n

i=1
f i

*  i
* i [

  (Line integral with respect to .)f ([, \) d\ ([ , \ )ǻ\∫
 

 C
  = lim

n→∞
∑
n

i=1
f i

*  i
* i \

DefiniWion: A curve  is called pieceZiVe VmooWh, if it is a finite union of smooth curves. IfC

 where ’s are smooth curves, then the integral of a function  over  is C = C1 ຖC2 ຖ · · · ຖCn C i f C

defined to be the sum of integrals of  over ’s.f C i

EYalXaWing Line InWegUalV:

Ɣ f ([, \) ds f ([(t), \(t))  dt.  ∫
 

C
  = ∫

b

a
  √([ (t)) \ (t))϶ 2 + ( ϶ 2

Ɣ f ([, \) d[ f ([(t), \(t)) [ (t) dt∫
 

C
  = ∫

b

a
  ϶

Ɣ f ([, \) d\ f ([(t), \(t)) \ (t) dt∫
 

C
  = ∫

b

a
  ϶

DefiniWion: Line integrals in space are defined similarly. Assume the space curve  is given byC

  and  is a function defined on  the integral of  along  is  evaluated(t),  r→  a ≤ t ≤ b ([, \, ])f   ,C f C

by:

Ɣ  (Line integral with respect to arc length.)f ([, \, ]) ds f ([(t), \(t), ](t)) ∣r (t)∣ dt∫
 

C
   = ∫

b

a
   →϶

17



Ɣ  (Line integral with respect to .)f ([, \, ]) d[ f ([(t), \(t), ](t)) [ (t) dt∫
 

C
   = ∫

b

a
   ϶ [

Ɣ  (Line integral with respect to .)f ([, \, ]) ds f ([(t), \(t), ](t)) \ (t) dt∫
 

C
   = ∫

b

a
   ϶ \

Line InWegUalV of VecWoU FieldV: Let  be a continuous vector field defined on a smooth curveF

 given by a vector function  Then the line integral of  along  is defined as,C (t), a .  r→  ื t ื b F C

 where F r (r(t)) (t) dt F  ds,∫
 

C
 ā d→ = ∫

b

a
F → ā r→϶ = ∫

 

C
 ā T

→
(t) (t) ∣r (t)∣.  T

→
= r→϶ / →϶

NoWe: When line integrals with respect to  or  occur together we may write them as one, \[  ]

integral as below:  is the same as    Pd[ d\ d]∫
 

C
 +Q +R Pd[ d\ d].∫

 

C
 + ∫

 

C
Q + ∫

 

C
R

The FXndamenWal TheoUem of Line InWegUalV: Let  be a smooth curve given by C (t),  r→

 Let  be a differentiable function of two or three variables whose gradient isa .   ื t ื b f

continuous on  Then .C ∇f r (r(b)) (r(a)).∫
 

C
 ā d→ = f → − f →

DefiniWion: Let  be a vector field with domain  The line integral  is said to beF .D r∫
 

C
F ā d→

independenW of paWh if  for any two path  and  in  that have theF r F r∫
 

C1

 ā d→ = ∫
 

C2

 ā d→ C1 C2 D

same initial and terminal points.

DefiniWion: A curve  is called cloVed if its terminal point is the same as its initial point.C

TheoUem:  is independent of path in  if and only if  for any closed path  inr∫
 

C
F ā d→ D r∫

 

C
F ā d→ = 0 C

.D

DefiniWion: A plane set  is said to be open if for every point  in  there is a disk around D P ,D P

that lies entirely in  It is said to be connecWed if any two points inside  can be joined by a.D D

path inside .D

TheoUem: Suppose  is a vector field  that is continuous on an open and connected plane setF

 If  is independent of path in  then  is a conservative vector field on .D r∫
 

C
F ā d→ ,D F .D

TheoUem: If  is a conservative vector field and  and  have([, \) < ([, \), Q([, \)F  = P    > P Q

18



continuous first-order partial derivatives on a domain . Then throughout  we have D D .�\
�P = �[

�Q

Definition: A curve is called simple if it does not intersect itself anywhere between its

endpoints.

Definition: A plane region  is called simply-connected if it is connected and each simpleD

closed curve in  encloses only points of D .D

Theorem: Let  be a vector field on an open, simply-connected plane< ([, \), Q([, \)F = P    >

region  Suppose  and  have continuous first-order partial derivatives and .D P Q �\
�P = �[

�Q

throughout  then  is conservative.,D F

Definition: Positive orientation of a simple closed curve  is a single counterclockwiseC

traversal of .C

Green¶s Theorem: Let  be a positively oriented piecewise-smooth simple closed curve in theC

plane and let  be the region bounded by  If  and  have continuous partial derivatives onD .C P Q

an open region containing  then:,D

Pd[ d\ ( ) dA.∫
 

C
 +Q = ∫

 

 
∫
 

D 
 �[

�Q
− �\

�P

Sometimes we use the notation  to indicate  is positively oriented. We may alsod[ d\ก
 

C
P +Q C

use  to indicate a positive orientation of the boundary of  is used.d[ d\∫
 

�D
P +Q D

Note: When using the Green¶s Theorem make sure all conditions are satisfied. A very common

error is to use the Green¶s Theorem when the vector field is not defined or is not continuous

inside .D

Definition: Let  be a plane region (possibly with holes). An orientation of the boundary  is aD D�

19



poViWiYe oUienWaWion if the region is on the left when this boundary is traversed.

NoWe: Green¶s Theorem is true for more general regions and a positive orientation discussed

above. In general Green¶s Theorem can be stated as,

Pd[ d\ ( ) dA.෾
 

�D
 +Q = ෾

 

 
෾
 

D 
 �[

�Q
− �\

�P   

DefiniWion: For a 3-D vector field  we define cXUl of , denoted by  to be< , Q, RF = P   > F url F ,c

the following vector field.

TheoUem: If  is a 3 variable function whose second order partial derivatives are continuous,f

then url(∇f ) .  c = 0
→

TheoUem: If  is a vector field defined on the whole 3-D space whose components haveF

continuous partial derivatives and , then   is conservative.url F  c = 0
→

F

NoWe: To find a potential function for a conservative vector field < , Q, R ,F = P   >

1. Write , Q , RP = f [  = f \  = f ]

2. Regard  and  as constants and integrate  with respect to  You will then find\ ] P .[

 Notice that since we regard  and  as constants we need to add aP d[ (\, ]).f = ෾
 

 
 + g  \ ]

function of  and  (i.e. ) instead of a constant.\ ] (\, ])g  

3. Differentiate the above identity with respect to  to get  Use that to solve  by\ .f \ f \ = Q

simplifying both sides first and then integrating with respect to  (considering  as a\ ]

constant). Doing that you will be able to evaluate  up to a function  of only (\, ])g  (])h .]

Now plug that back into the equation for  to evaluate f .f

4. Use the expression that you get for  and the last identity  to evaluate a potentialf f ] = R

function  by integrating both sides with respect to f .]

DefiniWion: For a vector field  define < , Q, RF = P   > iv F .d = �[
�P + �\

�Q + �]
�R

20



Using the ³del´ notation we have: iv F .  d = ∇ · F

TheRUeP: If  is a 3-D vector field whose components have continuous second-order partialF

derivatives, then iv (curl F ) .d = 0

DefiQiWiRQ: The set of all points  such that  and  where[, \, ])(   (u, v), \ (u, v)[ = [   = \  (u, v)] = ]  

 are in a plane set  form a surface  called a SaUaPeWUic VXUface and these equations, vu  D S

are called SaUaPeWUic eTXaWiRQV of .S

NRWe: Lets consider the surface  obtained by rotating the curve  for  aboutS ([)  \ = f ุ 0  a ื [ ื b

the axis. Parametric equations of this surface of revolution is given by: [ −

, \ ([) , ] ([) .[ = [  = f cos ș  = f sinș

DefiQiWiRQ: A parametric surface  given by the position vector  is called VPRRWh ifS (u, v)  r→  

 for any  and  where  is the vector whose components are partial derivatives of=  ru
→ × rv

→ / 0
→

u ,v  ru
→

components of  with respect to  and similarly for  r→ u  r .v
→

DefiQiWiRQ: The tangent plane to  is a plane that contains the tangent vectors  and S  ru
→ .  rv

→

NRWe: A normal vector to the tangent plane is given by .  ru
→ × rv

→

DefiQiWiRQ: Let  be a smooth parametric surface given by  where  AssumeS (u, v)  r→  u, v) .  (  ∈ D

 is covered just once as  ranges throughout the parameter domain  Then the VXUfaceS u, v)(  .D

aUea of  is evaluated byS

(S) r ∣ dA.A = ∫
 

 
∫
 

D 
∣ u
→ × rv

→

SXUface aUea Rf Whe gUaSh Rf a fXQcWiRQ: Let  be the surface  where S ([, \),] = f  [, \) .  (  ∈ D

The area of  is evaluated by S (S)  dA.  A = ∫
 

 
∫
 

D  
 √1 ) )+ (∂]

∂[
2 + (∂]

∂\
2

SXUface IQWegUaOV: Let  be a smooth surface given by  where  and assume S (u, v)  r→  u, v)  (  ∈ D S

is covered only once as  ranges through  Thenu, v)(  .D

([, \, ]) dS (r(u, v)) ∣r ∣ dA.∫
 

 
∫
 

S  
f   = ∫

 

 
∫
 

D  
f →  u

→ × rv
→

If  is the surface given by  thenS ([, \),] = g  

([, \, ]) dS ([, \, g([, \))  dA.  ∫
 

 
∫
 

S  
f   = ∫

 

 
∫
 

D  
f    √1 ) )+ (∂]

∂[
2 + (∂]

∂\
2

DefiQiWiRQ: If it is possible to choose a unit normal vector  at every point  on a([, \, ])  n→   [, \, ])(   
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surface  so that  varies continuousl\ over , then  is called an oUienWed VXUface and theS  n→ S S

given choice of  provides  with an oUienWaWion. For an\ oriented surface there are two n→ S

possible orientations.

For a smooth parametric surface  given b\  an orientation of  is given b\S (u, v), r→  S

 We can take  to get another orientation of the same surface. If  is ther ) ∣r ∣.  n→ = ( u
→ × rv

→ / u
→ × rv

→  − n→ S

graph of  then  gives an orientation of  Since in([, \),g  i j )  n→ = (− ∂[
∂g→

− ∂\
∂g→+ k

→
/√1 ) )+ (∂[

∂g 2
+ (∂\

∂g 2
.S

this orientation the component is positive this orientation is called the XpZaUd oUienWaWion. k
→
−

DefiniWion: A surface  is called a  cloVed VXUface if it is the boundar\ of a solid . A poViWiYeS E

oUienWaWion of a closed surface  is the one that normal vectors point outward. InwardS

orientation is called a negative orientation.

DefiniWion: Let  be a continuous vector field defined on an oriented surface  with unit normalF S

vector , then the VXUface inWegUal of  oYeU  is n→ F S

F S F  dS.෾
 

 
෾
 

S 
 ā d = ෾

 

 
෾
 

S 
 ā n→

This integral is also called the flX[ of  across F .S

If the parametric surface  is given b\  where  thenS (u, v)  r→  u, v)  (  ∈ D

F S F r ) dA෾
 

 
෾
 

S 
 ā d = ෾

 

 
෾
 

D 
 ā ( u

→ × rv
→
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If  iV giYen b\  ZheUe  and  WhenS ([, \),] = g  [, \)  (  ∈ D < , Q, R ,F = P   >

F S ( ) dA.෾
 

 
෾
 

S 
 ā d = ෾

 

 
෾
 

D 
 − P ∂[

∂g
−Q∂\

∂g +R

Definition: LeW  be an oUienWed VXUface ZiWh an oUienWaWion  and leW  be Whe boXndaU\ of S  n→ C .S

An oUienWaWion of  iV called a positive orientation if  Zhen \oX Zalk in Whe poViWiYe diUecWionC

aUoXnd  ZiWh \oXU head poinWing in Whe diUecWion of , When Whe VXUface  Zill alZa\V be on \oXUC  n→ S

lefW.

Note: NoWice WhaW an oUienWaWion foU Whe boXndaU\  iV poViWiYe onl\ relatiYe Wo an oUienWaWion of C .S

if \oX change Whe oUienWaWion of  fUom  Wo  When \oX need Wo change Whe oUienWaWion of  WoS  n→ ,  − n→ C

geW a poViWiYe oUienWaWion.

Stoke¶s Theorem: LeW  be an oUienWed pieceZiVe-VmooWh VXUface WhaW iV boXnded b\ a Vimple,S

cloVed, pieceZiVe-VmooWh boXndaU\ cXUYe  ZiWh poViWiYe oUienWaWion. LeW  be a YecWoU fieldC F

ZhoVe componenWV haYe conWinXoXV paUWial deUiYaWiYeV on an open Uegion in 3-D Vpace WhaW

conWainV . ThenS

F r url F S෾
 

C
 ā d→ = ෾

 

 
෾
 

S  
c ā d

Note: GiYen a VXUface  ZiWh an oUienWaWion, iWV boXndaU\ along ZiWh a poViWiYe oUienWaWion UelaWiYeS

Wo Whe oUienWaWion of  iV XVXall\ denoWed b\ S S.∂

Sections 15.6-15.8

Surface Areas of Graphs: The aUea of a VXUface giYen b\  iV eYalXaWed b\([, \), ([, \)  ] = f    ∈ D

(S)  dA  A = ෾
 

 
෾
 

D  
 √1 f ([, \)) f ([, \))+ ( [  2 + ( \  2

Fubini¶s Theorem for Triple Integrals: LeW  and  be conVWanWV. If  iV a, b, c, d, ea     f g

conWinXoXV fXncWion on Whe UecWangXlaU bo[  Whena, b] c, d] e, f ],B = [  × [  × [  

g([, \, ]) dV g([, \, ]) d] d\ d[.෾
 

 
෾
 

B
෾
 

 
   = ෾

b

a
෾
d

c
෾
f

e
   

Note: In Whe aboYe inWegUaWion \oX can change Whe oUdeU of inWegUaWion, bXW if \oX do make VXUe Wo

change Whe limiWV of inWegUaWion, Woo.
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Definition: A solid region  is said to be of t\pe 1 if it lies between the graphs of two continuousE

functions of  and , that is,[ \

([, \, ]) ∣ ([, \) , u ([, \) ([, \)}  E = {    ∈ D  1  ื ] ื u2  

A solid region  is of t\pe 2 if it is of the formE

([, \, ]) ∣ (\, ]) , u (\, ]) (\, ])}  E = {    ∈ D  1  ื [ ื u2  

A solid region  is of t\pe 3 if it is of the formE

([, \, ]) ∣ ([, ]) , u ([, ]) ([, ])}.  E = {    ∈ D  1  ื \ ื u2  

Evaluating Triple Integrals for Regions of T\pe 1: Let  be a solid of type 1 given above,E

then

f ([, \, ]) dV [ ([, \, ]) d]] dA∫
 

 
∫
 

E
∫
 

 
   = ∫

 

 
∫
 

D  
 ∫

u ([, \)2

u ([, \)1

f   

The inside integral is a single integral that may be evaluated using methods of integration. The

outside double integral may be evaluated using methods of evaluating double integrals such as

polar coordinates or Fubini¶s Theorem. If  is given byD

([, ) ∣ a , g ([) ([)}.  D = { \ ื [ ื b  1 ื \ ื g2

Then

f ([, \, ]) dV ([, \, ]) d] d\ d[.∫
 

 
∫
 

E
∫
 

 
   = ∫

b

a
∫

g ([)2

g ([)1

∫

u ([, \)2

u ([, \)1

f   

Similarly we can evaluate triple integrals over regions of type 2 and 3.

Note: The volume of a solid  is the triple integral of 1 over  E E :  dV (E).∫
 

 
∫
 

E
∫
 

 
1 = V

If the density of a solid  at is given by  then its mass is evaluated byE [, \, ])(   ([, \, ]),ȡ   

(E) ȡ([, \, ]) dVm = ∫
 

 
∫
 

E
∫
 

 
   

If  is the center of mass or the centroid of this solid then[, \, ])  ( ˉ  ˉ  ˉ
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[ȡ([, \, ]) dV[̄ = 1
m(E) ∫

 

 
∫
 

E
∫
 

 
   

\ȡ([, \, ]) dV\̄ = 1
m(E) ∫

 

 
∫
 

E
∫
 

 
   

]ȡ([, \, ]) dV]̄ = 1
m(E) ∫

 

 
∫
 

E
∫
 

 
   

Definition: An\ point  in three-dimensional space can be represented b\ an ordered tripleP

, where  and   are polar coordinates of the projection of  onto the plane and isr, θ, ])(   r θ P \  [ −

the directed distance from the plane to  The ordered triple  and  are called the\  [ − .P , θ,r  ]

c\lindrical coordinates of .P

C\lindrical coordinates and Cartesian coordinates are related b\ the following equations:

, \ , ] ,[ = r cos θ  = r sinθ  = ]

, , ] .r2 = [2 + \2  tanθ = [
\  = ]

Evaluating Triple Integrals with C\lindrical Coordinates: Let  be a t\pe 1 region given b\E

. Assume that  is a polar regions given b\([, \, ]) ∣ ([, \) , u ([, \) ([, \)}  E = {    ∈ D  1  ื ] ื u2  D

 Then(r, θ) ∣ α , h (θ) h (θ)}.  D = {  ื θ ื β  1 ื r ื  2

f ([, \, ]) dV fu (r , r , ]) r d] dr dθ.∫
 

 
∫
 

E
∫
 

 
   = ∫

β

α
∫

h (θ)2

h (θ)1

∫

u (r , r )2 cos [ sin [

u (r , r )1 cos [ sin [
 1 cos [  sin[  

This formula is called the formula for triple integration in c\lindrical coordinates.
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NoWe: The aboYe foUmXla iV XVed moVWl\ Zhen Whe pUojecWion of Whe Volid on one of Whe

cooUdinaWe planeV iV a polaU Uegion (VXch aV a ciUcle, a half-ciUcle, a ZaVheU, a VecWoU of a ciUcle,

eWc.).

DefiniWion: The VpheUical cooUdinaWeV  of a poinW  in Vpace aUe VhoZn in Whe folloZingρ, θ, φ)(   P

picWXUe, ZheUe  iV Whe diVWance fUom Whe oUigin  Wo ,  iV Whe Vame angle aV in c\lindUicalρ O P θ

cooUdinaWeV, and  iV Whe angle beWZeen Whe poViWiYe a[iV and Whe line VegmenW  NoWeφ  ] − P.O

WhaW   and,  ρ ุ 0 ʌ  0 ื θ ื 2 .  0 ื φ ื ʌ

FoU a conVWanW  gUaphV of  and  aUe VpheUeV, half-planeV and coneV:,c , θρ = c  = c φ = c
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Spherical coordinates and Cartesian coordinates are related by the following formulas:

  , \   , ]  , ȡ .[ = ȡ sinφ cos θ  = ȡ sinφ sinθ  = ȡ cos φ  2 = [2 + \2 + ]2

DefiniWion: A solid  in the space is called a VpheUical Zedge if there are constants  E , b,a  , d,c  

 and  such that:α β

(ȡ, θ, φ) ∣ a , α , c }.  E = {   ื ȡ ื b  ื θ ื β  ื φ ื d

 EYalXaWing TUiple InWegUalV ZiWh SpheUical CooUdinaWeV:

Ɣ If  is the spherical wedge given above, thenE

f ([, \, ]) dV f (ȡ , ȡ , ȡ ) ȡ  dȡ dθ dφ.∫
 

 
∫
 

E
∫
 

 
   = ∫

d

c
∫
β

α
∫
b

a
 sinφ cos θ  sinφ sinθ  cos φ 2 sinφ

NoWe: A common error is forgetting the factor  when switching from Cartesianȡ2 sinφ

coordinates to spherical coordinates. Also make sure the order of integration coresponds

to the limits of integrals.

Ɣ If  is a more general region given byE

(ȡ, , φ) ∣ a , α , g (θ, φ) (θ, φ)}.  E = { θ  ื φ ื b  ื θ ื β  1  ื ȡ ื g2  

Then

f ([, \, ]) dV f (ȡ , ȡ , ȡ ) ȡ  dȡ dθ dφ.∫
 

 
∫
 

E
∫
 

 
   = ∫

b

a
∫
β

α
∫

g (θ, φ)2

g (θ, φ)1

 sinφ cos θ  sinφ sinθ  cos φ 2 sinφ

Ɣ If  is a more general region given byE

(ȡ, , φ) ∣ a , g (φ) (φ), h (θ, φ) (θ, φ)}.  E = { θ  ื φ ื b  1 ื θ ื g2  1  ื ȡ ื h2  

Then

f ([, \, ]) dV f (ȡ , ȡ , ȡ ) ȡ  dȡ dθ dφ.∫
 

 
∫
 

E
∫
 

 
   = ∫

b

a
 ∫

g (φ)2

g (φ)1

 ∫

h (θ, φ)2

h (θ, φ)1

 sinφ cos θ  sinφ sinθ  cos φ 2 sinφ

NoWe: We generally use spherical coordinates to evaluate triple integrals when the solid is

similar to a cone, a sphere or the solid is formed by intersecting spheres, cones and planes.

NoWe: To find the limits of integration,   and  follow these, b,a  (φ), g (φ),g1  2  h (θ, φ)1   (θ, φ)h2  

steps:

1. Find the maximum and minimum possible values for  These values are  and .φ a b

above. Make sure all of the values between  and  are possible values for a b .φ

2. Consider a fixed angle  -that gives us a cone- and find all possible values of  Theφ .θ

maximum and minimum values would give us the functions  and  Make sure(φ)g1 (φ).g2

27



all values between  and  are possible values of  These functions  and(φ)g1 (φ)g2 .θ (φ)g1

 may or may not depend on  but they should not depend on (φ)g2 ,φ .ȡ

3. Considering a fixed value for  and a fixed value for  -which determines a half-lineθ φ

through the origin- find maximum and minimum values of  These would determine .ȡ   

 and  Make sure all values between  and  are possible(θ, φ)h1  (θ, φ).h2  (θ, φ)h1  (θ, φ)h2  

values of .ȡ

NoWe: You can use a different order of integration, but to do that you need to follow the above 3

steps with a different order for coordinates,  and , θȡ  .φ

SecWion 16.9

The DiYeUgence TheoUem: Let  be a simple solid region and let  be the boundaryE S

surface of , given with positive (outward) orientation. Let  be a vector fieldE F

whose component functions have continuous partial derivatives on an open region

that contains . ThenE

S iv F  dV .∫
 

 
∫
 

S 
F · d = ∫

 

 
∫
 

E
∫
 

  
d

NoWe: When using the Divergence Theorem make sure all conditions are satisfied. A very

common error is to use the Divergence Theorem when the vector field is not defined or is not

continuous inside .E

MeWhodV of EYalXaWing SXUface InWegUalV of VecWoU FieldV: To evaluate ,S∫
 

 
∫
 

S 
F · d

1. If  is a closed surface consider using the Divergence Theorem. This is particularlyS

useful when the vector field  is complicated but its divergence has a simpler formula.F

2. If  is not closed but the divergence of  is simple consider closing the surface with aS F

simple surface . Then use the Divergence Theorem to evaluate the integral overS1

 and subtract   from this integral. S ຖ S1 S∫
 

 
∫
 

S  1

F · d

3. If  the graph of a function with upward orientation, consider using the formulaS

F S ( ) dA.∫
 

 
∫
 

S 
 · d = ∫

 

 
∫
 

D 
 − P ∂[

∂g
−Q∂\

∂g +R

If the orientation is downward multiply the above quantity with a negative sign.

4. If  is the curl of a vector field, consider using the Stoke¶s Theorem.F
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MeWhodV of EYalXaWing Line LnWegUalV of VecWoU FieldV: To evaluate a line integral F r,∫
 

C
 ā d →

1.  If you can parametrize  consider using the formula C F r (r(W)) (W) dW.∫
 

C
 ā d→ = ∫

b

a
F → ā r→϶

2. If  is a closed plane curve consider using the Green¶s Theorem.C

3. If  in a plane curve but not closed, consider closing it with a simple curve (or a lineC

segment)  and use the Green¶s Theorem to evaluate the line integral over   andC1  C ຖC1

 and take the difference of these two numbers.C1

4. If  is a closed space curve consider using the Stoke¶s Theorem.C

5. If  in a space curve but not closed, consider closing it with a simple curve (or a lineC

segment)  and use the Stoke¶s Theorem to evaluate the line integral over   andC1  C ຖC1

 and take the difference of these two numbers.C1

6. If  is conservative, i.e.  then consider using the Fundamental Theorem of LineF f , F = ∇

Integrals.
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