
Math 475 Summary and Homework

Dr. Ebrahimian

Notations

• ∈ belongs to.

• ∀ for all.

• ∃ there exists or for some.

• |A| the size of set A.

• Im f the image of function f .

• [n] the set {1, 2, . . . , n}.

• N the set of non-negative integers.

• Z+ the set of positive integers.

• P (n, k) = (n)k =
n!

k!(n− k)!
.

•
(
n
k

)
=

n!

k!(n− k)!
.

• cn the n−th Catalan number.

• S(n, k) the Stirling numbers of the second kind.

• p(n) the number of partitions of integer n.

• pk(n) the number of partitions of n into at most k parts.

• p(n, k) the number of partitions of n into precisely k parts.

• pd(n) the number of partitions of n into distinct parts.

• pd,e(n) the number of partitions of n into even number of distinct parts.

• pd,o(n) the number of partitions of n into odd number of distinct parts.

• φ(n) Euler’s totient function. The number of positive integers not exceeding n that are relatively prime

to n.
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• Dn the number of derangements of [n].

• [xn]f(x) the coefficient of xn in the power series f(x).

• exp(x) the exponential function ex.

• V (G) and E(G) the vertex set and edge set of G.

• G− e, removing edge e from G.

• G+ e, adding edge e to G.

• Cn the n-cycle, or the cycle of order n.

• Pn the path of order n.

• Kn the complete graph of order n.

• G[S] the subgraph of G induced by S.

• d(u, v) or dG(u, v) the distance between vertices u and v.

• k(G) the number of connected components of G.

• G ∼= H, the graph G is isomorphic to the graph H.

• G ∪H, the union of graphs G and H.

• G tH, the disjoint union of graphs G and H.

• Kn,m, the complete bipartite graph with partite sets [n] and [m].

• Hr,n, the r-regular Harary graph of order n.

• A $ B, the set A is a proper subset of the set B.

• Aij , the (i, j) entry of a matrix A.

• κ(G), the vertex-connectivity of a graph G.

• λ(G), the edge-connectivity of a graph G.
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1 Week 1

1.1 Preliminaries

You are supposed to be comfortable with the methods of proof by contradiction and proof by induction.

Here are a few of examples:

Example 1.1. Prove that if x is a rational number and y is irrational, then x+ y is irrational.

Example 1.2. Prove that for every positive integer n,

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

Example 1.3. Prove that the n-th term of the Fibonacci sequence Fn is less than 2n, where the Fibonacci

sequence is defined as F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1.

Definition 1.1. A set is a collection of unordered elements. The number of elements of a set A is denoted

by |A|.

Definition 1.2. The set {1, 2, . . . , n} is denoted by [n].

Definition 1.3. The union of two sets A and B is the set of all elements that are in A or in B (or both).

The union of A and B is denoted by A ∪ B. The intersection of A and B is the set of all elements that are

in both A and B. The intersection of A and B is denoted by A ∩B.

Remark. Unlike the daily use of the word “or”, in mathematics “or” is not exclusive. In other words, the

definition of A ∪B could be correctly stated as follows:

The union of two sets A and B is the set of all elements that are in A or in B.

In other words, The phrase “or both” in the above definition is redundant.

Definition 1.4. Two sets are called disjoint whenever they have no element in common. n sets A1, A2, . . . , An

are called pairwise disjoint if for every i 6= j, the two sets Ai and Aj are disjoint.

Addition Principle. Let A and B be two disjoint sets. Then |A∪B| = |A|+|B|. In general if A1, A2, . . . , An

are pairwise mutually disjoint sets, then |
n⋃

k=1

Ak| =
n∑

k=1

|Ak|.

Theorem 1.1. Let n ≥ 2 be an integer and A1, A2, . . . , An be pairwise disjoint finite sets. Then |
n⋃

i=1

Ai| =
n∑

i=1

|Ai|.

Example 1.4. Find the number of integers n with 1 < n ≤ 1000 that are either perfect fourth powers or

perfect cubes.

Subtraction Principle. Let B be a subset of a set A, then |A−B| = |A| − |B|.

Example 1.5. Find the number of integers between 1 and 100, inclusive, that are not multiples of 3.
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Multiplication Principle. Let X and Y be two finite sets with |X| = n and |Y | = m. Then

• |X × Y | = mn.

• Assume A is a subset of X × Y for which for every x ∈ X there are precisely k values of y for which

(x, y) ∈ A. Then |A| = nk.

Remark. The above theorem can be stated for any number of finite sets.

Example 1.6. How many three digit positive integers are there for which all adjacent digits are distinct?

Permutations. Let k ≤ n be two positive integers and S be a set with n element. A k-permutation of S

is an ordered list of k elements of S. When k = n, we call each n-permutation a permutation. The only

0-permutation of n elements is the empty permutation.

Theorem 1.2. Let 0 ≤ k ≤ n be two integers. Then, the number of k-permutations of n distinct objects is
n!

(n− k)!
.

Notation: The number in the above theorem is denoted by (n)k or P (n, k). Thus, P (n, k) = (n)k =
n!

(n− k)!
.

Remark. The above formula shows why we define 0! to be 1.

Definition 1.5. Let S and T be two sets and d be a positive integer. A function f : S → T is said to be

d-to-one iff for every t ∈ Im f , there are precisely d distinct elements s ∈ S for which f(s) = t.

Example 1.7. Let A be the set of non-zero integers. The function f : A → A defined by f(x) = x2 is

2-to-one.

Division Principle. Suppose f : S → T is a d-to-one function. Then |Im f | = |S|
d

.

Example 1.8. Three people are sitting around a round table. The chairs are unmarked. In how many ways

can this be done? Can you generalize it to n people?

Definition 1.6. A circular permutation of n objects is a way of arranging them on a circle, where two

arrangements are considered the same if one can be obtained by a rotation of the other.

Theorem 1.3 (Circular Permutations). The number of circular permutations of n distinct objects is (n−1)!.

Example 1.9. How many permutations of the letters a, b, b are there?

Theorem 1.4 (Permutations with repetition). Suppose we have n objects of k different type. Furthermore,

assume there are aj objects of type j, where a1 + · · ·+ ak = n. Then, the number of permutations of these n

objects is
n!

a1!a2! · · · ak!

Definition 1.7. Given non-negative integers a1, a2, . . . , ak with a1 + a2 + · · · + ak = n, the number
n!

a1!a2! · · · ak!
is denoted by

(
n

a1a2 · · · ak

)
and is called a multinomial coefficient.
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Definition 1.8. Given two positive integers k ≤ n and a set A of size n, we say a subset B of A is a k-subset

if |B| = k.

Theorem 1.5 (Subsets or Combinations). The number of k-subsets of a set of size n is

(
n

k

)
=

n!

k!(n− k)!
.

Theorem 1.6 (The Binomial Theorem). For every positive integer n,

(x+ y)n = xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n− 1

)
xyn−1 + yn =

n∑
k=0

(
n

k

)
xn−kyk.

1.2 One-to-One Correspondence or Bijections

One way to show two sets have the same number of elements is to define a bijection (aka One-to-One

Correspondence) between them.

Example 1.10. The roads of a town are all either parallel or perpendicular. In other words all roads are

from south to north or from west to east. A taxi driver is to move four block north and five block east.

The driver will take the shortest path for the entire trip. At every intersection he decides to make a turn or

continue straight. In how many ways can this be done?

Example 1.11. For every positive integer n, the number of divisors of n larger than
√
n is the same as the

number of divisors of n less than
√
n.

Theorem 1.7. The number of subsets of [n] is 2n.

Example 1.12. Prove that for any two integers 0 ≤ k ≤ n, we have
(
n
k

)
=
(

n
n−k
)
.

1.3 Two-Way Counting

Example 1.13. Prove that
n∑

k=0

(
n
k

)
= 2n

Example 1.14. Prove that for any two integers 0 < k ≤ n, we have
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1
)
.

Example 1.15. Prove that for every positive integer n, we have

n∑
k=0

(
n

k

)2

=

(
2n

n

)
.

Example 1.16. Prove that for any positive integer n,

n∑
k=1

k

(
n

k

)
= n2n−1.
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1.4 Recursions

Sometimes direct counting is difficult, but one could do the counting by referring to the smaller cases.

Definition 1.9. A sequence an, with n ≥ 0, is said to be defined recursively if

• a0 is defined.

• For every positive integer n, an is defined in terms of a0, a1, . . . , an−1.

Such a sequence is called a recurrence sequence or a recursive sequence. The relation that defines an in terms

of a0, a1, . . . , an−1 is called the recurrence relation.

Remark. If in the recurrence relation for an we have multiple terms prior to an, then we need to define several

initial terms of the sequence. For example the Fibonacci sequence is defined as:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, for all n ≥ 2

Example 1.17. n! can be defined recursively as 0! = 1, and n! = n · (n− 1)!.

Example 1.18. Find the number of binary sequences of length 7 without an odd number of consecutive 1’s.

For example the sequences 0000000 and 1100011 are counted, but 1000000 is not.

1.5 Pigeonhole Principle

Suppose we place rn+ 1 pigeons are placed in n pigeonholes, then one hole contains at least r + 1 pigeons,

otherwise if all holes contain at most r pigeons, then there would be at most rn pigeons placed in the holes.

In mathematical terms:

Theorem 1.8 (Pigeonhole Principle). Let A1, A2, . . . , An be n sets and r be a positive integer such that

|A1 ∪A2 ∪ · · · ∪An| > rn.

Then, there exists j for which |Aj | ≥ r + 1.

Example 1.19. Suppose 51 distinct numbers from the set [100] are selected. Prove that there are two of

them that add up to 101.

Example 1.20. Prove that if a, b, and c are three integers, then (a− b)(a− c)(b− c) is even.

Example 1.21. Prove that if a, b, c and d are four integers, then the integer

(a− b)(a− c)(a− d)(b− c)(b− d)(c− d)

is divisible by 3.

Example 1.22. Let q be an irrational number. Prove that there is a positive integer n and an integer m

for which |nq −m| < 0.01.
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1.6 Catalan Numbers

Definition 1.10. Let A and B be two lattice points in the xy-plane. A northeastern lattice path from A

to B is a list of lattice points A = A0, A1, A2, . . . , An = B for which for each i, Ai+1 = Ai + (1, 0) or

Ai+1 = Ai + (0, 1).

Definition 1.11. Let n be a non-negative integer. The number of northeastern lattice paths from (0, 0)

to (n, n), for which no lattice point in the path is above the line y = x is the n-th Catalan number and is

denoted by cn.

Example 1.23. Evaluate cn for all 0 ≤ n ≤ 6.

Theorem 1.9. The sequence of Catalan numbers satisfies the recursion:

C0 = 1, and Cn+1 =
n∑

k=0

CkCn−k for all n ≥ 0.

1.7 More Examples

Example 1.24 (10 pts). Using induction on n, prove the Binomial Theorem: (x+ y)n =
n∑

k=0

(
n
k

)
xkyn−k.

Solution. For n = 1, the left hand side is x+ y and the right hand side is
(
1
0

)
x+

(
1
1

)
y = x+ y.

Suppose for some positive integer n, we have (x+ y)n =
n∑

k=0

(
n
k

)
xkyn−k. Then

(x+ y)n+1 = (x+ y)(x+ y)n = (x+ y)

n∑
k=0

(
n

k

)
xkyn−k =

n∑
k=0

(
n

k

)
xk+1yn−k +

n∑
k=0

(
n

k

)
xkyn−k+1.

The first sum can be written as
n+1∑
k=1

(
n

k−1
)
xkyn+1−k. Therefore, the coefficient of xkyn+1−k in (x+ y)n+1 for

all k, with 0 < k < n+1, is
(

n
k−1
)

+
(
n
k

)
=
(
n+1
k

)
, by the Pascal’s identity. Since

(
n
0

)
=
(
n+1
0

)
and

(
n
n

)
=
(
n+1
n+1

)
,

we obtain the result for n+ 1.

Example 1.25. Let a1, a2, . . . , a33 be 33 positive integers for which none of them has a prime divisor more

than 11. Prove that there are i 6= j for which the product aiaj is a perfect square.

Solution. Each ai can be written as 2xi3yi5zi7ti11ui . Since each integer has two possible remainders when

divided by 2, the number of possibilities of the 5-tuple (xi, yi, zi, ti, ui) modulo 2 is 25 = 32. Since we have

33 integers, by pigeonhole principle, there must be two ai and aj whose corresponding exponents are the

same modulo 2. In other words, there are i 6= j for which xi ≡ xj , yi ≡ yj , zi ≡ zj , ti ≡ tj , ui ≡ uj modulo 2.

Therefore the sums xi + xj , yi + yj , zi + zj , ti + tj , and ui + uj are all even, which means aiaj is a perfect

square.

Example 1.26. Prove that for every two integers 0 < k < n, we have
1

n

(
n
k

)
=

1

n− k
(
n−1
k

)
, once using

algebra and once using two-way counting.
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Solution. Method #1.
1

n

(
n

k

)
=

n!

n · k! · (n− k)!
=

(n− 1)!

k!(n− k)!
=

(n− 1)!

k!(n− 1− k)!(n− k)
=

1

n− k

(
n− 1

k

)
.

Method #2. Clearing the denominators we need to prove (n− k)
(
n
k

)
= n

(
n−1
k

)
. Consider the set

A = {(a, S) |S ⊆ [n], a ∈ [n]− S, and |S| = k}.

We evaluate |A| in two ways.

Now, we select a first and then we choose S. There are n way to select a, and from the remaining n − 1

elements, there are
(
n−1
k

)
ways to select S. Thus, |A| = n

(
n−1
k

)
.

Now, we select S first and then we choose a. There are
(
n
k

)
ways to select S, and there are n − k ways to

select a from elements of [n]− S. Thus, |A| =
(
n
k

)
(n− k). This yields the desired equality.

Example 1.27. Let n and m be two positive integers. How many strictly increasing sequences of length m

are there for which all elements of the sequence are from [n]?

Solution. Every strictly increasing sequence will uniquely be determined by its m values, and any m distinct

values from the set [n] determine a unique strictly increasing sequence. Thus, the answer is

(
n

m

)
.

1.8 Exercises

All students are expected to do all of the exercises listed in the following two sections.

1.8.1 Problems for grading

The following problems must be submitted on Friday, February 7, 2020 at the beginning of the class. Late

submission will not be accepted.

All proofs must be complete and solutions must be fully justified.

Read and follow the directions carefully. If a problem is asking you to use a certain method, you must use

that method to solve the problem.

Exercise 1.1 (5 pts). Prove that if A1, A2, . . . , An, An+1 are pairwise disjoint sets, then
n⋃

i=1

Ai and An+1

are disjoint. (Hint: Use proof by contradiction.)

Exercise 1.2 (10 pts). Prove the Theorem using induction on n: Let n ≥ 2 be an integer and A1, A2, . . . , An

be pairwise disjoint finite sets. Then |
n⋃

i=1

Ai| =
n∑

i=1

|Ai|.

Exercise 1.3 (10 pts). Prove the following generalization of the Binomial Theorem, called the Multinomial Theorem:

(x1 + x2 + · · ·+ xn)m =
∑

r1+r2+···+rn=m

(
m

r1, r2, · · · , rn

)
xr11 x

r2
2 · · ·xrnn .

(Hint: Use a similar method to the proof of the Binomial Theorem that was done in class.)
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Exercise 1.4 (10 pts). Let n be a positive integer. Prove that for every positive integer k ≤ n, the number

of subsets of [n] whose maximum element is k is 2k−1. Use this to prove
∑n

k=1 2k−1 = 2n − 1.

Exercise 1.5 (15 pts). Let n > 1 be an integer.

(a) Prove that the number of pairs of integers (a, b) with 1 ≤ a < b ≤ n is
(
n
2

)
.

(b) By taking cases for a (i.e. a = 1, a = 2, . . . , a = n) and using the Addition Principle, prove that the

number of pairs of integers (a, b) with 1 ≤ a < b ≤ n is also equal to
n∑

k=1

(k − 1).

(c) Deduce the equality 1 + 2 + · · ·+ n =
n(n+ 1)

2
.

Exercise 1.6 (10 pts). Let A be a subset of Z consisting of n distinct integers. Prove that for some integer

k, with 1 ≤ k ≤ n, there are k distinct elements a1, a2, · · · , ak ∈ A, for which a1 +a2 + · · ·+ak is divisible by

n. (Hint: Let A = {b1, b2, . . . , bn} and consider the partial sums b1, b1 + b2, b1 + b2 + b3, . . . , b1 + b2 + · · ·+ bn.

Then use the pigeonhole principle.)

Exercise 1.7 (15 pts). Let m < r and n < s be positive integers.

(a) How many northeastern lattice paths from (0, 0) to (r, s) are there that pass through (m,n)? (As usual,

you must fully justify your answer.)

(b) How many northeastern lattice paths from (0, 0) to (r, s) are there that do not pass through (m,n)?

(c) How many northeastern lattice paths from (0, 0) to (r, r) are there that lie below or on the line y = x and

pass through (m,m)? (Your answer may be in terms of Catalan numbers.)

Exercise 1.8 (5 pts). Prove that the number of subsets of [n] with even number of elements is the same as

the number of subsets of [n] with odd number of elements. Deduce, there are 2n−1 subsets of [n] with an odd

number of elements.

(Hint: Use the Binomial Theorem with x = 1 and y = −1 or use 1-1 correspondence.)

Exercise 1.9 (10 pts). Prove that for every positive integer n, there is a positive integer whose digits consist

of only 7’s and 0’s and is divisible by n. (You must use a combinatorial argument.)

(Hint: Consider the sequence 7, 77, 777, . . . and use the pigeonhole principle.)

Exercise 1.10 (10 pts). Let n be a positive integer. Find a closed formula (i.e. a simple explicit formula

without summation) for
n∑

k=1

(
2n+ 1

k

)
.

1.8.2 Problems for Practice

Exercise 1.11. Using two-way counting prove that

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
.
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(Hint: Count the number of all triples (a, b, c) for which 1 ≤ a < b ≤ n + 1 and 1 ≤ a < c ≤ n + 1 in two

ways.)

Exercise 1.12. Using two-way counting prove that

n∑
k=1

k3 =
n2(n+ 1)2

4
.

The following exercises are from Introduction to Enumerative and Analytic Combinatorics, Second Edition,

by Miklos Bona.

Pages 38-42: 7, 9, 14, 16, 17, 22, 23, 30, 34.

Pages 49-53: 3, 22, 29, 44.

1.8.3 Challenge Problems

Challenge problems are for those who want to get more out of this class. Feel free to work on the problems

from the book indicated by a + sign.

Pages 39-42: 15, 25, 26, 28, 33.

Pages 49-53: 37, 45, 47.

Exercise 1.13. Show that each positive integer n can be uniquely written as n =
(
a
1

)
+
(
b
2

)
+
(
c
3

)
where

0 ≤ a < b < c.

Exercise 1.14. Find a closed formula for
n∑

k=0

(
n
k

)
min(k, n− k).

Exercise 1.15. Let p be a prime and a, b, c be integers such that p does not divide ab. Prove that there are

integers x, y such that ax2 + by2 − c is divisible by p.

Exercise 1.16. Let n be a positive integer. Find a closed formula for
bn/3c∑
k=1

(
n

3k

)
.

2 Week 2

2.1 Weak Compositions and Compositions

Definition 2.1. Let n be a non-negative integers and let a1, . . . , ak be non-negative integers for which

a1 + a2 + · · ·+ ak = n.

Then the ordered k-tuple (a1, a2, . . . , ak) is called a weak composition of n into k parts. When a1, a2, . . . , ak

are all positive, the k-tuple (a1, a2, . . . , ak) is called a composition of n into k parts.

Theorem 2.1. Let n be a non-negative integer and k be a positive integer. Then, the number of weak

compositions of n into k parts is (
n+ k − 1

n

)
=

(
n+ k − 1

k − 1

)
.

Furthermore, the number of compositions of n into k parts is
(
n−1
k−1
)
.
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Sketch of proof. We will use one-to-one correspondence. To every weak partition of n into k parts we assign

a permutation of n stars and k − 1 bars as follows:

a1︷ ︸︸ ︷
? ? · · · ? |

a2︷ ︸︸ ︷
? ? · · · ? | · · · |

ak︷ ︸︸ ︷
? ? · · · ?

For the second part, note that (a1, a2, . . . , ak) is a composition of n into k parts iff (a1− 1, a2− 1, . . . , ak− 1)

is a weak composition of n− k into k parts.

Example 2.1. How many triples of integers (a, b, c) are there that satisfy all of the following?

• a+ b+ c = 97, and

• a, b, c ≥ 3.

Example 2.2. Let n and m be two positive integers. How many increasing sequences of length m are there

for which all elements of the sequence are from [n]?

2.2 Stirling Numbers of the Second Kind

Definition 2.2. Let k ≤ n be two positive integers. A set {B1, B2, . . . , Bk} consisting of nonempty, pairwise

disjoint subsets of [n] is called a partition of [n] into k blocks whenever

k⋃
j=1

Bj = [n].

The set [2] has two partitions listed below:

• {{1, 2}} is a partition of [2] into 1 block.

• {{1}, {2}} is a partition of [2] into 2 blocks.

The following shows all partitions of [4] into 2 blocks.

• {{1}, {2, 3, 4}}.

• {{2}, {1, 3, 4}}.

• {{3}, {1, 2, 4}}.

• {{4}, {1, 2, 3}}.

• {{1, 2}, {3, 4}}.

• {{1, 3}, {2, 4}}.

• {{1, 4}, {2, 3}}.

Example 2.3. Find the number of partitions of [3], and [4].
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Example 2.4. How many partitions of [n] into one block are there? How about two blocks?

Definition 2.3. The number of partitions of [n] into k blocks is denoted by S(n, k) and is called a Stirling

number of second kind.

Remark. Note that when k > n, there are no partitions of [n] into k blocks. Therefore S(n, k) = 0 whenever

k > n. We also set S(n, 0) = 0, whenever n > 0 and S(0, 0) = 1.

Theorem 2.2. For all positive integers n ≥ k, we have

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).

Example 2.5. Find S(4, 1), S(4, 2), S(4, 3), and S(4, 4).

Stirling numbers of the second kind appear in different places. In what follows we will see one other place

that they appear.

Definition 2.4. Let k ≤ n be positive integers. We consider all increasing sequences of elements of [k] of

length n − k. Then we evaluate the product of the elements of each sequence and add all of the resulting

products. The result is denoted by h(n, k). We also define h(0, 0) = 1, h(n, 0) = 0, when n > 0, and

h(n, k) = 0, when n < k. We also define h(n, n) = 1.

Example 2.6. Evaluate h(4, 1), h(4, 2), and h(4, 3), and compare them with Stirling numbers of the second

kind.

Solution. To evaluate h(4, 1), we need to find all increasing sequences of length 4− 1 = 3 whose elements are

in [1]. There is one such sequence.

1, 1, 1

Thus h(4, 1) = 1 · 1 · 1 = 1.

To evaluate h(4, 2), we need to find all increasing sequences of length 4− 2 = 2, whose terms are in [2]. They

are

1, 1; 1, 2; 2, 2

Thus, h(4, 2) = 1 · 1 + 1 · 2 + 2 · 2 = 7.

For h(4, 3), we need to list all increasing sequences of length 4− 3 = 1, whose elements are in [1]:

1; 2; 3

Thus, h(4, 3) = 1 + 2 + 3 = 6.

We see that h(4, k) = S(4, k) for k = 1, 2, 3.

Note that by Example 2.2 the number of sequences of length n− k whose terms are from [k] is
(
n−1
k−1
)
.

Theorem 2.3. For all integers 0 ≤ k ≤ n, we have

S(n, k) = h(n, k).
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Sketch of proof. To prove this, we will show these two sequences satisfy the same recurrence relation. Then

we proceed by induction on n+ k.

Theorem 2.4. For all positive integers n, k satisfying n ≥ k,

S(n+ 1, k) =

n∑
i=0

(
n

i

)
S(n− i, k − 1).

Definition 2.5. The number of all partitions of [n] is called the n−th Bell number and is denoted by B(n).

Note that B(n) =
n∑

k=0

S(n, k). We also define B(0) = 1.

Theorem 2.5. Bell numbers satisfy the following recursion:

B(0) = 1, B(n+ 1) =

n∑
k=0

(
n

k

)
B(k), for all n ≥ 0.

2.3 Integer Partitions

Definition 2.6. Given a positive integer n, we call a sequence of positive integers (a1, a2, . . . , ak) a partition

of n into k parts, whenever a1 ≥ a2 ≥ · · · ≥ ak, and a1 + a2 + · · ·+ ak = n. The number of partitions of n

into at most k parts is denoted by pk(n). The number of partitions of n is denoted by p(n). The number of

partitions of n into distinct parts is denoted by pd(n).

Example 2.7. Evaluate p(n) and pd(n) for n = 1, 2, 3, 4.

Note that every partition of n is also a composition of n, however because of the additional restriction that

the sequence must be decreasing, not every composition is a partition. For example (4, 1, 2), and (4, 2, 1) are

both compositions of 7 but only (4, 2, 1) is a partition of 7.

Definition 2.7. The Ferrers diagram of a partition (a1, a2, . . . , ak) for n is a diagram consisting of k rows,

in which the i−th row consists of ai dots, for every i with 1 ≤ i ≤ k.

Example 2.8. The Ferrers diagram of the partition (4, 3, 2) of 9 is

• • • •

• • •

• •

Definition 2.8. The conjugate of a Ferrers diagram is the Ferrers diagram whose i-th row is the i-th column

of the original Ferrers diagram. The partition associated to this conjugate Ferrers diagram is called the

conjugate of the original partition.

The conjugate of the Ferrers diagram above is seen below:

• • •

• • •
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• •

•

This is the Ferrers diagram for the partition (3, 3, 2, 1). This idea leads to the following theorems:

Theorem 2.6. For all positive integers k ≤ n, the number of partitions of n that have k parts is equal to

the number of partitions of n in which the largest part is equal to k.

Theorem 2.7. For every positive integer n, the number of partitions of n in which the first two parts are

equal is equal to the number of partitions of n in which each part is at least 2.

For both theorems above the conjugate defines a one-to-one correspondence and thus completes the proof of

the theorem.

The following theorem is more difficult to prove and we omit the proof here.

Theorem 2.8 (Euler’s Pentagonal Number Theorem). Let n be a positive integer and let pd,e(n) denote the

number of partitions of n into even number of distinct parts. Similarly let pd,o(n) be the number of partitions

of n into odd number of distinct parts. Then

pd,e(n)− pd,o(n) =


(−1)m if n =

3m2 ±m
2

for some m ∈ Z+

0 otherwise

Note: Every integer of form
3m2 ±m

2
is called a pentagonal number.

Example 2.9. Manually check the previous theorem for all n ≤ 8.

Solution. The first few pentagonal numbers are listed below

m
3m2 ±m

2

1 1, 2

2 5, 7

3 12, 15

Partitions into distinct parts are listed in the following table:

n Pentagonal? partitions into distinct parts pd,e(n) pd,o(n) pd,e(n)− pd,o(n)

1 Yes, m = 1 1 0 1 −1

2 Yes, m = 1 2 0 1 −1

3 No 3; 2 + 1 1 1 0

4 No 4; 3 + 1 1 1 0

5 Yes, m = 2 5; 4 + 1; 3 + 2 2 1 1

6 No 6; 5 + 1; 4 + 2; 3 + 2 + 1 2 2 0

7 Yes, m = 2 7; 6 + 1; 5 + 2; 4 + 3; 4 + 2 + 1 3 2 1

8 No 8; 7 + 1; 6 + 2; 5 + 3; 5 + 2 + 1; 4 + 3 + 1 3 3 0

These all match the previous theorem.
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2.4 More Examples

Example 2.10. A fruit basket contains 25 pieces of fruit. Assume we have a large supply of apples, oranges

and bananas. How many different kinds of fruit baskets can we create?

Solution. Suppose x, y, z represent the number of apples, oranges and bananas. We must have x+y+z = 25

and x, y, z are non-negative integers. Therefore we are counting the number of weak compositions of 25 into

3 parts. The answer is thus

(
27

2

)
.

Example 2.11. Find the number of three digit positive integers whose digit sum is 10.

Solution. Suppose the three digit integer is abc. We must have a + b + c = 10 and that a ≥ 1, b, c ≥ 0.

Subtracting one from a we obtain (a − 1) + b + c = 9 and that (a − 1), b, c ≥ 0. Thus, we get a weak

composition of 9 into three parts. Note that if (x, y, z) is a weak composition of 9, then the three digit

number (x + 1)yz has digit sum 10, unless x + 1 = 10. This means there is a one to one correspondence

between the desired set and all weak compositions of 9, except for (9, 0, 0). The number of weak compositions

of 9 into three parts is
(
11
2

)
. The answer is

(
11

2

)
− 1 .

Example 2.12. Let n be a positive integer. Prove that the number of partitions of 2n into n parts is equal

to p(n).

Solution. Consider the Ferrers diagram of a partition of 2n into n parts. Removing the first column of this

diagram we obtain a Ferrers diagram for n, which gives us a partition of n. Conversely to every Ferrers

diagram for a partition of n we can add a first column with n dots and turn that into a partition of 2n

into n parts. This shows there is a bijection between partitions of 2n into n parts and partitions of n. This

completes the proof.

Example 2.13. Let n and k be two positive integers. Find the number of sequences x1, x2, . . . , xk of

non-negative integers for which
k∑

j=1

xj ≤ n.

Solution. Note that
k∑

j=1

xj ≤ n if and only if
k+1∑
j=1

xj = n for some non-negative integer xk+1. Thus, there is

a one-to-one correspondence between the given sequences and weak compositions of n into k + 1 parts. The

answer is

(
n+ k

k

)
.

Example 2.14. For every positive integer n evaluate p(n, n), and p(n, n− 1)

Solution. Suppose a1 ≥ a2 ≥ · · · ≥ an ≥ 1 and a1 + a2 + · · ·+ an = n. Since all of these integers are at least

1, their sum is n precisely when the are all 1. Therefore, p(n, n) = 1. Similarly if a1 + a2 + · · ·+ an−1 = n,

then a1 = 2 and the rest are 1. Therefore, p(n, n− 1) = 1.

2.5 Exercises

All students are expected to do all of the exercises listed in the following two sections.
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2.5.1 Problems for grading

The following problems must be submitted on February 14, 2020 at the beginning of the class. Late sub-

mission will not be accepted.

All proofs must be complete and all solutions must be fully justified.

Read and follow the directions carefully. If a problem is asking you to use a certain method, you must use

that method to solve the problem.

Exercise 2.1 (10 pts). Find the number of triples of integers (a, b, c) that satisfy both of the following:

• a ≥ 1, b ≥ 2, c ≥ 3, and

• a+ b+ c = 70.

Exercise 2.2 (10 pts). How many compositions of 75 into four odd parts are there? How about five odd

parts?

Exercise 2.3 (10 pts). Let n ≥ 3 be an integer. In class we proved S(n, 2) =
2n − 2

2
. Find a simple formula

(without any summations) for S(n, 3).

Exercise 2.4 (10 pts). Let k ≤ r, and n be positive integers. How many solutions does the equation

x1 + x2 + · · ·+ xr = n

have over non-negative integers for which precisely k of the xi’s are equal to 0?

Exercise 2.5 (10 pts). Let a,m, and n be positive integers. Show that the number of solutions to

x1 + · · ·+ xn = m

over integers between −a and a, inclusive, is the same as the number of solutions to

x1 + · · ·+ xn = −m

over integers between −a and a, inclusive.

(Hint: Use the one-to-one correspondence x 7→ −x.)

Exercise 2.6 (10 pts). Prove Theorem 2.5: Bell numbers satisfy the following recursion:

B(0) = 1, B(n+ 1) =

n∑
k=0

(
n

k

)
B(k), for all n ≥ 0.

(Hint: Use a similar proof to that of Theorem 2.4.)

Exercise 2.7 (10 pts). Let k ≤ n be two positive integers. Prove that the number of partitions of n into k

parts for which each part is at least two is equal to the number of partitions of n− k into k parts.
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Exercise 2.8 (10 pts). Let k ≤ n be two positive integers. Prove that the number of partitions of n into k

distinct parts is the same as the number of partitions of n− k(k − 1)

2
into k parts.

Exercise 2.9 (10 pts). Let n be a positive integer, and recall that (x)j = x(x − 1) · · · (x − j + 1) for any

positive integer j and any x ∈ R.

(a) Prove that for every positive integer a, we have an =
n∑

j=1

S(n, j) (a)j .

(b) Prove that for every real number x we have xn =
n∑

j=1

S(n, j) (x)j .

(Hint: For the first part, use two-way counting. For the second part, note that a polynomial of degree n does

not have more than n roots.)

2.5.2 Problems for Practice

pages 97-98: 3, 6, 8, 9

page 112-113: 8, 22, 28

Exercise 2.10. For every positive integer n evaluate p(n, n− 2), and p(n, n− 3).

2.5.3 Challenge Problems

Challenge problems are for those who want to get more out of this class. Feel free to work on the problems

from the book indicated by a + sign.

Exercise 2.11. Let, n and m be two positive integers and a < b be two integers. Show that the number of

solutions of x1 + x2 + · · · + xn = m over integers between a and b, inclusive is the same as the number of

solutions of x1 + x2 + · · ·+ xn = (a+ b)n−m over integers between a and b, inclusive.

Exercise 2.12. Let S be a subset of real numbers. A subset A of S is said to have k-gap if for every two

distinct x, y ∈ A, (i.e. x and y belong to A) we have |x− y| ≥ k.

(a) How many 3-element subsets of {1, 2, 3, . . . , n} have 1-gap?

(b) How many 3-element subsets of {1, 2, 3, . . . , n} have 2-gap?

(c) Let k be a positive integer. How many 3-element subsets of {1, 2, 3, . . . , n} have k-gap?

(d) Let k, r be two positive integers. How many r-element subsets of {1, 2, 3, . . . , n} have k-gap?

Exercise 2.13. Let A1A2 · · ·A40 be a regular 40-sided polygon. How many triangles can be formed whose

vertices are the vertices of this 40-gon and whose angles are more than 10◦?
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3 Week 3

3.1 Principle of Inclusion-Exclusion (PIE)

Example 3.1. Consider the set S = [500].

(a) How many elements of S are divisible by 2 or 3?

(b) How many elements of S are divisible by 2, 3 or 5?

Example 3.2. Let n ≥ 3 be an integer. How many surjective functions f : [n]→ [3] are there?

Theorem 3.1. Let A1, A2, . . . , An be finite sets. Then

|A1 ∪A2 ∪ · · · ∪An| =
n∑

j=1

(−1)j−1
∑

1≤i1<i2<···<ij≤n

|Ai1 ∩Ai2 ∩ · · · ∩Aij |.

3.1.1 Euler’s Totient Function

Definition 3.1. Euler’s totient function is the function φ : Z+ → Z+ for which φ(n) is the number of

positive integers not exceeding n that are relatively prime to n.

Example 3.3. Let p and q be two distinct primes, and n be a positive integer. Evaluate φ(pn) and φ(pq).

Theorem 3.2. Let n = pk1
1 · · · pkm

m be the standard prime factorization of a positive integer n. Then

φ(n) = n

m∏
j=1

(
1− 1

pj

)
.

3.1.2 Derangements

Definition 3.2. A permutation σ : [n] → [n] is called a derangement whenever σ(i) 6= i for all i. The

number of derangements of [n] is denoted by Dn.

Example 3.4. Evaluate D1, D2, D3, and D4.

Theorem 3.3. The number of derangements, Dn, satisfies the following recursion:

D1 = 0, D2 = 1, Dn = (n− 1)[Dn−2 +Dn−1], for all n ≥ 2.

Theorem 3.4. The number of derangements is given by the following formula:

Dn = n!

n∑
k=0

(−1)k
1

k!
.

3.1.3 Surjections and Stirling Numbers of the Second Kind

Theorem 3.5. Let n and k be two positive integers. The number of surjective functions f : [n]→ [k] is

kn −
(
k

1

)
(k − 1)n +

(
k

2

)
(k − 2)n −+ · · · =

k∑
j=0

(−1)j
(
k

j

)
(k − j)n.

Theorem 3.6. For every two positive integers n and k we have

S(n, k) =
1

k!

k∑
j=0

(−1)j
(
k

j

)
(k − j)n.
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3.2 The Twelvefold Way

Many counting problems can be turned into one of twelve problems. Suppose we are placing n balls into k

boxes. Depending on whether the balls and boxes are identical or distinguishable and depending on what

restrictions we impose on the number of balls in each box we get twelve different problems. These problems

are all listed in the following table.

Balls Boxes Number of balls per box Number of possibilities

identical identical any pk(n)

identical identical ≥ 1 pk(n)− pk−1(n)

identical identical ≤ 1

1 if n ≤ k

0 otherwise

identical distinguishable any
(
n+k−1
k−1

)
identical distinguishable ≥ 1

(
n−1
k−1
)

identical distinguishable ≤ 1
(
k
n

)
distinguishable identical any S(n, 1) + S(n, 2) + · · ·+ S(n, k)

distinguishable identical ≥ 1 S(n, k)

distinguishable identical ≤ 1

1 if n ≤ k

0 otherwise

distinguishable distinguishable any kn

distinguishable distinguishable ≥ 1 k!S(n, k)

distinguishable distinguishable ≤ 1 k(k − 1) · · · (k − n+ 1) = (k)n

3.3 More Examples

Example 3.5. Given two positive integers k and n, find the number of increasing sequences of positive

integers a1 ≤ a2 ≤ . . . ≤ ak for which a1 = 1 and ak = n.

Solution. Each sequence is determined by the number of 1’s, 2’s, etc. in the sequence. Let xj be the number

of j’s in the sequence. Since the sequence has k terms, we have x1 + · · · + xn = k. We also need to have

x1, xn ≥ 1. Letting y1 = x1 − 1, yn = xn − 1, and yj = xj for all 2 ≤ j ≤ n − 1, we get yj ≥ 0 for all

j. This yields an equation y1 + · · · + yn = k − 2. By the formula for weak compositions the answer is(
k−2+n−1

k−2
)

=

(
n+ k − 3

k − 2

)
.

Example 3.6. Prove that for every positive integer n, we have
n∑

j=0

(−1)j
(
n
j

)
(n− j)n = n!.

Solution. By a theorem S(n, n) =
1

n!

n∑
j=0

(−1)j
(
n
j

)
(n− j)n. Note that S(n, n) = 1, since there is only one way

to partition [n] into n block. This yields the result.

Example 3.7. Find the number of ways 12 people can be broken into three groups, if
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(a) each group must have at least one member.

(b) the groups are named A, B, and C, and each group must have at least one member.

(c) the groups can have any number of members.

(d) only the number of group members is important to us, but not who is in which group. The groups may

have any number of members.

Solution. (a) This is a partition of [12] into 3 blocks. The answer is S(12, 3) =
312 − 3 · 212 + 3

6
.

(b) Since the groups are labeled the answer would be 3!S(12, 3).

(c) The answer is S(12, 1) + S(12, 2) + S(12, 3).

(d) This is a partition since the members are indistinguishable. The answer is p3(12).

3.4 Exercises

3.4.1 Problems for grading

The following problems must be submitted on February 21, 2020 at the beginning of the class. Late sub-

mission will not be accepted.

Exercise 3.1. (15 pts) Let m and n be two positive integers.

(a) How many functions f : [n]→ [m] are there?

(b) How many functions f : [n]→ [m] are one-to-one?

(c) How many functions f : [n]→ [m] are bijective?

(You may have to take cases.)

Exercise 3.2. (10 pts) Let n be a positive integer. Prove

(a)
n∑

k=0

(−1)k
(
n
k

)
(n− k)n+1 =

(
n+1
2

)
n!

(b)
n∑

k=0

(−1)k
(
n
k

)
(n− k)n+2 =

(
n+2
3

)
n! + 3

(
n+2
4

)
n!

(Hint: Use two-way counting.)

Exercise 3.3. (10 pts) A solitaire type of card game is played as follows: The player has two shuffled decks,

each with the usual 52 cards. With the decks face down the player turns up a pair of cards, one from each

deck. If they are matching cards, he has lost the game. If they are not he continues and turns up another

pair of cards , one from each deck. Again he loses if he gets two matching cards. The player wins if he can

turn up all 52 pairs, none matching.

(a) What is the probability of a win?
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(b) Suppose the win is defined differently: The player wins if there is exactly one matching pair in the entire

52 pairs. What is the probability of a win?

You do not need to simplify your answer.

Exercise 3.4. (10 pts) Let n and k be two positive integers for which n ≥ 2k. Find a formula for the number

of partitions of [n] into k blocks, none of which is a singleton.

(Your answer may involve summations.)

Exercise 3.5. (10 pts) How many permutations of the 26 letters of the English alphabet do not contain any

of the strings fish, short or man?

Exercise 3.6. (10 pts) Let n be a positive integer. How many triples of sets (A,B,C) satisfy both of the

following conditions?

A ∪B ∪ C = [n], and A ∩B ∩ C = ∅

(Hint: Venn Diagram may help.)

Exercise 3.7. (10 pts) Find the number of integers between 1 and 106, inclusive, that are neither perfect

squares, nor perfect cubes, nor perfect fourth powers.

Exercise 3.8. (10 pts) Find the number of seven-digit positive integers whose digit sum is 20.

Exercise 3.9 (10 pts). Let m and n be two positive integers. Find a formula for the number of n-tuples of

non-zero integers (x1, . . . , xn) that satisfy |x1|+ · · ·+ |xn| = m. Your answer must be in closed form.

3.4.2 Problems for practice

Page 98-100: 8, 9, 11, 18, 31, 39.

Page 112-115: 11, 14, 44, 45

Exercise 3.10. Using the recursion in Theorem 3.3 prove the explicit formula for Dn in Theorem 3.4.

3.4.3 Challenge Problems

Exercise 3.11. For every two positive integers m, and n let f(m,n) denote the number of n-tuples (x1, . . . , xn)

of integers for which |x1|+ · · ·+ |xn| ≤ m. Prove that f(m,n) = f(n,m) for every m,n ∈ Z+.

Exercise 3.12. Let n be a positive integer. We call a permutation (x1, . . . , x2n) of the numbers 1, 2, . . . , 2n

pleasant if |xi−xi+1| = n for at least one i ∈ {1, 2, . . . , 2n−1}. Prove that the number of pleasant permutations

is more than
(2n)!

2
.
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4 Week 4

4.1 Power Series

To deal with a sequence an we can use a function associated to this sequence that stores all of the terms of

the sequence. This is helpful since we can use the power of calculus to manipulate this function.

Definition 4.1. Given any sequence of real (or complex) numbers an, the series f(x) defined by

f(x) =

∞∑
n=0

anx
n

is called a power series (centered at zero). The domain of the function f(x) is the set of all values of x that

make the above power series convergent.

Note that all power series that we discuss in this course are centered at zero, so we simply refer to all of them

as power series without mentioning the center.

A well-known theorem in Real (or Complex) Analysis states the following:

Theorem 4.1. For any power series precisely one of the following occurs:

(a) The power series converges only for x = 0.

(b) The power series converges for all x ∈ R (or x ∈ C).

(c) There is a positive real number R for which the power series converges for all x, with |x| < R and diverges

for all x with |x| > R.

The value R in (c) above is called the radius of convergence of the power series. When (a) occurs, the

radius of convergence is said to be zero and when (b) occurs the radius of convergence is said to be infinity.

The following theorem allows us to add and multiply power series.

Theorem 4.2. Let f(x) =
∞∑

n=0
anx

n and g(x) =
∞∑

n=0
bnx

n be two power series each with a positive radius of

convergence R1 and R2, respectively. Then,

• f(x) = g(x) for all x with |x| < min(R1, R2) if and only if for all n ≥ 0, an = bn. Furthermore, in that

case R1 = R2.

• The coefficients an are obtained by the formula an =
f (n)(0)

n!
.

• f(x) + g(x) =
∞∑

n=0
(an + bn)xn, for all x with |x| < min(R1, R2).

• f(x) · g(x) = a0b0 + (a0b1 + a1b0)x+ · · · =
∞∑

n=0
(

n∑
k=0

akbn−k)xn, for all x with |x| < min(R1, R2).

• f ′(x) = a1 + 2a2x+ 3a3x
2 + · · · =

∞∑
n=1

nanx
n−1 for all x with |x| < R1.
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•
∫ x

0
f(t) dt = a0x+

a1x
2

2
+
a2x

3

3
+ · · · =

∞∑
n=0

anx
n+1

n+ 1
for all x with |x| < R1.

Here are some particularly important power series that you have seen in Calculus II:

Theorem 4.3. (i)
1

1− x
= 1 + x+ x2 + · · · =

∞∑
n=0

xn, for all x ∈ (−1, 1).

(ii) ex =
1

0!
+
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · · =

∞∑
n=0

xn

n!
, for all x ∈ R.

(iii) sinx =
x

1!
− x3

3!
+
x5

5!
−+ · · · =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
, for all x ∈ R.

(iv) cosx =
1

0!
− x2

2!
+
x4

4!
−+ · · · =

∞∑
n=0

(−1)n
x2n

(2n)!
, for all x ∈ R.

(v) ln(1− x) = −x− x2

2
− x3

3
− · · · = −

∞∑
n=1

xn

n
, for all x with −1 ≤ x < 1.

Recall that for every two positive integers k ≤ n, we have(
n

k

)
=

n!

k!(n− k)!
=
n(n− 1) · · · (n− k + 1)

k!
.

This definition can be extended to when n is any real number, as follows.

Definition 4.2. For any real number a and any positive integer k, we define(
a

k

)
=
a(a− 1) · · · (a− k + 1)

k!
, and

(
a

0

)
= 1.

The following theorem which is a generalization of the Binomial Theorem is a standard theorem in Real

Analysis.

Theorem 4.4 (Binomial Theorem). Let a be a real number and let x ∈ (−1, 1). Then

(1 + x)a =

∞∑
k=0

(
a

k

)
xk.

Example 4.1. Evaluate

( 1
2

k

)
for all positive integers k. Write your answer in terms of combinations of

integers.

Solution. ( 1
2

k

)
=

1
2 ·
−1
2 ·

−3
2 · · ·

−(2k−3)
2

k!

=
(−1)k−11 · 3 · 5 · (2k − 3)

2k · k!

= (−1)k−1
(2k − 2)!

2k · k! · 2 · 4 · · · (2k − 2)

= (−1)k−1
(2k − 2)!

22k−1 · k! · (k − 1)!

=
(−1)k−1

22k−1 · k
(
2k−2
k−1

)
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Example 4.2. Find a power series for
√

1− 4x.

Solution. By the Binomial Theorem, and the previous example we obtain

√
1− 4x = (1− 4x)1/2 =

∞∑
k=0

( 1
2

k

)
(−4x)k = 1 +

∞∑
k=1

(−1)k−1

22k−1k

(
2k − 2

k − 1

)
(−4)kxk = 1−

∞∑
k=1

2

k

(
2k − 2

k − 1

)
xk.

4.2 Formal Power Series

If the sequence an grows fast, then the series
∞∑

n=0
anx

n only converges at x = 0. For example the power series

∞∑
n=0

n!xn only converges at x = 0. This limits our ability to work with these kinds of power series. For our

purpose we can often ignore the convergence of a power series for particular values of x. In other words, you

could think of
∑∞

n=0 anx
n as a “polynomial” with infinite degree. So, from now on think of “x” as just a

“symbol” or a “placeholder” rather than a real number.

Definition 4.3. A formal power series is an infinite sum of the form

a0 + a1x+ a2x
2 + · · · =

∞∑
n=0

anx
n,

where an is a sequence.

For two power series f(x) =
∞∑

n=0
anx

n and g(x) =
∞∑

n=0
bnx

n, we say

f(x) = g(x) if and only if ∀n ≥ 0 an = bn.

We define their sum as

f(x) + g(x) =

∞∑
n=0

(an + bn)xn

Their product is defined as

f(x) · g(x) = a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x2 + · · · =
∞∑

n=0

(

n∑
k=0

akbn−k)xn.

The derivative and integral of formal power series are also defined similar to before.

f ′(x) =

∞∑
n=1

nanx
n−1, and

∫ x

0

f(t) dt =

∞∑
n=0

anx
n+1

n+ 1
.

Definition 4.4. For a power series f(x) =
∞∑

n=0
anx

n, the coefficient of xn, i.e. an, is denoted by [xn]f(x).

Division is tricky, though. Not every formal power series has a multiplicative inverse, and thus we cannot

always define division. For example if
1

x
were to be a formal power series of form a0 + a1x+ a2x

2 + · · · , then

we would have to have

a0x+ a1x
2 + a2x

3 + · · · = 1,

which is impossible since the left side has no constant term (i.e. coefficient of x0) while the constant term

on the right hand side is 1.
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This leads to a natural question: When does a formal power series have a multiplicative inverse, and what

do the multiplicative inverse and dividing even mean anyway?

Definition 4.5. Given a formal power series f(x), we say the formal power series g(x) is the multiplicative

inverse of f(x) whenever f(x)g(x) = 1, in which case the formal power series g(x) is denoted by
1

f(x)
.

Definition 4.6. Suppose f(x) is a formal power series that has a multiplicative inverse and g(x) is a formal

power series. The quotient of g(x) by f(x), denoted by
g(x)

f(x)
, is defined as the product g(x) · 1

f(x)
.

Example 4.3. The formal power series 1+x+x2 + · · · is the multiplicative inverse of the power series 1−x.

Since their product is 1.

The following theorem answers the question of when the multiplicative inverse for a formal power series

exists.

Theorem 4.5. The multiplicative inverse of a formal power series
∞∑

n=0
anx

n exists as a formal power series

(and is unique) if and only if a0 6= 0.

Proof. (⇒) Let f(x) =
∞∑

n=0
anx

n. Suppose f(x)g(x) = 1, for some formal power series g(x) =
∞∑

n=0
bnx

n. By

comparing the constant terms we obtain a0b0 = 1, and thus a0 6= 0.

(⇐) Now, suppose a0 6= 0. We would like to define bn in such a way that a0b0 = 1, and that
n∑

k=0

akbn−k = 0

for all n ≥ 1. So, since a0 6= 0, we can define a sequence bn recursively by

b0 =
1

a0
, and bn =

−
n∑

k=1

akbn−k

a0
, for all n ≥ 1.

Therefore, bna0 = −
n∑

k=1

akbn−k, which implies
n∑

k=0

akbn−k = 0, for all n ≥ 1. This shows

( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
= a0b0 +

∞∑
n=1

(

n∑
k=0

akbn−k)xn = 1,

which shows f(x) has a multiplicative inverse.

Remark. Note that the equality, sums, products, derivatives and intergals for power series and formal power

series are given using the same formulas (see Theorem 4.2 and Definition 4.3). Therefore, if an identity is

valid for power series with positive radius of convergence, it would also be valid for formal power series. This

means we can use all of the formulas listed in Theorem 4.3 when dealing with formal power series.

4.3 Solving Recurrence Relations

In order to find an explicit formula for a sequence an it often helps to define a formal power series f(x) =
∞∑

n=0
anx

n and then find this power series.

Example 4.4. Let an be a sequence given by the recurrence relation a0 = 1 and an+1 = 2an + 1 for all

n ≥ 0. Find a formula for an.
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4.3.1 Ordinary Generating Functions

Definition 4.7. Let an, n ≥ 0 be a sequence of real numbers. Then the formal power series

F (x) =

∞∑
n=0

anx
n

is called the ordinary generating function of the sequence an.

Example 4.5. Let an be a sequence defined recursively by a0 = 2, a1 = 5 and an = 5an−1 − 6an−2 for all

n ≥ 2. Find an explicit formula for an.

Solution. Let F (x) be the ordinary generating function of the sequence an.

Multiplying the recursive formula by xn we obtain anx
n = 5an−1x

n − 6an−2x
n. Summing this for n ≥ 2, we

get the following:

∞∑
n=2

anx
n =

∑∞
n=2(5an−1x

n − 6an−2x
n)

= 5x
∞∑

n=2
an−1x

n−1 − 6x2
∞∑

n=2
an−2ax

n−2

= 5x(F (x)− a0)− 6x2F (x)

= (5x− 6x2)F (x)− 10x

The left hand side is equal to F (x)− a0 − a1x = F (x)− 2− 5x. This implies

F (x)−2−5x = (5x−6x2)F (x)−10x⇒ (6x2−5x+1)F (x) = 2−5x⇒ F (x) =
2− 5x

6x2 − 5x+ 1
=

2− 5x

(3x− 1)(2x− 1)

Applying the method of partial fractions we obtain

2− 5x

(3x− 1)(2x− 1)
=

A

3x− 1
+

B

2x− 1
.

Multiplying both sides by (3x−1)(2x−1) we obtain 2−5x = A(2x−1)+B(3x−1), which yields A = B = −1.

Therefore

F (x) =
−1

3x− 1
+
−1

2x− 1
=

1

1− 3x
+

1

1− 2x
=

∞∑
n=0

(3x)n +

∞∑
n=0

(2x)n =

∞∑
n=0

(3n + 2n)xn.

The above equality is obtained using the geometric series formula. This shows an = 3n + 2n.

Example 4.6. Find an explicit formula for the Fibonacci sequence defined by

f0 = 0, f1 = 1, fn = fn−1 + fn−2 for all n ≥ 2.

Solution. Similar to the previous example, let F (x) be the ordinary generating function for the Fibonacci

sequence. With a similar method to the example above we obtain

F (x)− f0 − f1x =

∞∑
n=2

fnx
n = x(F (x)− f0) + x2F (x).
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Therefore, F (x) =
−x

x2 + x− 1
. As before we will use the method of partial fractions. The roots of x2+x−1 =

0 are
−1±

√
5

2
. For simplicity call these two roots r are s. So we can write

−x
x2 + x− 1

=
A

x− r
+

B

x− s
.

Clearing the denominators we obtain −x = A(x − s) + B(x − r). Substituting x = r once and then x = s,

we obtain A =
−r
r − s

and B =
−s
s− r

. This implies

F (x) =
1

r − s

(
−r
x− r

− −s
x− s

)

=
1

r − s

(
1

1− (x/r)
− 1

1− (x/s)

)

=
1

r − s

( ∞∑
n=0

(x/r)n −
∞∑

n=0
(x/s)n

)

=
1

r − s

( ∞∑
n=0

xn

rn
− xn

sn

)

=
1

r − s

( ∞∑
n=0

(
1

rn
− 1

sn

)
xn
)

By looking at the coefficient of xn we obtain fn =
1

r − s
·
(

1

rn
− 1

sn

)
, which gives the following formula for

the terms of the Fibonacci sequence:

fn =
1√
5

((√
5 + 1

2

)n

−

(
1−
√

5

2

)n)

Example 4.7. Find a formula for the n-th Catalan number.

Solution. Recall that Catalan numbers satisfy the recursion c0 = 1, cn+1 =
n∑

k=0

ckcn−k for all n ≥ 0. Let

C(x) be the ordinary generating function for cn. Multiplying both sides by xn+1 and adding up for n ≥ 0

yields

C(x)− c0 = x

∞∑
n=0

(
n∑

k=0

ckcn−k

)
xn (∗)

Also note that the above equality is equivalent to the recursion for cn. The expressions
n∑

k=0

ckcn−kx
n appear

as coefficients of the square of the formal power series C(x). The right hand side is x(C(x))2 and the left

hand side is C(x)− 1. Therefore, we obtain x(C(x))2 −C(x) + 1 = 0. Furthermore, C(x) is the only formal

power series satisfying x(C(x))2 − C(x) + 1 = 0, since (*) only holds for C(x). Using the quadratic formula

we know that C(x) =
1±
√

1− 4x

2x
both satisfy the equation above and thus, by Example 4.2 we obtain

2xC(x) = 1±

(
1−

∞∑
k=1

2

k

(
2k − 2

k − 1

)
xk

)
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Only the negative sign gives us a formal power series on the right hand side with no constant term. Thus,

we obtain the following:

2xC(x) = 1−

(
1−

∞∑
k=1

2

k

(
2k − 2

k − 1

)
xk

)
= 2x

∞∑
k=1

1

k

(
2k − 2

k − 1

)
xk−1

Therefore,

cn =
1

n+ 1

(
2n

n

)

Remark. Note that
√

1− 4x on its face is not a formal power series, as it is not of form
∑
anx

n. What we

mean by
√

1− 4x as a formal power series is the formal power series
∞∑

n=0

(
1/2
n

)
(−4)nxn, which is the power

series we get from the Binomial Theorem.

Also, note that we have not shown that quadratic equations only have two solutions in formal power series

(and this is not even true!). In other words, even though
1−
√

1− 4x

2x
does satisfies the quadratic equation

x(C(x))2 − C(x) + 1 = 0 in order to show C(x) =
1−
√

1− 4x

2x
, we need to show C(x) is the only formal

power series that satisfies x(C(x))2 − C(x) + 1 = 0, and that
1−
√

1− 4x

2x
is in fact a formal power series.

This is what we showed above.

4.3.2 Exponential Generating Functions

Example 4.8. Find an explicit formula for the sequence an given by

a0 = 1, and an = nan−1 + n for all n ≥ 1.

Solution. Let F (x) be the ordinary generating function of an. Multiplying both sides of the recursion by

xn and adding up we obtain
∞∑

n=1
anx

n =
∞∑

n=1
nan−1x

n +
∞∑

n=1
nxn. The left hand side is F (x) − 1. The

right hand side is not very easy to write in terms of F (x), however it can be written in terms of F (x) as

x2F ′(x) +x(F (x)−a0) +x
∞∑

n=1
nxn−1 = x2F ′(x) +xF (x)−x+x

d

dx

(
1

1− x

)
. Solving this problem requires

solving the differential equation F (x) = x2F ′(x) + xF (x)− x+
x

(1− x)2
+ 1. While this is certainly possible

to solve using techniques from ODE, it is more complicated than it needs to be.

Instead, we will use a different type of generating function called exponential generating functions. Let

A(x) =
∞∑

n=0

an
n!
xn. Dividing the recursion by n! and summing it up for n ≥ 1, we obtain

∞∑
n=1

an
n!
xn =

∞∑
n=1

an−1
(n− 1)!

xn +

∞∑
n=1

xn

(n− 1)!
.

The left hand side is A(x) − 1, while the right hand side is xA(x) + xex. This gives us the equation

A(x)− 1 = xA(x) + xex. Solving this for A(x) we obtain

A(x) =
1

1− x
+ xex · 1

1− x
=

∞∑
n=0

xn + x

( ∞∑
n=0

xn

n!

)( ∞∑
n=0

xn

)
=

∞∑
n=0

xn + x

∞∑
n=0

n∑
k=0

1

k!
xn.
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By comparing the coefficient of xn we obtain
an
n!

= 1 +
n−1∑
k=0

1

k!
, for all n ≥ 1, therefore,

a0 = 1, an = n!

(
1 +

n−1∑
k=0

1

k!

)
for all n ≥ 1.

Definition 4.8. Let an, n ≥ 0, be a sequence of complex numbers. The formal power series

∞∑
n=0

an
n!
xn

is called the exponential generating function of the sequence an.

4.4 More Examples

Example 4.9. Find a formula for the sum
∞∑

n=1
nxn.

Solution. This power series looks like the derivative of
1

1− x
=
∞∑

n=0
xn. Differentiating we get

1

(1− x)2
=

∞∑
n=1

nxn−1. Therefore,
∞∑

n=1
nxn =

x

(1− x)2
.

Example 4.10. Find an explicit formula for the sequence an satisfying the recursion a1 = 1, and an+1 =

4an + 4n for all n ≥ 1.

Solution. Let A(x) =
∞∑

n=1
anx

n, and sum up the equality an+1x
n+1 = 4anx

n+1 + 4nxn+1. We obtain

A(x)− x = 4xA(x) + 4x2
∞∑

n=1

nxn−1 = 4xA(x) + 4x2
d

dx

(
1

1− x

)
.

Solving we get A(x) =
x

1− 4x
+

4x2

(1− 4x)(1− x)2
. Using partial fractions we obtain

A(x) =
25

36(1− 4x)
+

8

9(1− x)
− 4

3(1− x)2
− 1

4
=

25

36

∞∑
n=0

(4x)n +
8

9

∞∑
n=0

xn − 4

3

d

dx

(
1

1− x

)
− 1

4
.

Differentiating
1

1− x
=
∞∑

n=0
xn we have

1

1− x
=
∞∑

n=1
nxn−1. Therefore,

A(x) =
25

36

∞∑
n=0

(4x)n +
8

9

∞∑
n=0

xn − 4

3

∞∑
n=1

nxn−1 − 1

4
.

Therefore,

an =
25

36
4n +

8

9
− 4

3
(n+ 1)

Example 4.11. Find the OGF and EGF for the sequence an = n2 + 3n.
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First Solution. Note that a0 = 0, so we can ignore this term when finding the generating functions. We know
1

1− x
=
∞∑

n=0
xn. Differentiating and then multiplying by x we obtain

x

(1− x)2
=
∞∑

n=1
nxn. Differentiating

again and multiplying by x, we get
∞∑

n=1
n2xn =

x+ x2

(1− x)3
. Putting these together we get the OGF associated

with n2 + 3n is
∞∑

n=1

(n2 + 3n)xn =
x+ x2

(1− x)3
+

3x

(1− x)2
=
−2x2 + 4x

(1− x)3
.

For the EGF, we need to evaluate

E(x) =

∞∑
n=1

(n2 + 3n)

n!
xn =

∞∑
n=1

n+ 3

(n− 1)!
xn =

∞∑
n=0

n+ 4

n!
xn+1 =

∞∑
n=1

xn+1

(n− 1)!
+

∞∑
n=0

4xn+1

n!

Note that ex =
∞∑

n=0

xn

n!
. Therefore, E(x) = x2ex + 4xex.

Second Solution. Similar to the previous part, we know
1

1− x
=
∞∑

n=0
xn. Differentiating this two times we

get
1

(1− x)2
=
∞∑

n=1
nxn−1, and

2

(1− x)3
=
∞∑

n=2
n(n − 1)xn−2. Note that we can write n2 + 3n as a linear

combination of n, and n(n− 1). So, let’s first do that. n2 + 3n−n(n− 1) is linear and equals 4n. Therefore,

n2 + 3n = n(n− 1) + 4n. Therefore,

A(x) =

∞∑
n=0

(n2 + 3n)xn =

∞∑
n=2

n(n− 1)xn + 4

∞∑
n=1

nxn = x2
2

(1− x)3
+ 4x

1

(1− x)2
=

4x− 2x2

(1− x)3
.

Similar to the previous part we use n2 + 3n = n(n− 1) + 4n. This gives us

E(x) =

∞∑
n=2

n(n− 1)

n!
xn + 4

∞∑
n=1

nxn

n!
= x2ex + 4xex.

4.5 Exercises

All students are expected to do all of the exercises listed in the following two sections.

4.5.1 Problems for grading

The following problems must be submitted on Friday, March 6, 2020 at the beginning of the class. Late

submission will not be accepted.

All proofs must be complete and solutions must be fully justified.

Read and follow the directions carefully. If a problem is asking you to use a certain method, you must use

that method to solve the problem.

Exercise 4.1 (20 pts). Using the method of generating functions, find an explicit formula for each of the

following sequences.
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(a) a0 = 1, an = 3an−1 + n for all n ≥ 1.

(b) a0 = a1 = 1, an = 5an−1 − 6an−2 for all n ≥ 2.

(c) a1 = 1, a2 = 3, an = 4an−1 − 4an−2 for all n ≥ 3.

(d) a0 = 1, an = nan−1 + 3n for all n ≥ 1.

Exercise 4.2 (10 pts). Suppose P (x) =
∞∑

n=0
pnx

n and Q(x) =
∞∑

n=0
qnx

n are two given formal power series

for which q0 = 0, and p0 6= 0. Prove that there is a unique formal power series A(x) =
∞∑

n=0
anx

n that satisfies

(A(x))2 − P (x)A(x) +Q(x) = 0, and a0 6= 0.

(Hint: See proof of Theorem 4.5.)

Exercise 4.3 (10 pts). Write
(−3

n

)
in terms of combinations of positive integers. Use that to find a power

series for
1

(2− x)3
.

Exercise 4.4 (10 pts). Let n and k be two positive integers and r be a positive integer less than both k and

n. Use the identity (1 + x)n(1 + x)k = (1 + x)n+k to prove

r∑
j=0

(
n

j

)(
k

r − j

)
=

(
n+ k

r

)
.

Exercise 4.5 (15 pts). Let Dn be the number of derangements of [n] for every n > 0 and set D0 = 1.

(a) Using two-way counting prove that n! =
n∑

k=0

(
n

k

)
Dk.

(b) Let D(x) be the exponential generating function associated to Dn. Prove that D(x)ex =
1

1− x
.

(c) Use the previous part to find an explicit formula for Dn.

Exercise 4.6 (10 pts). Let n be a positive integer. 2n points A1, A2, . . . , A2n are equally spaced on a circle.

Find the number of ways we can draw n non-intersecting chords whose endpoints are all of these 2n points.

Exercise 4.7 (15 pts). The purpose of this problem is to show that for every integer n ≥ 2, the product

3n−1
n∏

k=2

(3k − 4) is divisible by n!. Define a sequence an by a1 = 1, an =
3n−1

n!

n∏
k=2

(3k − 4) for all n ≥ 2.

(a) Write down

( 1
3

n

)
in terms of an.

(b) Let A(x) be the ordinary generating function associated with an. Find A(x).

(c) Use the previous part to find a recurrence relation for an. Use that to show an is an integer for all n.

Deduce that 3n−1
n∏

k=2

(3k − 4) is divisible by n!.

Exercise 4.8 (10 pts). Let an be the sequence given by the recursion

a0 = 1, and an = −
n∑

k=1

an−k
k!

for all n ≥ 1.

Using OGF of an prove that an =
(−1)n

n!
for all n ≥ 1.
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Exercise 4.9 (10 pts). Find OGF and EGF for the sequence n3 + 3n.

(Hint: See the second solution to Example 4.11.)

4.5.2 Problems for practice

p. 164-165: 4, 5, 17, 18

p. 176-177: 3, 4, 6

4.5.3 Challenge Problems

Exercise 4.10. Let P (x) be a polynomial. Find a formula for the ordinary and exponential generating

functions of the sequence {P (n)}∞n=0.

Exercise 4.11. Let an be a sequence for which a0 = 3, and an+1 =
n∑

k=0

akan−k −
1

3

n−1∑
k=0

n−1∑̀
=k

aka`−kan−1−`,

for all n ≥ 0. Find a formula for an.

5 Weeks 5 and 6

5.1 Applications of Ordinary Generating Functions

Theorem 5.1 (Product Formula for OGF, First Version). Suppose fn, gn and hn are three sequences whose

ordinary generating functions are F (x), G(x), and H(x), respectively. Assume

hn =

n∑
k=0

fkgn−k, for all n ≥ 0.

Then H(x) = F (x)G(x).

The proof of this theorem follows from the definition of product of two formal power series. This theorem is

often used to solve counting problems in the following manner.

Example 5.1. Let an be a sequence defined by

an =

n∑
j=0

2j(n− j).

Find a closed formula for an.

Definition 5.1. An interval is a (possibly empty) set {i+ 1, . . . , i+ j} of consecutive integers. The length

of this interval is said to be j.

Theorem 5.2 (Product Formula for OGF, Second Version). Suppose for every n ≥ 0, fn and gn are the

number of ways we can carry out tasks 1 and 2 on a set of size n, respectively. Suppose hn is the number of

ways one can divide the set [n] into two (possibly empty) intervals A = {1, . . . , i} and B = {i+ 1, . . . , n} and

then carry out task 1 on A and task 2 on B. Let F (x), G(x) and H(x) be the ordinary generating functions

associated with fn, gn and hn, respectively. Then H(x) = F (x)G(x).
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Example 5.2. Alex is taking a multiple choice test with n questions, where n ≥ 3. He choose an even

integer j between 2 and n− 1, inclusive, and randomly marks the first j questions from the beginning of the

test either A or B. He then randomly selects one of the remaining questions and marks it C, and the rest of

the questions D. How many different outcomes are possible?

Solution. Let an be the number of ways this can be done. Since we are dividing [n] into two intervals and

performing two tasks, we can use the Product Formula. The first task is zero when j is odd and 2j when j

is even. Thus the OGF for the first task is F (x) =
∞∑
k=1

22kx2k =
4x2

1− 4x2
. The second task can be done in k

ways over an interval of length k. Thus, the OGF for the second task is G(x) =
∞∑
k=1

kxk = x
d

dx

(
1

1− x

)
=

x

(1− x)2
. Therefore, the OGF for the sequence an, A(x) is

A(x) =
4x3

(1− 4x2)(1− x)2

=
1

1− 2x
− 1

9(2x+ 1)
+

4

9(1− x)
− 4

3(1− x)2

=
∞∑

n=0
(2x)n − 1

9
(−2x)n +

4

9
xn − 4

3
(n+ 1)xn

Therefore, an = 2n +
(−1)n+1

9
2n +

4

9
− 4

3
(n+ 1)

The following examples show that Ordinary Generating Functions are very helpful when dealing with parti-

tions, compositions and weak compositions.

Example 5.3. Find the number of weak compositions of n into k parts, where k and n are positive integers.

Example 5.4. With an ample supply of bananas, apples, strawberries, and grapes we are to make fruit

salads. Each fruit salad must consist of n pieces of fruit, where n is a given positive integer. The number of

banana pieces in each fruit salad must be a multiple of 5, the number of apple pieces must be even, and the

number of strawberry pieces must be less than 5. In terms of n, how many different types of fruit salad can

be made?

Example 5.5. Find the generating functions of p(n).

Solution. Here we are performing n tasks. We divide [n] into n intervals. The k-th interval determines how

many k’s appear in the partition of n. In other words, the number of k’s is the length of the k-th interval di-

vided by k. The OGF for each k is given by 1+xk+x2k+· · · . Therefore, multiplying we get the OGF of p(n).

Here is another way of looking at this: To form a partition for n, we need to write n as

n = 1 + · · ·+ 1︸ ︷︷ ︸
a1 times

+ 2 + · · ·+ 2︸ ︷︷ ︸
a2 times

+ · · ·+ n+ · · ·+ n︸ ︷︷ ︸
an times

,
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where aj ≥ 0 for all j. In other words, we write
n∑

j=1

jaj = n. Therefore, every partition of n, yields a product

of form

xn = xa1 · (x2)a2 · · · (xn)an .

Furthermore, every such product results in a partition of n. Thus, p(n) is the coefficient of xn in the product

(1 + x+ x2 + x3 + · · · )(1 + x2 + x4 + x6 + · · · ) · · · (1 + xn + x2n + x3n · · · ).

Note that to make this independent of n, we can keep multiplying by (1 + xm + x2m + · · · ) for all m > n,

without changing the coefficient of xn. Thus, the generating function for p(n) is

(1 + x+ x2 + x3 + · · · )(1 + x2 + x4 + x6 + · · · ) · · · =
∞∏
j=1

1

1− xj
=

∞∑
n=0

p(n)xn,

where p(0) = 1.

Remark. The product of infinitely many formal power series is not always well-defined. For example if we

multiply (1 + x+ x2 + x3 + · · · ) by itself infinitely many times, the only term with a finite coefficient is the

constant term. Every other term appears infinitely many times after “expanding” the infinite product. This

is described in the following definition.

Definition 5.2. Let F0(x), F1(x), F2(x), . . . be a sequence of formal power series. Consider the sequence of

formal power series Gn(x) =
n∏

j=0

Fj(x). Suppose for every positive integer n, there is some positive integer

N for which the coefficient of xn in all power series GN (x), GN+1(x), GN+2(x), . . . is the same number an.

Then, we define
∞∏
j=0

Fj(x) =

∞∑
n=0

anx
n.

Note that each product
n∏

j=0

Fj(x) is called a partial product of
∞∏
j=0

Fj(x).

Example 5.6. Let k be a fixed positive integer. Find the OGF of the sequence p(n, k).

Solution. Note that p(n, k) is equal to the number of partitions of n into parts the largest of which is k (See

Theorem 2.6). Therefore the generating function for p(n, k) is

∞∑
n=0

p(n, k)xn = (1 + x+ x2 + · · · )(1 + x2 + x4 + · · · ) · · · (xk + x2k + · · · ) = xk
k∏

j=1

1

1− xj
,

where p(0, k) = 0.

To find a generating function for p(n, k) where both k and n are changing we need two variables. We will use

the same method used in Example 5.5, however we need another variable to be the “placeholder”, to count

the number of terms that are added. We can deal with that as follows:

ykxn = (yx)a1 · (yx2)a2 · · · (yxn)an ,

where aj ’s are the number of j’s in the partition of n, and precisely k of the aj ’s are non-zero. Therefore, a

two-variable formal power series for p(n, k) is as follows:
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(1 + yx+ (yx)2 + · · · )(1 + yx2 + (yx2)2 + · · · ) · · · =
∞∏
j=1

1

1− yxj
= 1 +

∞∑
k=1

∞∑
n=1

p(n, k)ykxn.

Definition 5.3. Let F (x) =
∞∑

n=0
fnx

n be a formal power series and A(x) =
∞∑

n=1
anx

n be a formal power

series having constant term a0 = 0. Then the composition of the power series is the power series

F (A(x)) =

∞∑
n=0

fn(A(x))n =

∞∑
n=0

bnx
n,

where (A(x))0 = 1, and bn is the coefficient of xn in the finite sum
n∑

k=0

fn(A(x))k.

Note that for every n, the coefficient of xn in (A(x))m for all m ≥ n + 1 is zero, which means xn may only

appear in the finite sum
n∑

k=0

fn(A(x))k.

Theorem 5.3 (Composition Formula for OGF). Let ak be the number of ways we can carry out task 1 on

any set of size k, with a0 = 0. Let bk be the number of ways we can carry out task 2 on any set of size k. Let

cn be the number of ways we can split [n] into non-empty intervals, then carry out task 1 on each interval and

then carry out task 2 on the set of intervals. Let A(x), B(x), and C(x) be the ordinary generating functions

associated with sequences an, bn and cn, respectively. Then C(x) = B(A(x)).

Example 5.7. A soccer coach has her n players stand in a line. Then she breaks the line at a few places,

to form non-empty units, and then chooses a leader for each unit. Finally she chooses one of the units for

a specific task. Find the generating function for the sequence cn that counts the number of ways she can

perform this.

5.2 Applications of Exponential Generating Functions

Theorem 5.4 (Product Formula for EGF, First Version). Let fn, gn and hn, n ≥ 0 be sequences such that

hn =

n∑
k=0

(
n

k

)
fkgn−k, for all n ≥ 0.

Let F (x), G(x), and H(x) be EGF associated to fn, gn, and hn, respectively, then H(x) = F (x)G(x).

When solving counting problems we may need the following version of the Product Formula.

Theorem 5.5 (Product Formula for EGF, Second Version). Suppose for every k ≥ 0, fk and gk are the

number of ways we can carry out tasks 1 and 2 on a set of size k, respectively. Suppose hn is the number

of ways one can select a (possibly empty) subset S of [n]; then carry out task 1 on S and task 2 on [n]− S.

Let F (x), G(x) and H(x) be the exponential generating functions associated with fn, gn and hn, respectively.

Then H(x) = F (x)G(x).

Remark. Note that the two tasks in the Product Formula are ordered. In other words, even if the two tasks

are the same tasks, the order in which this task is applied is important. For example if we apply task 1 to

{1, 2} and then apply it to {3, 4, 5}, that is different from first applying task 1 to {3, 4, 5} and then to {1, 2}.

The first one is counted in a2a3 while the second one is counted in a3a2.
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Example 5.8. Alex is taking a multiple choice test with n questions, where n ≥ 2. He choose an integer j

between 1 and n− 1, inclusive, and randomly marks j questions either A or B. He then randomly selects one

of the remaining questions and marks it C, and he marks the rest of the questions D. How many different

outcomes are possible?

Theorem 5.6 (Composition Formula for EGF). Let ak be the number of ways we can carry out task 1 on

any set of size k, with a0 = 0. Let bk be the number of ways we can carry out task 2 on any set of size k. Let

cn be the number of ways we can partition [n] into non-empty blocks, then carry out task 1 on each block and

then carry out task 2 on the set of blocks. Let A(x), B(x), and C(x) be the exponential generating functions

associated with sequences an, bn and cn, respectively. Then C(x) = B(A(x)).

Example 5.9. There are n people at a dinner party. We divide them into an unspecified number of groups,

have each group sit at a different round table and serve one of the three dinner choices to each table. In how

many ways can this be done?

Example 5.10. Find the exponential generating function of the number of partitions of [n] into blocks of

even size.

Solution. The first task is to decide whether a block is even or odd. If it is even then task one produces 1,

otherwise it produces 0. Thus, the EGF for this task is F (x) =
∞∑

n=1

x2n

(2n)!
. Note that adding ex and e−x

eliminates all the odd powers of x and doubles the even terms. In other words, F (x) = (ex + e−x)/2− 1 The

second task has the generating function
∞∑

n=0

xn

n!
= ex, since each such partition is counted once. Thus, the

desired generating function is exp(F (x)) = e
ex+e−x−2

2 .

Theorem 5.7. Let S : s1, s2, s2, . . . be an increasing sequence of positive integers. Let hS(n) be the number

of ways [n] can be partitions into blocks so that all block sizes are in S. Then the exponential generating

function of hS(n) is exp

(
∞∑
j=1

xsj

j!

)
.

Proof. The first task assign 1 to every set whose size is in S. The second task assigns 1 to every partition.

The EGF for the first task is
∞∑
j=1

xsj

j!
and the EGF for the second task is

∞∑
j=1

xsj

j!
. Thus, the EGF for the

5.3 Other Generating Functions

Example 5.11. Let an be a sequence satisfying a0 = 1, an = n2an−1 + n!. Find an explicit formula for an.

5.4 More Examples

Example 5.12. Given a positive integer n, find the number of weak compositions of n into three parts, the

second of which is even.

Solution. The OGF for this sequence is F (x) = (1 + x + x2 + · · · )(1 + x2 + x4 + · · · )(1 + x + x2 + · · · ) =
1

1− x
· 1

1− x2
· 1

1− x
=

1

(1− x)3(1 + x)
. Partial fraction decomposition for F (x) is

F (x) =
1

8(1− x)
+

1

4(1− x)2
+

1

2(1− x)3
+

1

8(1 + x)
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Example 5.13. Find the number of weak compositions of n into three parts, the last of which is a multiple

of 3.

Solution. The OGF for this sequence is F (x) = (1 + x+ x2 + · · · )2(1 + x3 + x6 + · · · ) =
1

(1− x)2(1− x3)
=

1

(1− x)3(1 + x+ x2)
=

1

(1− x)3(r − x)(s− x)
, where r, s =

−1±
√

3i

2
. Partial decomposition yields the

answer.

Example 5.14. Find the OGF of pd(n), the number of partitions of n into distinct parts.

Solution. The k-th task can be done in precisely 1 way if the length of the k-th interval is 0 or k and in zero

ways otherwise, since we can have at most one k in the partition. Therefore, the OGF for the k-th task is

1 + xk. The answer, therefore, is

∞∑
n=0

pd(n)xn =

∞∏
k=1

(1 + xk) with pd(0) = 1.

Example 5.15. Prove that for any positive integer n, the number of partitions of n into odd parts is the

same as the number of partitions of n into distinct parts.

Solution. Since we could have any number of each odd part, the OGF for each odd part 2k+1 is
∞∑

n=0
x(2k+1)n.

Multiplying these we get the OGF for the number of partitions of n into odd parts
∞∏
k=0

(
∞∑

n=0
x(2k+1)n) which

is equal to F (x) =
∞∏
k=0

1

1− x2k+1
.

As seen in Example 5.14, the OGF for the number of partitions of n into distinct parts is G(x) =
∞∏

n=1
(1+xn).

To finish up the proof, we will have to show F (x) = G(x). Note that

G(x) =

∞∏
n=1

1− x2n

1− xn
=

1− x2

1− x
1− x4

1− x2
1− x6

1− x3
1− x8

1− x4
· · · .

We see that all the terms on top cancel with all the even terms at the bottom and that precisely gives us F (x).

However this argument is not quite rigorous, since when dealing with infinite series infinite cancellation may

not be allowed. So, we will make this argument more rigorous. The partial products of G(x) are
N∏

n=1

1− x2n

1− xn
,

which after cancellation is the same as
∏

0≤k<N/2

1

1− x2k+1
·

∏
N/2≤k≤N

(1−x2k). Since all exponents of x in the

product
∏

N/2≤k≤N
(1−x2k) are larger than N −1, the coefficients of x0, x1, . . . , xN−1 in GN (x) =

N∏
n=1

1− x2n

1− xn

and FN (x) =
∏

0≤k<N/2

1

1− x2k+1
are the same. Note that GN (x) and FN (x) are partial products of G(x)

and F (x). Therefore, F (x) = G(x), as desired.

Example 5.16. A book must consist of n ≥ 2 pages. Each page can be either text or an illustration. The

book can have any number of chapters but each chapter must have at least one illustrations and one text

page. In how many ways is this possible?

Solution. Let an and bn be the number of ways the first and second tasks can be done, respectively. The

first task is choosing weather each page is a text or an illustration. This can be done in 2n − 2 ways,

because we cannot have all text or all illustration pages. We also have a0 = 0. The second task is essentially
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doing nothing because every legitimate chapter will be accepted in one way. Since the order is important

we need to use OGF. The generating functions are thus, A(x) =
∞∑

n=2
(2n − 2)xn =

4x2

1− 2x
− 2x2

1− x
and

B(x) =
∞∑

n=2
xn =

x2

1− x
. Thus, we need to find A(x)B(x) =

4x4

(1− 2x)(1− x)
− 2x4

(1− x)2
. The sequence can

now be found using partial fraction decomposition.

Example 5.17. Find the EGF for the sequence of Bell numbers.

Solution. Bell numbers count all partitions of [n]. Thus, we can use Theorem 5.7 with S = Z+. Therefore,

the EGF for the Bell numbers is ee
x−1.

5.5 Exercises

All students are expected to do all of the exercises listed in the following two sections.

5.5.1 Problems for grading

The following problems must be submitted on Friday, March 13, 2020 at the beginning of the class. Late

submission will not be accepted.

All proofs must be complete and solutions must be fully justified.

Read and follow the directions carefully. If a problem is asking you to use a certain method, you must use

that method to solve the problem.

Exercise 5.1 (10 pts). Let n, and k be two positive integers. In class we used the method of generating

functions to find the number of weak compositions of n into k parts. Using the method of generating functions

find the number of compositions of n into k parts.

Exercise 5.2 (15 pts). Find a formula in closed form for p(n, 3), the number of partitions of a positive

integer n into 3 parts. Your formula may involve complex numbers! You may use a computer algebra system

to get the partial fraction decomposition.

Hint: See Example 5.6.

Exercise 5.3 (15 pts). Let P (x, y) =
∞∏
j=1

(1 + yxj).

(a) Find an interpretation for the coefficient of xn in the power series expansion of P (x, 1).

(b) Find an interpretation for the coefficient of xn in the power series expansion of P (x,−1).

(c) Interpret the coefficients of xn in the power series expansions of
P (x, 1) + P (x,−1)

2
and

P (x, 1)− P (x,−1)

2
.

Hint: See the explanation after Example 5.6.

Exercise 5.4 (10 pts). Let an be the number of ways one can pay n cents using pennies, nickels, and dimes.

Find the ordinary generating function of an.
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Exercise 5.5 (10 pts). Find the EGF for the sequence an that counts the number of partitions of [n] in

which all blocks have even sizes and the number of blocks is also even.

Exercise 5.6 (10 pts). Let k be a positive integer. Find a closed form for
∞∑

n=0
S(n, k)

xn

n!
. Use that to find a

formula for S(n, k).

Exercise 5.7 (10 pts). n people are standing in a line at the post office. Two customer service representatives

splits the line at an arbitrary point (so, there are n − 1 places that the lines could be split.) The first

representative offers each customer in the first portion of the line two choices: either first class mail or

overnight. The second representative only has time to service two of the customers. So, they randomly pick

two customers (thus, the second part of the line must have at least two people, otherwise that can be done in

zero ways) and offer each customer one of the 3 choices: overnight, flat-rate, or first class mail. The rest of

the customers in the second part of the line get one forever stamp each. What is the OGF for the number of

possible outcomes?

Exercise 5.8 (10 pts). Similar to the previous problem assume a line with n people is formed. Several post

office representatives break the line into non-empty pieces and each one helps one group in the line. There

are three different options (first class mail, express and flat-rate) and each representative can only offer one

of the three options to the entire group. At the end of the process one of the groups is randomly picked for a

survey. How many different ways can this be done?

Exercise 5.9 (10 pts). Find an explicit formula for an if a0 = 1, and an = n3an−1 + (n!)2 for all n ≥ 1.

5.5.2 Problems for Practice

Page 164-165: 12, 21, 25.

Page 176-177: 15.

Exercise 5.10. Let k be a positive integer. Find the OGF of the sequence S(n, k).

Solution. Let Fk(x) =
∞∑

n=1
S(n, k)xn be the OGF of the sequence S(n, k) for every k. We know S(n+ 1, k) =

S(n, k − 1) + kS(n, k) for all n ≥ 1. Multiplying by xn+1 and summing up we obtain

∞∑
n=1

S(n+ 1, k)xn+1 =

∞∑
n=1

S(n, k − 1)xn+1 + k

∞∑
n=1

S(n, k)xn+1

The left hand side is Fk(x)− S(1, k)x. The right hand side is xFk−1(x) + kxFk(x), for all k ≥ 2. Note that

S(1, k) = 0, for all k ≥ 2. Therefore, Fk(x)(1 − kx) = xFk−1(x), for all k ≥ 2. Using this repeatedly we

obtain

Fk(x) =
x

1− kx
Fk−1(x) =

x

1− kx
· x

1− (k − 1)x
Fk−2(x) = · · · = xk−1

(1− kx) · · · (1− 2x)
F1(x)

F1(x) =
∞∑

n=1
xn =

x

1− x
. Thus, Fk(x) =

k∏
j=1

(
x

1− jx

)
.
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5.5.3 Challenge Problems

Exercise 5.11. Let p be an odd prime. Find the number of non-empty subsets of {1, 2, . . . , p− 1} that have

a sum that is divisible by p.

Exercise 5.12. Let n be a positive integer. Show that the number of partitions of n into parts which have

at most one of each distinct even part (e.g. 1 + 1 + 1 + 2 + 3 + 4) equals the number of partitions of n in

which each part can appear at most three times (e.g. 1 + 1 + 1 + 2 + 2 + 4 + 4 + 4).

Exercise 5.13. Let n be a positive integer. Show that the number of partitions of n, where each part appears

at least twice, is equal to the number of partitions of n into parts all of which are divisible by 2 or 3.

Exercise 5.14. Let α(n) be the number of representations of a positive integer n as sum of 1’s and 2’s,

taking order into account. For example, since

4 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1 = 2 + 2 = 1 + 1 + 1 + 1,

we have α(4) = 5. Let β(n) be the number of representations of n that are sums of integers greater than 1,

again taking order into account. For example, since

6 = 4 + 2 = 3 + 3 = 2 + 4 = 2 + 2 + 2,

we have β(6) = 5. Show that α(n) = β(n+ 2).

Exercise 5.15. Let N = {0, 1, 2, . . .} be the set of all non-negative integers. For every subset S ⊆ N and

every n ∈ N let rS(n) be the number of pairs of integers (s1, s2) for which s1, s2 ∈ S, s1 6= s2, and s1+s2 = n.

Can N be partitioned into two subsets A and B for which rA(n) = rB(n) for all n ∈ N? If so, find all such

partitions, and if not, prove no such partition exists.

Exercise 5.16. Let a1, a2, . . . , an and b1, b2, . . . , bn be two sequences of integers for which neither is a per-

mutation of the other. Suppose in addition that the two sequences ai + aj , with 1 ≤ i < j ≤ n and bi + bj ,

with 1 ≤ i < j ≤ n are permutations of one another. Prove that n must be a power of 2.

6 Week 7

6.1 Introduction to Graphs

Definition 6.1. A (simple) graph G is an ordered pair (V,E), where V is a finite non-empty set, called

the set of vertices or nodes, and E is a set of 2-element subsets of V , called edges. The set V = V (G) is

called the vertex set and the set E = E(G) is called the edge set of G. Two graphs G and H are called

equal if V (G) = V (H) and E(G) = E(H). An edge {u, v} is sometimes denoted by uv or vu.

Definition 6.2. Two vertices u and v of a graph G are called adjacent, neighbors or connected if

uv ∈ E(G). An edge e = uv is said to be incident to vertices u and v. The vertices u and v are called the

endpoints of the edge uv. Two distinct edges are called incident if they share an endpoint.
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Definition 6.3. Let G be a graph, u be a vertex of G and e be an edge of G.

• The graph G − u is the graph obtained from G by removing u along with all edges that have u as an

endpoint. In other words, G − u is the graph whose vertex set is the set V (G) − {u} and whose edge

set is {e ∈ E(G) | u 6∈ e}. Note that for G− u to be a graph we need the order of G to be at least 2.

• The graph G− e is the graph whose vertex set is V (G) and whose edge set is E(G)− {e}.

Remark. Note that since E consist of 2-element subsets of V , each edge must have two distinct endpoints.

In other words, no “loops” are allowed. Also, since E is a set, no element of E is repeated, which means

no “multiple edge” is allowed. In some textbooks, multiple edges and loops in the definition of a graph are

allowed, and thus graphs without loops and multiple edges are called simple graphs. In our class we only

discuss graphs with no loops or multiple edges.

Definition 6.4. Let u and v be two vertices of a graph G, and e = uv be an edge in the complete graph on

V (G). The graph G+ e is a graph whose vertex set is V (G) and whose edge set is E(G) ∪ {e}.

Definition 6.5. The number of vertices of a graph G is called the order of G, and the number of edges of

G is called the size of G.

Definition 6.6. A graph H is called a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If

V (H) = V (G), then we say H is a spanning subgraph of G. We say H is a vertex induced subgraph

of G if whenever u, v ∈ V (H) and uv ∈ E(G), then uv ∈ E(H). In other words G is obtained by selecting a

subset S of V (G) and including all edges of G that are between vertices of S.

Definition 6.7. For a nonempty set of vertices S of a graph G, the subgraph induced by S is the vertex

induced subgraph of G with vertex set S. This induced subgraph is denoted by G[S]. For a nonempty set

X of edges of a graph G, the graph whose edge set is X and whose vertex set is the set of all vertices of G

that are incident with at least one edge in X is called the edge-induced subgraph of G and is denoted by

G[X].

Definition 6.8. Let u, v be two vertices of a graph G.

• A uv-walk is a sequence u = u0, u1, . . . , um = v of vertices of G for which ujuj+1 is an edge of G for

every j, 0 ≤ j ≤ m− 1. We say this uv-walk traverses each edge ujuj+1. A walk is called closed, if

u = v. The number m, which is the number of edges traversed by the walk, is called the length of this

walk.

• A uv-trail is a walk with no edge traversed more than once.

• A uv-path is a trail with no vertex traversed more than once.

• A closed trail of positive length is called a circuit.

• A cycle is a circuit with the first and last vertices as the only repeated vertices.
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Definition 6.9. A graph G is called connected if for any two distinct vertices u and v in G, there is a

uv-path. Otherwise it is called disconnected. The distance of two vertices u, v, denoted by dG(u, v) or

simply d(u, v), is the minimum length of a uv-path of G. If there is no uv-path, then we set d(u, v) = ∞.

Any uv-path of length d(u, v) is called a geodesic from u to v. The diameter of a connected graph G,

denoted by diam G, is the maximum distance between any two vertices of G.

Definition 6.10. A vertex in a graph is called isolated if it is not adjacent to any vertices.

Theorem 6.1. Suppose u, v are two vertices of a graph G. If G has a uv-walk of length at most `, then it

has a uv-path of length at most `.

Theorem 6.2. Let u, v and w be three vertices of a graph. Then the distance satisfies the following properties:

• d(u, v) = d(v, u).

• d(u, v) = 0 iff u = v.

• d(u, v) + d(v, w) ≥ d(u,w).

Definition 6.11 (Special Graphs). Let n be a positive integer.

• The trivial graph is the graph with 1 vertex and no edge. Every other graph is called nontrivial.

• The path graph on n vertices, denoted by Pn, is a path with n vertices.

• The cycle graph on n vertices, where n ≥ 3, (or the n-cycle), denoted by Cn, is a cycle with n

vertices. If n is even Cn is called an even cycle, and if n is odd Cn is called an odd cycle.

• The complete graph on n vertices, denoted by Kn, is the graph with a vertex set of size n, V =

{v1, . . . , vn} and the edge set E = {vivj | 1 ≤ i < j ≤ n}.

Definition 6.12. The complement of a graph G, denoted by G has vertex set V (G) = V (G), and edge set

E(G) = {uv | u, v ∈ V (G), u 6= v, and uv 6∈ E(G)}.

Definition 6.13. Two graphs G and H are called isomorphic, if there is a bijection f : V (G) → V (H),

for which uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). If G and H are isomorphic then we write G ∼= H.

Sometimes we say G is a copy of H.

Theorem 6.3. Let R be a relation on the vertices of a graph G defined by uRv iff there is a uv-path in G.

Then R is an equivalence relation.

Definition 6.14. The subgraphs of a graph G induced on the equivalence classes of the relation R in the

previous theorem are called the connected components of G. The number of connected components of

G is denoted by k(G).

Definition 6.15. Let G be a graph. Then,

• If U $ G, then G− U is the subgraph of G induced on the vertex set V (G)− U .
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• If X ⊆ E(G), then G−X is the subgraph of G whose vertex set is V (G) and whose edge set is E(G)−X.

Theorem 6.4. Let G be a graph with at least 3 vertices. G is connected if and only if there are two distinct

vertices u and v for which G− u and G− v are connected.

Theorem 6.5. If a graph G is disconnected then diam G ≤ 2 and thus G is connected.

Theorem 6.6. Isomorphism has the following properties:

(a) ∼= is an equivalence relation.

(b) If G ∼= H, then G ∼= H.

(c) If G ∼= H, then G and H have the same size and order.

Proof. Exercise!

Definition 6.16. The union of graphs G1, G2, . . . , Gn, denoted by G1∪G2∪· · ·∪Gn or
n⋃

j=1

Gj , is the graph

whose vertex set is
n⋃

j=1

V (Gj) and whose edge set is
n⋃

j=1

E(Gj). When the vertex sets V (G1), . . . , V (Gn)

are pairwise disjoint, the union of these graphs is denoted by
n⊔

j=1

Gj and is called the disjoint union of

G1, . . . , Gn. We say a graph G is decomposed into graphs G1, G2, . . . , Gn if
n⋃

j=1

Gj and no two Gj ’s share

an edge.

Example 6.1. Prove that K4 can be decomposed into copies of P4.

Solution. Let K4 be the complete graph on [4]. Then Kn is the edge disjoint union of two paths 1, 2, 3, 4 and

2, 4, 1, 3.

6.2 More Examples

Example 6.2. Let n ≥ 3 be a positive integer.

(a) Find the number of subgraphs of Kn that are n−cycles.

(b) Find the number of subgraphs of Kn that are paths of order n.

Solution. (a) To form an n-cycle, we start from vertex v1, then choose its neighbors. This can be done in(
n−1
2

)
ways. The remaining (n− 3) vertices can be placed between the neighbors of v1 in (n− 3)! ways. So,

the answer is (n− 3)!
(
n−1
2

)
=

(n− 1)!

2
.

Another way of counting that would be to place the vertices on a circle. This can be done in (n− 1)! ways.

Accounting for the reflection, the answer is (n− 1)!/2.

(b) Each path is created by placing the n vertices in a row, however each path is created twice (once forward

and once backwards). Thus, the answer is
n!

2
.
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Example 6.3. For any integer n ≥ 2, let Gn be the graph whose vertex set is [n], and jk ∈ E(Gn) if and

only if gcd(k, `) 6= 1. Describe all isolated vertices of Gn.

Solution. Note that 1 is isolated, since gcd(1, k) = 1 for every k. If i is composite, then i = jk for some

j, k ∈ Z with 2 ≤ j < i. Thus, ij is an edge. Therefore, i is not isolated. If i ≤ n
2 , then i is connected to

2i and thus not isolated. So far we have shown the only possible isolated vertices are primes more than n/2

along with 1. If p > n/2 is prime and p is connected to a, then gcd(a, p) 6= 1. Since p is prime, gcd(a, p) = p,

which means p must divide a. This means a ≥ 2p > n, which is a contradiction. Therefore, the set of isolated

vertices of Gn is {1} ∪ {p | p is prime and n
2 < p ≤ n}.

Example 6.4. For every positive integer n let Gn be the graph whose vertex set is the set of all polynomials

a0 + a1t+ a2t
2 + · · ·+ ant

n, where aj ∈ {0, 1} for all j. Two distinct vertices are connected if they have the

same degree.

(a) Find the order and size of Gn. (Note that the degree of the zero polynomial is defined to be −∞.)

(b) Find the number of connected components of Gn.

Solution. (a) Each aj has two options and there are n + 1 coefficients aj . Thus, the order of Gn is 2n+1 .

For every positive integer m ≤ n a polynomial has degree m if its leading term is tm. Thus, there are 2m

polynomials of degree m. 1 and 0 are the only constant polynomials and are not connected. Therefore, the

size of Gn is
n∑

j=1

(
2j

2

)
=

1

2

n∑
j=1

(22j − 2j) =
1

2

(
4n+1 − 4

3
− (2n+1 − 2)

)
=

4n+1 − 3 · 2n+1 + 2

6
.

(b) The equivalence relation that creates the connected components has two polynomials in relation if and

only if they have the same degree. Note that possible degrees of vertices of Gn are −∞, 0, 1, . . . , n. Thus,

Gn has n+ 2 connected components.

Example 6.5. Prove that Kn, with n ≥ 2, can be decomposed into copies of P3 if and only if n or n− 1 is

a multiple of 4.

Solution. Suppose Kn can be decomposed into copies of P3. Since the size of Kn is

(
n

2

)
and the size of P3

is 2,

(
n

2

)
must be even. Thus, n(n− 1) must be a multiple of 4. Note that either n or n− 1 is odd. If n is

odd, then n− 1 must be a multiple of 4, and if n− 1 is odd, then n must be a multiple of 4.

Now, we will prove that if Kn can be decomposed into copies of P3, then Kn+4 can also be decomposed into

copies of P3. Let G be the complete graph on vertices v1, v2, . . . , vn+4. This graph can be decomposed into

the complete graph on v1, . . . , vn, the complete graph on vn+1, vn+2, vn+3, vn+4, the paths vn+1, vj , vn+2, and

vn+3, vj , vn+4, for all j ≤ n. Note that K4 can be decomposed into three copies of P3: 1, 2, 3; 1, 4, 2, and

1, 3, 4. Also, we know the complete graphs on n vertices can be decomposed into copies of P3. Thus, the

complete graph on n+ 4 vertices can be decomposed into copies of P3.

Now, by induction on m, we will prove K4m and K4m+1 can both be decomposed into copies of P3.

Basis step: We will show K4 and K5 can be decomposed into copies of P3. Above, we showed that for K4.
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For K5, we can decompose the complete graph on [5] into five copies of P3, two of which are 1, 5, 2, and 3, 5, 4

and the other three are obtained from decomposing K4 onto copies of P3.

Inductive Step: Assume K4m and K4m+1 can both be decomposed into copies of P3. By what we showed

above K4m+4 and K4m+1+4 can both be decomposed into copies of P3. This proves the claim for m+ 1.

By induction K4m and K4m+1 can both be decomposed into copies of P3. Therefore, if n or n− 1 is divisible

by 4, then Kn can be decomposed into copies of P3.

Example 6.6. For an integer n > 1 let Gn be the graph whose vertex set is [n] and that E(G) =

{{m, k} | m 6= k, and gcd(m, k) = 1}. Prove that Gn is connected, and find the diameter of Gn.

Solution. Note that 1 is connected to all vertices. Thus, for every 1 < j < k, the path j, 1, k shows d(j, k) ≤ 2.

Thus, diam (Gn) ≤ 2. The graphs G2 and G3 are complete. Therefore, diam (G2) = diam (G3) = 1. If

n ≥ 4, then 2 and 4 are not adjacent and thus d(2, 4) > 1. Therefore

diam Gn =

2 if n ≥ 4

1 if n = 2, 3

Example 6.7. Let n be a positive integer. What is the maximum number of edges that a disconnected

graph of order n can have?

Solution. If G is a disconnected graph of order n, it must have at least two connected components. Let G1 be

a connected component of G with order k and let G2 be the union of the other connected components. The

size of G is the size of G1 plus the size of G2. Therefore, the size of G is at most
(
k
2

)
+
(
n−k
2

)
= k2−kn+ n2−n

2 .

This is a quadratic in terms of k with vertex at k = n/2 which is between 1 and n. Thus the maximum is

obtained at k = 1 or k = n− 1. Both of these values give us
n2 − 3n+ 2

2
.

6.3 Exercises

All students are expected to do all of the exercises listed in the following two sections.

6.3.1 Problems for grading

The following problems must be submitted on Friday, April 3, 2020 before 1 PM EST. The submission will

be on Gradescope via Elms. Late submission will not be accepted.

Instructions for submission: To submit your solutions please note the following:

• Each problem must go on a separate page.

• It is highly recommended (but not required at the moment) that you LATEX your homework.

• To submit your homework go to Elms. Hit “GradeScope” on the left panel. That should allow you to

upload a PDF file of your homework.
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• You could use the (free) DocScan app to scan and upload your homework.

• Sometime in the next week do a test and make sure this all works out so you do not face any issues

right before the deadline.

• Homework must be submitted before 1 PM EST on the due date. GradeScope will not allow late

submissions.

All proofs must be complete and solutions must be fully justified.

Read and follow the directions carefully. If a problem is asking you to use a certain method, you must use

that method to solve the problem.

Exercise 6.1 (15 pts). For an integer n > 1, let Gn be the graph whose vertices are all positive divisors of

n. Two distinct vertices k and ` are connected if and only if k divides ` or ` divides k.

(a) Draw G30 and find its order and size.

(b) Show that for every n there are at least two vertices that are connected to all other vertices. Which

vertices are those two vertices?

(c) Prove that Gn is the complete graph if and only if n is a prime power.

Hint: For the third part, use proof by contradiction.

Exercise 6.2 (10 pts). Let G be a graph of order n and size m. How many vertex induced subgraphs does

G have? How many edge-induced subgraphs does G have?

Exercise 6.3 (10 pts). Suppose u and v are two vertices of a graph and u = u0, u1, . . . , um = v is a

uv-geodesic. Prove that d(u, uj) = j.

Exercise 6.4 (10 pts). Determine if the following statements are true or false. Fully justify your answers.

(a) If the order of a connected graph G is at least four, then there are three distinct vertices u, v and w for

which G− u, G− v, and G− w are all connected.

(b) There is a connected graph G that has three u, v and w vertices for which d(u, v) = d(u,w) = d(v, w) =

diam(G) = 3.

Exercise 6.5 (10 pts). Let G be a graph, and let u and v be two distinct vertices of G. Prove that dG(u, v) > 1

if and only if dG(u, v) = 1.

Exercise 6.6 (10 pts). Let n be a positive integer. Consider the following statement:

P (n): There is a connected graph G whose complement G is also connected and has four vertices x, y, u, v

for which dG(u, v) = dG(x, y) = n.

(a) Prove P (1), P (2), and P (3).
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(b) Prove that P (n) is false for all n ≥ 4.

Exercise 6.7 (15 pts). Prove the following properties of isomorphism.

(a) ∼= is an equivalence relation.

(b) If G ∼= H, then G ∼= H.

(c) If G ∼= H, then G and H have the same size and the same order.

Exercise 6.8 (10 pts). Let n be a positive integer. Prove that there is a graph G of order n for which G ∼= G

if and only if n or n− 1 is divisible by 4.

Hint: For one direction use the size of G. For the other direction show if there is such a graph of order n,

then there is such a graph of order n+ 4, and then use induction.

Exercise 6.9 (10 pts). For a positive integer n, define a graph G whose vertices are all subsets of [n] and

two distinct vertices are adjacent if and only if their intersection has precisely one element.

(a) Find the order and size of G.

(b) Evaluate k(G).

6.3.2 Problems for Practice

The following problems are from A First Course in Graph Theory, Gary Chartrand, and Ping Zhang.

p. 7-8: 3, 5

p. 17-18: 12, 15, 17

Exercise 6.10. Prove that Kn can be decomposed into three pairwise isomorphic graphs if and only if n or

n− 1 is divisible by 3.

6.3.3 Challenge Problems

Exercise 6.11. Let k be a positive integer. 12k people have participated in a party in which everyone shakes

hands with 6k + 3 other people. We know that the number of people who shake hands with every two people

is a fixed number. Find k.

Exercise 6.12. Let 1 ≤ m < n be integers. n vertices numbered 1, 2, . . . , n are placed on the circumference

of a circle in that order. Two vertices j and k are connected if and only if j and k are m arcs apart. For

example vertex 1 is connected to vertices m+ 1 and n−m+ 1. Find the necessary and sufficient condition

for this graph to be a cycle.
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7 Week 8

7.1 Bipartite Graphs

Definition 7.1. A graph G is called bipartite if the vertex set V (G) can be partitioned into two subsets

X and Y , called partite sets for which every edge of G has one endpoint in X and one endpoint in Y .

Remark. Note that since blocks in every partition are non-empty, X and Y in the above definition must be

non-empty. This means every bipartite graph must have at least two vertices.

Remark. In the above definition, it may be possible to partition the vertices of a bipartite graph G into

partite sets in multiple ways. For example let H1 and H2 be two 1-paths on vertex sets {v1, v2} and

{w1, w2}, respectively, and let G = H1 ∪H2. The sets X = {v1, w1}, and Y = {v2, w2} are two partite sets

of G, and so are the sets X1 = {v1, w2}, and Y1 = {v2, w1}.

Example 7.1. Every even cycle is bipartite.

Solution. Let v1, v2, . . . , v2k be an even cycle, where vjvj+1 is an edge for every j, with v2k+1 = v1. Then

X = {v1, v3, . . . , v2k−1} and Y = {v2, v4, . . . , v2k} is a partition for the vertices of this cycle and all edges are

between a vertex of X and a vertex of Y .

Example 7.2. Prove that the complete graph Kn is bipartite iff n = 2.

Solution. Note that by definition K2 is bipartite and K1 is not. Suppose n ≥ 3 and Kn is bipartite. Then

by pigeonhole principle one of the partite sets X or Y has at least 2 distinct elements, say u and v, however

uv is an edge, which is a contradiction.

The following theorem gives a complete classification of all bipartite graphs.

Theorem 7.1. A nontrivial graph is bipartite iff it does not contain an odd cycle.

Proof. Suppose G is bipartite with partite sets X and Y . Assume G has an odd cycle of length n. Let the

vertex set of this cycle be {v1, v2, . . . , vn} with vj adjacent to vj+1 with vn+1 = v1. Suppose v1 ∈ X, since

vertices of X are not adjacent, v2 ∈ Y , similarly v3 ∈ X, etc. If n is odd this shows vn ∈ X, however vn and

v1 are adjacent, which is a contradiction.

Now, suppose G has no odd cycles. We will prove that G is bipartite. The idea is to start with one vertex

and place it in a partite set X, then place its neighbors in a set Y , and then their neighbors in X, and so on.

However this process may not reach all vertices if G is not connected, so we will prove this first for connected

graphs.

Suppose H is a connected nontrivial graph and no odd cycles. Let u be a vertex of H and let X consist

of all vertices v of H for which d(u, v) is even and Y consist of all vertices w of H for which d(w, u) is

odd. First, note that X and Y partition V (H). (u ∈ X and all neighbors of u are in Y , thus X and

Y are non-empty. Furthermore, X and Y are disjoint and X ∪ Y = V (H).) We will have to show no
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two vertices in X can be adjacent. Suppose v and w are adjacent vertices in X. We know there are uv-

and uw-paths of even length. This along with the edge vw gives a circuit with an odd number of edges.

If there are any repeated vertices, we could remove the cycle that is formed to get a new smaller circuit.

Since all cycles have an even number of edges, each time we still get a circuit with an odd number of edges.

Repeating this we get a cycle with an odd number of edges, which is a contradiction since G has no odd cycles.

Now, suppose G is a nontrivial graph with no odd cycles. Let G1, . . . , Gk be all connected components of

G. If a connected component has order more than 1 it is bipartite by what we showed above. Suppose

G1, . . . , Gj are all connected components with order at least 2, and Gj+1, . . . , Gk are the isolated vertices.

If j ≥ 1, and the partite sets of Gi are Xi and Yi, then the partite sets of G are X = X1 ∪ · · · ∪ Xj and

Y = Y1 ∪ · · · ∪ Yj ∪Gj+1 ∪ · · · ∪Gk.

If j = 0, i.e. G has no connected components with more than one vertex, then G has no edges and thus it is

bipartite, with partite sets X = {u} and Y = V (G)− {u}, where u is a vertex of G.

Definition 7.2. Let r, s be two positive integers. The complete bipartite graph Kr,s is the bipartite

graph whose partite sets X and Y have size r and s, respectively and every vertex in X is adjacent to every

vertex in Y . We call the graph K1,s a star.

Example 7.3. Find the order and size of Kr,s.

Solution. The order of Kr,s is r + s, since it has r + s vertices. Every edge has an endpoint in X and an

endpoint in Y , where |X| = r and |Y | = s. Thus, there are rs edges, which means the size of Kr,s is rs.

Similar to what we saw above we may define the following.

Definition 7.3. Let k ≥ 2 be an integer. A graph G is called k-partite if the vertex set V (G) can be

partitioned into k subsets X1, X2, . . . , Xk, called partite sets for which every edge of G has one endpoint

in some Xi and the other endpoint in another Xj where i 6= j.

Example 7.4. Any graph of order n is n-partite, by selecting all the partite sets to be singletons.

Definition 7.4. Given positive integers r1, r2, . . . , rk, with k ≥ 2, the complete k-partite graph Kr1,r2,...,rk

is the k-partite graph with partite sets X1, X2, . . . , Xk, where |Xj | = rj for all j and every two vertices in

Xj and Xi, where i 6= j, are adjacent. A graph that is a complete k-partite graph for some k is called a

complete multipartite graph.

Example 7.5. Kn is a complete n-partite graph.

The question of classifying all k-partite graphs is a difficult one.

Definition 7.5. Let G and H be two graphs. The Cartesian product G×H is a graph whose vertex set

is V (G)× V (H) and two vertices (u1, v1) and (u2, v2) are adjacent if and only if one of the following occurs:

• u1 = u2 and v1v2 ∈ E(H), or
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• v1 = v2 and u1u2 ∈ E(G).

Example 7.6. K2 ×K2
∼= C4.

Solution. Let the vertex set of K2 be {0, 1}. The vertex set of K2 × K2 will then be v1 = (0, 0), v2 =

(0, 1), v3 = (1, 1), and v4 = (1, 0). By definition the edges of K2 ×K2 are vjvj+1 for all j with v5 = v1. This

is precisely what P4 is.

Example 7.7. K2 ×K2 ×K2 is isomorphic to the three dimensional cube.

Solution. Similar to above the vertex set of this graph is (a, b, c) with a, b, c ∈ {0, 1}. Two vertices are

connected if and only if they are different at precisely one entry. Drawing the diagram for this we see it is a

three dimensional cube.

Definition 7.6. The graph Kn
2 = K2 × · · · ×K2︸ ︷︷ ︸

n times

, which is the Cartesian product of n copies of K2 is called

the n-dimensional hypercube.

Example 7.8. The n-dimensional hypercube is isomorphic to the graph G whose vertex set is the set of all

sequences of length n whose terms are 0 and 1, and two vertices are adjacent if and only if they differ at a

single term.

Theorem 7.2. If G and H are bipartite, then G×H is also bipartite.

Proof. Let X,X ′ and Y, Y ′ be partite sets of G and H, respectively. We know the vertex set of G×H is

(X ∪X ′)× (Y ∪ Y ′) = (X × Y ) ∪ (X × Y ′) ∪ (X ′ × Y ) ∪ (X ′ × Y ′).

We will show that U = (X × Y ) ∪ (X ′ × Y ′) and W = (X × Y ′) ∪ (X ′ × Y ) are partite sets of G ×H. By

symmetry, we only need to prove vertices of U are not adjacent to one another. On the contrary suppose

(u1, u2), (v1, v2) ∈ U are adjacent. By symmetry, there are two cases.

Case I: (u1, u2), (v1, v2) ∈ X × Y , which implies u1, v1 ∈ X. Since X is a partite set of G, the vertices u1

and u2 are not adjacent in G. Therefore, u1 = v1. Similarly u2 = v2, which is a contradiction.

Case II: (u1, u2) ∈ X × Y, (v1, v2) ∈ X ′ × Y ′. Note that u1 ∈ X and v1 ∈ X ′, which implies u1 6= v1.

Similarly, u2 6= v2, which is a contradiction since (u1, u2), (v1, v2) ∈ U are assumed to be adjacent in G×H.

Therefore, G×H is bipartite.

7.2 Degrees

Definition 7.7. Let v be a vertex of a graph G, the degree of v, denoted by deg(v), is the number of

vertices that are adjacent to v. The smallest degree and the largest degree in a graph G are denoted by δ(G)

and ∆(G), respectively.

Theorem 7.3 (Handshaking Lemma, or the First Theorem of Graph Theory). In every graph the sum of

degrees is equal to twice the size of the graph.
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Proof. Each vertex v is incident to deg(v) edges. Therefore, in total all vertices are incident to
∑

v∈V (G)

deg(v)

edges. However, each edge is counted twice, because each edge has two endpoints. Therefore,
∑

v∈V (G)

deg(v) =

2m, where m is the size of G.

Definition 7.8. A vertex is called an odd vertex if its degree is odd. It is called an even vertex if its

degree is even.

Corollary 7.1. Every graph has an even number of odd vertices.

Proof. Note that the sum of degrees is even. Thus, there must be an even number of vertices whose degrees

are odd. Thus, every graph has an even number of odd vertices.

Theorem 7.4. If G is a graph of order n for which

deg u+ deg v ≥ n− 1

for every two non-adjacent vertices, then G is connected and diam G ≤ 2. Consequently, if δ(G) ≥ (n−1)/2,

then G is connected and diam G ≤ 2.

Proof. Let u and v be two distinct vertices of G. If u and v are adjacent, then d(u, v) = 1. Otherwise, let

A and B be the sets of neighbors of u and v, respectively. By assumption |A| + |B| ≥ n − 1. Since neither

u nor v is in A or B, A ∪ B has at most n − 2 elements. Thus, by pigeonhole principle there is a vertex w

that belongs to both A and B. Therefore, u,w, v is a uv-path. Thus, d(u, v) = 2. Therefore dimG ≤ 2. The

second part follows from the fact that deg u+ deg v ≥ 2δ(G) ≥ n− 1.

7.3 More Examples

Example 7.9. How many 4−cycle subgraphs does the graph K4,5 have?

Solution. We need to choose 2 vertices from each of the partite sets. This can be done in
(
4
2

)(
5
2

)
= 60 ways.

These four points give us only one 4-cycle. So, the answer is 60 .

Example 7.10. Let n ≥ 4 be an integer. How many subgraphs isomorphic to K1,3 does the complete graph

Kn have?

Solution. To obtain a subgraph isomorphic to K1,3 we need to first select 1 vertex for one partite set and 3

of the remaining for the other partite set. Once the partite sets are selected the subgraph K1,3 is uniquely

determined. This can be done in
(
n
1

)(
n−1
3

)
ways.

Example 7.11. Find the necessary and sufficient condition for the two graphs G and H for which the graph

G×H is a complete graph.

Solution. Suppose G ×H is a complete graph. Let u, v be two vertices of G and x, y be two vertices of H.

We know (u, x) and (u, y) are vertices of G ×H. If x 6= y, then (u, x) 6= (u, y). Since G ×H is a complete

graph, xy must be an edge in H. Therefore, H must be a complete graph. Similarly G must be a complete
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graph. Furthermore, if u 6= v and x 6= y, then the vertices (u, x) and (v, y) are not adjacent. Thus, for G×H

to be complete we need to have |V (G)| = 1 or |V (H)| = 1. So far we showed that if G×H is complete, then

both G and H are complete and one of them must have order 1. We will prove this is a sufficient condition

as well. Suppose G and H are complete graphs and G has order 1. Let V (G) = {u}. Every vertex of G×H

is of form (u, x) with x ∈ V (H). Since H is a complete graph, all disticnt vertices of form (u, x) are adjacent,

and thus G×H is a complete graph.

Example 7.12. For every positive integer n let P (n) be the following statement:

If a graph G satisfies deg u+ deg v ≥ n− 2 for all vertices u 6= v, then G is connected.

Find all values of n for which P (n) is true.

Solution. For n = 1, the only graph is K1 which is connected. For n ≥ 2, take G = K1tKn−1. deg u = n−2

for every vertex u of Kn−1. Thus, for every two distinct vertices u and v, we have deg u + deg v ≥ n − 2.

However G is disconnected. Thus, P (n) is true if and only if n = 1.

Example 7.13. Assume a graph of order n and size 2n has the property that all vertices have degree either

3 or 4. Prove that G is regular.

Solution. Let x and y be the number of vertices of degree 3 and 4, respectively. By assumption x + y = n.

By Handshaking Lemma we have 3x+ 4y = 2(2n) = 4n. Substituting we obtain 4n = 3(x+ y) + y = 3n+ y,

and hence y = n, which implies x = 0. Therefore, G is 4-regular.

Example 7.14. Find degG×H(u, v) in terms of degG u and degH v.

Solution. (u, v) is connected to all vertices of form (x, v) and (u, y), where x is adjacent to u in G and y is

adjacent to v in H. Therefore, degG×H(u, v) = degG u+ degH v.

Example 7.15. Let n ≥ 2 be an integer. What is the maximum size of a bipartite graph of order n?

Solution. Suppose G be a bipartite graph of order n whose partite sets have sizes a and n−a. The maximum

size of G is a(n − a) = an − a2. This is a quadratic of a whose vertex is at a = n/2. So, if n is even it is

maximized at n/2. Otherwise it is maximized at a = (n ± 1)/2. Therefore, if n is even the answer is n2/4

and if n is odd the answer is (n2 − 1)/4.

7.4 Exercises

All students are expected to do all of the exercises listed in the following two sections.

7.4.1 Problems for grading

The following problems must be submitted on Saturday, April 11, 2020 before 1 PM EST. The submission

will be via Gradescope on Elms. GradeScope will not accept late submissions.

Instructions for submission: To submit your solutions please note the following:
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• Each problem must go on a separate page.

• It is highly recommended (but not required at the moment) that you LATEX your homework.

• To submit your homework go to Elms. Hit “GradeScope” on the left panel. That should allow you to

upload a PDF file of your homework.

• You could use the (free) DocScan app to scan and upload your homework.

• Sometime in the next week do a test and make sure this all works out so you do not face any issues

right before the deadline.

• Homework must be submitted before 1 PM EST on the due date. GradeScope will not allow late

submissions.

All proofs must be complete and solutions must be fully justified.

Read and follow the directions carefully. If a problem is asking you to use a certain method, you must use

that method to solve the problem.

Exercise 7.1 (10 pts). Let G and H be two nontrivial graphs, for which G ×H is bipartite. Prove that G

and H are both bipartite. (Compare this to Theorem 7.2.)

Exercise 7.2 (10 pts). Given positive integers r1, r2, . . . , rk, with k ≥ 2, find the order and size of Kr1,r2,...,rk .

Exercise 7.3 (10 pts). In a certain graph of size 10 we know each vertex degree is either 4 or 5. Prove that

there is only one such graph and find this graph.

Exercise 7.4 (15 pts). Let n be a positive integer.

(a) Prove that if G is a graph of order n such that δ(G)+∆(G) ≥ n−1, then G is connected and diam G ≤ 4.

(b) For every n ≥ 4, give an example of a disconnected graph G of order n for which δ(G) + ∆(G) = n− 2.

(This shows the bound n− 1 cannot be improved.)

(c) For every n ≥ 7, give an example of a graph with δ(G) + ∆(G) ≥ n − 1 and diam G = 4. (This shows

the inequality diam G ≤ 4 cannot be improved.)

Exercise 7.5 (10 pts). A nontrivial graph G has the property that every edge of G connects an even vertex

to an odd vertex. Prove that G is bipartite and has even size.

Exercise 7.6 (10 pts). Let 2 ≤ k ≤ n be integers. How many subgraphs of Kn,n are 2k-cycles?

Exercise 7.7 (10 pts). Suppose n ≥ 5 is an integer. Prove that if G is a graph of order n, then either G or

G is not bipartite. By an example show this statement is not true for n = 4.
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7.4.2 Problems for Practice

The following problems are from A First Course in Graph Theory, Gary Chartrand, and Ping Zhang.

p. 36-38: 2, 3, 6, 8, 16

p. 42-43: 21, 27, 29, 30

p. 47: 32, 34

7.4.3 Challenge Problems

Exercise 7.8. Let 0 ≤ b < a, and 0 < k < n be four integers. Find the necessary and sufficient condition

on a, b, k, n for which the sequence a, a . . . , a︸ ︷︷ ︸
k times

, b, b, . . . , b︸ ︷︷ ︸
n−k times

is graphical.

8 Week 9

8.1 Regular Graphs

Definition 8.1. A graph G is called regular if δ(G) = ∆(G). In other words, a regular graph is a graph

whose vertices all have the same degree. A graph G is called r-regular if δ(G) = ∆(G) = r.

Example 8.1. Let n be a positive integer.

• Cn is a 2-regular graph for all n ≥ 3.

• Kn is an (n− 1)-regular graph.

Make sure you check the Petersen graph on page 39.

Another way of looking at the Petersen graph is the following: Let P be a graph whose vertex set is the set

of all 2−subsets of [5]. Two vertices are connected if and only if they are disjoint. This graph is the Petersen

graph.

Theorem 8.1. Let r, n be two integers satisfying 0 ≤ r ≤ n− 1. There exists an r-regular graph of order n

if and only if rn is even.

Proof. First assume there is an r-regular graph of order n. The degree sum of this graph is rn, since each

vertex has degree r and there are n vertices. Thus, by the Handshaking Lemma rn must be even.

Now, assume rn is even. This means r or n is even.

Suppose r = 2k is even. Place all the vertices v1, v2, . . . , vn around a circle and connect every vertex vj to 2k

vertices vj±1, . . . , vj±k before and after vj , taking each index mod n, if necessary. This yields an r-regular

graph of order n.
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Suppose r = 2k+ 1 is odd and n = 2` is even. Then similar to the previous case, place v1, v2, . . . , v2` around

a circle. Connect every vj to 2k vertices vj±1, . . . , vj±k before and after vj , again taking each index mod n

if necessary. Also, connect vj to vj+`, for every j. Note that since r < n, k < `, and thus vj+` is a new

neighbor of vj . Furthermore, with this method vj+` will be connected back to vj+`+` = vj+2` = vj . This

yields an r-regular graph of order n.

Definition 8.2. The r-regular graphs of order n defined in the proof of the previous theorem are called

Harary graphs and are denoted by Hr,n.

The following theorem shows that every graph can be viewed as an induced subgraph of a regular graph.

Theorem 8.2. Let G be a graph and r be an integer satisfying r ≥ ∆(G). Then, there is an r-regular graph

H for which G is an induced subgraph of H.

The idea is to place a copy of G′ of G next to itself and connect each vertex v to its corresponding vertex v′

if deg v < r. Repeat this process and get a regular graph. Each time we are reducing the difference between

r and the degrees of the vertices. Thus, we can write down the proof as follows:

Proof. We will prove this by induction on r − δ(G). If r − δ(G) = 0, then ∆(G) ≤ r = δ(G) ≤ ∆(G), and

thus G itself is r-regular. Therefore, H = G works.

Now suppose G is a graph with r − δ(G) = n a positive integer. Consider the graph G′ ∼= G with vertex

set {v′ | v ∈ G} for which u′v′ is an edge in G′ if and only if uv is an edge of G. To the graph G t G′

add all edges uu′ for all u with deg u < r. This gives us a new graph H for which degH u = degH u′ = r

or degH u = degH u′ = degG u + 1. Thus, δ(H) = δ(G) + 1. Therefore, r − δ(H) = n − 1. By inductive

hypothesis H is a subgraph of an r-regular graph. Since G is an induced subgraph of H, we are done.

8.2 Degree Sequence

In this section we will answer the following question:

Question 1. Given a list of non-negative integers, under what conditions does there exist a graph whose

vertex degrees are the given list?

Definition 8.3. A list of all vertex degrees of a graph G is called its degree sequence. A sequence s of

integers is called graphical if there is a graph whose degree sequence is s.

Example 8.2. Determine if each of the following sequences is graphical:

(a) 3, 2, 2, 1, 1.

(b) 4, 3, 1, 1, 1.

The above example shows that the answer to Question 1 is not simple. This question can be answered

recursively as follows:
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Theorem 8.3. (a) A decreasing sequence of non-negative integers s : d1 ≥ d2 ≥ · · · ≥ dn, with n ≥ 2 and

d1 ≥ 1 is graphical if and only if the sequence

s1 : d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn

is graphical.

(b) The sequence 1, 1, . . . , 1︸ ︷︷ ︸
k times

, 0, 0 . . . , 0︸ ︷︷ ︸
` times

is graphical if and only if k is even.

Proof. (a) See page 45.

(b) If k = 2r then the graph obtained by taking the union of r copies of P2 and ` copies of P1 has the given

degree sequence. If k is odd, then this sequence cannot be graphical since by Corollary 7.1 in every graph

the number of odd vertices must be even.

Example 8.3. Check if each sequence is graphical. If it is create a graph whose degree sequence is the given

sequence.

(a) 4, 3, 3, 1, 1, 0

(b) 4, 2, 2, 2, 1, 1.

For more examples see pages 46-47.

Example 8.4. Prove that the sequence s : d1, d2, . . . , dn is graphical if and only if

s1 : n− 1− d1, n− 1− d2, . . . , n− 1− dn

is graphical.

Solution. Hint: Show that if G has degree sequence s, then G has degree sequence s1, and vice-versa.

8.3 Matrices and Graphs

Definition 8.4. Let G be a graph of order n and size m with V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , em}.

An adjacency matrix of G is an n × n matrix whose (i, j) entry is 1 if vivj ∈ E(G) and zero otherwise.

An incidence matrix of G is an n × m matrix whose (i, j) entry is 1 if vi is incident with ej , and zero

otherwise.

Example 8.5. The adjacency matrix A of Kn is an n × n matrix with zero on its diagonal entries and 1

elsewhere.

A =



0 1 · · · 1 1

1 0 · · · 1 1

. . .

1 1 · · · 0 1

1 1 · · · 1 0


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An incidence matrix of K4 is a 4× 6 matrix M shown below:
1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1


In writing this matrix we have set e1 = v1v2, e2 = v1v3, e3 = v1v4, e4 = v2v3, e5 = v2v4, and e6 = v3v4. Note

that changing the order of the edges could yield different incidence and adjacency matrices.

Theorem 8.4. Let G be a graph with V (G) = {v1, . . . , vn} and A as an adjacency matrix for G as described

in the definition above. Then, for every positive integer k, the (i, j) entry of Ak is the number of vivj walks

of length k in G.

Proof. We prove this by induction on k. For k = 1, the (i, j) entry of A shows if there is an edge between vi

and vj or not. Since the only walk of length 1 is an edge, we are done.

Assume the (i, j) entry of Ak is the number of vivj-walks of length k. Let the (i, j) entries of A and Ak be

aij and bij , respectively. The (i, j) entry of Ak+1 = AAk is
n∑̀
=1

ai`b`j . This is the sum of b`j ’s for those `’s

that v` is a neighbor of vi. Note that each vivj-walk of length k + 1 is an edge viv` followed by a v`vj-walk

of length k. Thus, the number of vivj-walks is the sum of b`j ’s for those `’s for which v` is a neighbor of vi.

This proves the claim by induction.

8.4 Bridges

Think about a bridge as a road that must be crossed when going from one part of a graph to another part

of the graph. To be more precise, we define a bridge as follows:

Definition 8.5. Let e be an edge in a graph G. We say e is a bridge if G−e has more connected components

than G.

Theorem 8.5. Let G be a graph whose connected components are G1, G2, . . . , Gn. Suppose e = uv is a

bridge. Assume e is an edge of G1. Then G1 − e has two connected components H and K where u is in H

and v is in K and G1 = (H tK) + e. Furthermore, k(G− e) = k(G) + 1.

Proof. Removing e leaves G2, . . . , Gn intact. If G1− e has more than two connected components, there must

be at least two edges connecting these components, which is a contradiction. Thus, G1 − e must have two

connected components. Therefore, k(G− e) = k(G) + 1. Also, G1− e has two connected components H and

K and since G1 is connected, the edge e must be between H and K, as desired.

Example 8.6. In any path graph Pn, every edge is a bridge. In any cycle graph Cn, no edge is a bridge.

Theorem 8.6. An edge e in a graph G is a bridge if and only if e does not belong to any cycles of G.
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Proof. Suppose an edge e = uv does not belong to any cycles of G. We will show that e is a bridge. Assume

to the contrary k(G) = k(G− e). This means u and v are in the same connected component in G− e. Thus,

there is a uv-path, say P , in G − e. This path along with the edge e = uv gives us a cycle, which means e

belongs to a cycle, which is a contradiction.

Suppose e = uv belongs to a cycle C. We will show connected components of G are also connected in G− e.

Suppose x and y are two vertices in G for which there is a xy-path. If this path does not use e, then it is

also a path in G− e. If it does use e, then replacing e by C − e we get an xy-walk in G− e, which means x

and y are in the same connected component of G− e. Therefore, e is not a bridge.

8.5 Trees

Definition 8.6. A graph G is called acyclic or a forest if it has no cycles. A tree is an acyclic connected

graph.

Remark. Note that a graph is a forest if and only if all of its connected components are trees.

Example 8.7. For positive integers m and n,

• Pn is a tree.

• Pn t Pm is acyclic but not a tree.

Definition 8.7. A leaf or an end-vertex in a graph is a vertex of degree 1.

Definition 8.8. A caterpillar is a tree of order 3 or more, the removal of whose leaves produces a path

called the spine of the caterpillar.

Example 8.8. All paths and stars of order at least 3 are caterpillars.

The following theorem suggests a categorization of all trees.

Theorem 8.7. A graph T is a tree if and only if every two vertices of T are connected by a unique path.

Proof. Suppose every two vertices of T are connected by a unique path. Then, T is connected. If T has a

cycle, then between every two distinct vertices of that cycle there are at least two paths. This is a contra-

diction. Thus, T is connected and acyclic, and hence it is a tree.

Suppose T is a tree, but there are two distinct paths P and Q connecting vertices u and v. Since P 6= Q,

one of them has an edge that the other one does not. Let e = xy be an edge in P that is not in Q. Assume

in the uv-path P , u comes before x, which comes before y, and that comes before v. We will show that e is

not a bridge, and hence by Theorem 8.6, e must belong to a cycle, which yields to a contradiction since T

is a tree. Assume e is a bridge. By Theorem 8.5, u and v must belong to different connected components

of T − e. By assumption Q is a uv-path in T − e; part of P from u to x is a ux-path in T − e; and part of

P from y to v in T − e. Thus, x and y are in the same connected components of T − e. This contradiction

completes the proof.
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Theorem 8.8. Every nontrivial tree has at least two leaves.

Proof. Let P be a longest path in the tree. Suppose u and v are the endpoints of P . We claim that u and v

are leaves. Note that u has no neighbor that is not a vertex of P , otherwise that neighbor along with P gives

a longer path. Also, since the tree has no cycles, u can not be adjacent to any vertex of P other except for

one. Thus, the degree of u is 1 and hence u is a leaf. Similarly v is also a leaf. This completes the proof.

Theorem 8.9. If u is a leaf of a tree T with at least two vertices, then T − u is a tree.

Proof. Exercise!

Theorem 8.10. Every tree of order n has size n− 1.

Proof. Let T be a tree of order n. We will prove by induction on n that the size of T is n − 1. For n = 1,

T is the trivial graph and thus its size is 0, as desired. Suppose T is a tree of order n+ 1. By Theorem 8.8,

T has a leaf u. By Theorem 8.9, T − u is a tree of order n. By inductive hypothesis T − u has n− 1 edges,

and thus T has n edges, as desired.

8.6 More Examples

Example 8.9. Prove that every nontrivial graph that is a forest is bipartite.

Solution. Note that every forest has no cycles. Thus, it doesn’t have any odd cycles. By Theorem 7.1 it is

bipartite.

Example 8.10. For an integer n, let Gn be the graph whose vertices are all subsets of [n]. Two vertices are

adjacent if one is a subset of the other. Find the degree sequence of Gn.

Example 8.11. Let u, v be two distinct vertices of a graph G. Suppose P is a uv-path in G. Prove that P

is the unique uv-path in G if and only if every edge of P is a bridge.

Solution. Suppose P is the unique uv-path and e = xy is an edge of P for which u, x, y, v appear in P in

that order (or x = u or y = v). Assume to the contrary that e is not a bridge. This means e lies in a cycle

C. Note that part of P from u to x along with C − e and part of P from y to v gives a uv-walk in the graph

G − e. Thus, by a theorem there is a uv-path Q in G − e. Since e is an edge in P but not in Q, we have

P 6= Q, which contradicts the uniqueness of the uv-path P .

Suppose P and Q are two distinct uv-paths. Suppose to the contrary every edge of P is a bridge. Let P be

u = u0, u1, . . . , un = v and let ej = ujuj−1. Since e0 is a bridge, G−e0 is disconnected, which means Q must

contain the edge e0, but since the first vertex in Q is u0, the second vertex in Q must be u1. Similarly, since

G− e1 must be disconnected, Q must contain e1, and thus u1 = v1. This proves uj = vj and thus P = Q, a

contradiction.

Example 8.12. Let A be an adjacency matrix of a graph G relative to the sequence of vertices v1, v2, . . . , vn.

Prove the following:
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(a) A vertex vi is isolated if and only if (Ak)ii = 0 for all k ≥ 1.

(b) The diagonal entries of A2 are deg v1,deg v2, . . . ,deg vn.

(c) (A2k−1)ii = 0 for all integers i, k ≥ 1 if and only if G is bipartite.

Solution. (a) Suppose a vi is isolated. This means there are no walks of positive length from vi to any other

vertices. Thus, the i-th row of Ak is zero for all k ≥ 1. In particular (Ak)ii = 0.

Now, note that if vi is not isolated, then vivj is an edge for some j. Thus, vivjvi is a vivi-walk of length 2.

Thus, (A2)ii ≥ 2, as desired.

(b) For every vertex u, a uu-walk of length 2 must be of form u, v, u, where uv is an edge. Thus, there are

precisely deg u of these walks. Which establishes the result.

(c) Suppose (A2k−1)ii = 0 for all i, k ≥ 1. This means there are no vivi-walks of odd length. In particular

there are no cycles of odd length that have vi as a vertex. Since this is true for all i, G has no odd cycles

and thus G is bipartite.

Now, suppose (A2k−1)ii 6= 0 for some integers i and k. Assume on the contrary G is bipartite. Since

(A2k−1)ii 6= 0, there is a vivi-walk of odd length. Suppose C is the shortest vivi-walk of odd length. If this

walk has a repeated vertex other than vi, then it must contain a cycle D. Since G is bipartite, D must be

an even cycle. Removing D from C we get a shorter vivi-walk with odd edged, which is a contradiction.

Therefore, G is not bipartite.

Example 8.13. Prove that every tree has more leaves than vertices of degree more than 2.

Solution. Let n be the order of a tree T , a be the number of leaves, b be the number of vertices of degree

2, and c the number of vertices of degree at least 3. We know a + b + c = n. By Handshaking Lemma and

Theorem 8.10 we have 2(n− 1) ≥ a+ 2b+ 3c. Therefore, 2n− 2 ≥ a+ 2(n− a− c) + 3c = 2n− a+ c. This

implies a ≥ c+ 2 and thus a > c, as desired.

Example 8.14. Find all positive integers a and b for which there is a tree whose degree sequence is

s : 2, . . . , 2︸ ︷︷ ︸
a times

, 1, . . . , 1︸ ︷︷ ︸
b times

Solution. Let G be a graph whose degree sequence is s. By Theorem 8.10, and the Handshaking Lemma we

must have 2(a+ b− 1) = 2a+ b. This implies b = 2. We claim b = 2 is also a sufficient condition. Note that

the graph Pa+2 has degree sequence s, where b = 2.

8.7 Exercises

All students are expected to do all of the exercises listed in the following two sections.

8.7.1 Problems for grading

The following problems must be submitted on Friday, April 17, 2020 at the beginning of the class. Late

submission will not be accepted.
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All proofs must be complete and solutions must be fully justified.

Read and follow the directions carefully. If a problem is asking you to use a certain method, you must use

that method to solve the problem.

Exercise 8.1 (10 pts). Determine if each sequence is graphical. If it is, create a graph whose degree sequence

is the given sequence.

(a) 5, 4, 4, 3, 2, 2

(b) 6, 3, 3, 3, 2, 2, 1, 0

Exercise 8.2. (10 pts) Let M be an incidence matrix of a graph G. Relate the matrix MMT with an

adjacency matrix of G.

(Remember that trying out some examples always helps.)

Exercise 8.3. (10 pts) let G be the complete bipartite graph Kr,s with partite sets U = {u1, u2, . . . , ur}, and

W = {w1, w2, . . . , ws} and let A be the adjacency matrix of G relative to the ordered vertex set

{u1, u2, . . . , ur, w1, w2, . . . , ws}.

Using Theorem 8.4 find a formula for Ak for every positive integer k.

Exercise 8.4. (10 pts) Prove that if v is a leaf of a tree T of order ≥ 2, then T − v is a tree.

Exercise 8.5. (10 pts) Suppose T is a tree with precisely two leaves. Prove that T is a path graph.

Exercise 8.6. (20 pts) For every tree T with n vertices let

D(T ) =
∑

u,v∈V (T )

d(u, v),

where the distance between every pair of vertices appears in the above sum exactly once. (i.e. there are

precisely
(
n
2

)
terms in the sum for D(T ).) Prove that

(a) D(T ) ≥ (n− 1)2, and that the equality occurs only when T = K1,n−1 if n ≥ 2 or T = K1 if n = 1.

(b) D(T ) ≤
(
n+1
3

)
, and that the equality occurs only when T = Pn.

(Hint: Use induction.)

Exercise 8.7. (20 pts) Let 2 ≤ d < n be integers.

(a) Suppose there is a tree of order n all of whose vertex degrees are either 1 or d. Prove that d − 1 must

divide n− 2.

(b) Prove that if d− 1 divides n− 2, then there is a tree of order n all of whose vertices are of degree 1 or d.

Exercise 8.8 (10 pts). Suppose G is a connected graph that is not regular. Prove that G has two adjacent

vertices u and v for which deg u 6= deg v.
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8.7.2 Practice Problems

Page 49-50: 37, 39

Page 87: 1, 2

Pages 92-94: 7, 13, 15, 16, 18, 19, 22

Exercise 8.9. Let s : d1, d2, . . . , dn be a sequence of positive integers with n ≥ 2. Prove that there is a tree

whose degree sequence is s if and only if
n∑

k=1

dk = 2n− 2.

Solution. Suppose T is a tree with degree sequence s. By Handshaking Lemma,
∑
dj is twice the size of T .

Since T is a tree of order n, its size must be n− 1. Thus,
∑
dj = 2(n− 1), as desired.

Suppose
∑
dj = 2n − 2. We will prove by induction on n that there is a tree whose degree sequence is s.

For n = 2, we have d1 + d2 = 2, which implies d1 = d2 = 1. The path P2 is the desired tree. Now, suppose∑
dj = 2n− 2 for some n > 2. Note that at least one dj must be 1, because if all of them are more than 2,

then their sum is at least 2n, which is a contradiction. Suppose d1 = 1. Also, note that at least one of dj ’s

is more than 1. Otherwise,
∑
dj = n which is less than 2n− 2, since n > 2. Suppose d2 > 1. Now, consider

the sequence s1 : d2 − 1, d3, d4, . . . , dn. The sum of the terms is 2n − 2 − 2 = 2(n − 1) − 2. All terms are

positive integers. Thus, by inductive hypothesis there is a tree S for which the degree sequence of S is s1.

Add a new vertex w to S and connect it to the vertex whose degree is d2−1. This yields a tree whose degree

sequence is s.

8.7.3 Challenge Problems

Exercise 8.10. Let G be a bipartite k-regular graph for some k ≥ 2. Prove that G does not have any bridge.

9 Week 10

Theorem 9.1. Every forest of order n with k connected components has size n− k.

Proof. Suppose F is a forest of order n with connected components T1, . . . , Tk. Let the order of Tj be nj .

By Theorem 8.10 the size of Tj is nj − 1. Therefore, the size of F is
k∑

j=1

(nj − 1), which is equal to n − k,

since
k∑

j=1

nj = n.

Theorem 9.2. Every graph with k connected components has a spanning subgraph that is a forest with k

connected components. Therefore, every graph of order n with k connected components has at least n − k

edges.

The idea of the proof is that if the graph is not a forest, we remove edges that belong to cycles until we get a

forest. This can be presented in two different ways. The first proof is constructive, meaning that it gives you

an algorithm for finding the desired forest. The second proof is non-constructive but such proofs are often
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shorter and more rigorous.

Constructive Proof. Let G be a graph with k connected components. If G is acyclic, then it is a forest

and G is the desired subgraph of G. Otherwise, G has a cycle. Let e1 be an edge of G that belongs to a cycle.

By Theorem 8.6, e1 is not a bridge. Thus, k(G − e1) = k. If G − e1 is a forest, then G − e1 is the desired

subgraph of G, otherwise let e2 be an edge of G − e1 that belongs to a cycle of G − e1. By Theorem 8.6,

k(G− e1 − e2) = k. Repeating the same argument, we obtain the desired forest.

Non-constructive Proof. Among all spanning subgraphs of G with k connected components, let H be one

with the smallest size. We will prove that H is a forest. On the contrary assume H contains a cycle, and let

e be an edge of H that belongs to a cycle. By Theorem 8.6, e is not a bridge, which implies k(H − e) = k.

This contradicts the choice of H, since the size of H − e is smaller than the size of H.

Corollary 9.1. The size of every connected graph of order n is at least n− 1.

Theorem 9.3. Let G be a connected graph and H be an acyclic subgraph of G. Then, there is a spanning

tree for G containing H.

Proof. The proof is similar to the proof of the previous theorem. The only difference is that at every step

we would need to avoid all edges of H.

Definition 9.1. Let G be a graph. A spanning subgraph H of G is called a spanning tree if H is a tree.

Theorem 9.4. Let G be a graph of order n and size m. If G satisfies any two of the following properties,

then G satisfies the third property as well, and thus G is a tree.

(a) G is connected.

(b) G is acyclic.

(c) m = n− 1.

Proof. See page 91.

Theorem 9.5. Let T be a tree of order k. If G is a graph with δ(G) ≥ k − 1, then T is isomorphic to some

subgraph of G.

Proof. We will prove this by induction on order of T . If T has order 1, then it is the trivial graph which is a

subgraph of every graph.

Suppose T is a tree of order k + 1 and G is a graph with δ(G) ≥ k. Let u be a leaf of T . By Theorem 8.9,

T − u is a tree of order k. By inductive hypothesis T − u is isomorphic to a subgraph H of G. Suppose uv

is an edge of T and v′ is the vertex in H corresponding to v under an isomorphism from T to H. Note that

degG v
′ ≥ δ(G) ≥ (k + 1) − 1 = k. Since the order of H is k, the degree of v′ is at least k, and v′ is not a
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neighbor of itself, there is a neighbor of v′, say w, that is not a vertex of H. Thus, H + v′w is a subgraph of

G that is isomorphic to T .

Example 9.1. Show that k − 1 in the above theorem is sharp.

Solution. Consider the tree T = K1,k−1 where k ≥ 2 is an integer. If δ(G) < k − 1, then G has no vertices

of degree at least k − 1, which implies T is not isomorphic to a subgraph of G.

Definition 9.2. Let G be a graph. A weight for G is a function w : E(G)→ R. A graph equipped with a

weight is called a weighted graph. The weight of a graph G, denoted by w(G) is evaluated by taking the

sum of all weights of edges of G.

w(G) =
∑

e∈E(G)

w(e).

Definition 9.3. Let G be a weighted connected graph. A minimum spanning tree of G is a spanning

tree of G whose weight is the smallest among all spanning trees of G.

The following theorem provides an algorithm for finding a minimum spanning tree.

Theorem 9.6 (Kruskal’s Algorithm). Let G be a connected weighted graph of order n ≥ 2. Let the sequence

of edges ek be defined recursively as follows:

• e1 is one of the edges of G with minimum weight.

• For every k ≤ n − 1, let ek be an edge of G other than e1, e2, . . . , ek−1 for which the subgraph of G

induced on edges e1, e2, . . . , ek is acyclic and w(ek) is minimum among all such edges.

Then the subgraph of G induced on edges e1, e2, . . . , en−1 is a minimum spanning tree of G.

Proof. First note that by Theorem 9.3, as long as k ≤ n − 1, there is such an edge ek satisfying the second

condition above. Let T be the graph induced on edges e1, e2, . . . , en−1. Since T is acyclic, its size is n− 1,by

Theorem 9.4 the graph whose vertices is V (G) and whose edge set is {e1, e2, . . . , en−1} is a tree. Therefore,

T is a spanning tree of G. We will now show T is a minimum spanning tree.

Suppose on the contrary T is not a minimum spanning tree of G. Among all minimum spanning trees of G,

let H be a minimum spanning tree of G that has the largest number of edges in common with T . Suppose

ek is the first edge of T that is not an edge of H. Thus, e1, . . . , ek−1 are edges of H (Note: k could be 1).

Since H + ek− ek = H is connected, ek belongs to a cycle cycle C. Let e0 be an edge in this cycle that is not

in T . The graph T0 = H + ek − e0 is thus a spanning tree of G, since it has n− 1 edges and it is connected.

Thus, by minimality of H, we must have w(H) ≥ w(T ). Therefore, w(ek) ≥ w(e0). By the choice of ek in

Kruskal’s algorithm, w(e0) ≥ w(ek). Therefore, w(T0) = w(H). However, T0 has more edges in common

with T , which contradicts the choice of H.

Theorem 9.7 (Prim’s Algorithm). Let G be a connected weighted graph. Construct a sequence of edges of

G as follows:
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• Start with an arbitrary vertex v of G and select an edge e1 incident to v with minimum weight.

• For every k ≤ n − 1, select the edge ek in such a way that ek has the minimum weight among all the

edges that have precisely one vertex in common with an edge from the list e1, . . . , ek−1.

Then, the subgraph of G induced on the edges e1, . . . , en−1 is a minimum spanning tree of G.

Proof. See page 98.

Example 9.2. Find the number of spanning trees of Kn, for n = 2, 3, 4.

See page 101 for more examples.

Theorem 9.8 (Matrix Tree Theorem). Let G be a nontrivial graph of order n whose vertices are v1, v2, . . . , vn,

and let A be the adjacency matrix of G relative to v1, v2, . . . , vn. Let D be the n× n diagonal matrix whose

i-th diagonal entry is deg vi for all i. Then, the number of spanning tree of G is the same as any co-factor

of the matrix C = D −A.

Definition 9.4. A matrix C in the previous theorem is called a Laplacian matrix for the graph G. Note

that changing the order of vertices changes a Laplacian matrix of a graph.

The above theorem will give us the following.

Theorem 9.9. The number of spanning trees of Kn is nn−2.

Proof (Optional). K1 has only one spanning trees, so the result for n = 1 holds. Suppose n ≥ 2. We will use

the Matrix Tree Theorem along with some facts from linear algebra. The adjacency matrix of Kn has zeros

on its diagonal and 1’s everywhere else. D in the Matrix Tree Theorem is the n × n diagonal matrix with

(n− 1)’s on its diagonal. Removing the first row and the first column of D −A we get an (n− 1)× (n− 1)

matrix E that has n − 1 on its diagonal entries and −1 everywhere else. By Matrix Tree Theorem, the

number of spanning trees of Kn is the determinant of this (n − 1) × (n − 1) matrix E. In what follows we

will use some linear algebra to evaluate detE.

E =



n− 1 −1 . . . −1 −1

−1 n− 1 . . . −1 −1
...

...
. . .

...
...

−1 −1 . . . n− 1 −1

−1 −1 . . . −1 n− 1


(n−1)×(n−1)

Adding all the rows to the first row does not change the determinant and we obtain the following determinant:
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detE = det



1 1 . . . 1 1

−1 n− 1 . . . −1 −1
...

...
. . .

...
...

−1 −1 . . . n− 1 −1

−1 −1 . . . −1 n− 1


Adding the first row to all other rows does not change the determinant. So we obtain the following determi-

nant:

detE = det



1 1 . . . 1 1

0 n . . . 0 0
...

...
. . .

...
...

0 0 . . . n 0

0 0 . . . 0 n


This is an upper triangular (n− 1)× (n− 1) matrix with with 1 in its first diagonal entry and n in all other

n − 2 diagonal entries. Thus, its determinant is nn−2. Therefore, the number of spanning trees of Kn is

nn−2, as desired.

9.1 More Examples

Example 9.3. Find the number of spanning trees of Cn.

Solution. Note that Cn has n vertices and n edges. Since every tree of order n has size n − 1, to obtain a

spanning tree for Cn one edge must be removed. Note that removing an edge keeps the graph connected,

because every edge of Cn belongs to a cycle. Thus, Cn has precisely n spanning trees.

9.2 Exercises

9.2.1 Problems for Grading

The following problems must be submitted on Friday, April 24, 2020 at the beginning of the class. Grade-

Scope will not accept late submissions.

All proofs must be complete and solutions must be fully justified.

Read and follow the directions carefully. If a problem is asking you to use a certain method, you must use

that method to solve the problem.

Exercise 9.1 (10 pts). Find all forests G for which G is also a forest.

Exercise 9.2 (10 pts). Using the Matrix Tree Theorem find the number of spanning trees of K3,3. (Recall

that the vertices are labeled.)
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Exercise 9.3 (10 pts). Let T and T ′ be two distinct spanning trees of a connected graph G of order n.

Show that there exists a sequence T = T0, T1, . . . , Tk = T ′ of spanning trees of G such that Ti and Ti+1 have

precisely n− 2 edges in common for every i, 0 ≤ i ≤ k − 1.

Exercise 9.4 (10 pts). Let G be a connected weighted graph whose edges have distinct weights. Prove that

G has a unique minimum spanning tree.

(Hint: Use the idea of the proof of Theorem 9.6.)

Exercise 9.5 (10 pts). Prove that every tree of order n is isomorphic to a subgraph of Cn+2.

Exercise 9.6 (10 pts). Prove that in every nontrivial weighted connected graph every minimum spanning

tree contains an edge of minimum weight.

Exercise 9.7 (10 pts). Let G be a weighted connected graph. Consider the following algorithm.

(i) Set G0 = G.

(ii) For every i ≥ 0, if Gi is a tree, then let T = Gi and stop. Otherwise, let ei be a non-bridge edge of Gi

with the largest weight, then let Gi+1 = Gi − ei, and repeat step (ii).

Prove that this algorithm produces a minimum spanning tree T .

Exercise 9.8 (10 pts). Let G be the weighted graph of order n + 1 with V (G) = {v0, v1, . . . , vn}, and

E(G) = {vivi+1 | i = 0, 1, . . . , n}∪{v0vi | i = 1, 2, . . . , n}. Define a weight on G by w(v0vi) = n for all i > 0,

and w(vivi+1) = i for all i with 1 ≤ i ≤ n− 1. How many minimum spanning trees does G have?

Exercise 9.9 (10 pts). Prove that an edge e of a connected graph G is a bridge if and only if it belongs to

every spanning tree of G.

9.2.2 Problems for Practice

page 94: 22, 24

page 99-100: 25, 27, 31

10 Week 11

10.1 Connectivity

Definition 10.1. A vertex v of a connected graph G is called a cut-vertex if G−v is a disconnected graph.

Example 10.1. The trivial graph has no cut-vertex, since if we remove its only vertex we don’t get a graph.

Example 10.2. For every n ≥ 2, the graph K1,n has precisely one cut-vertex.
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Example 10.3. Kn has no cut-vertices, since for n = 1, it is the trivial graph whose only vertex is not a

cut-vertex and for n ≥ 2, removing every vertex of Kn we obtain a graph that is isomorphic to Kn−1.

Theorem 10.1. Let v be a vertex incident to a bridge in a connected graph G. Then, v is a cut-vertex if

and only if deg v ≥ 2.

Corollary 10.1. If a connected graph of order at least 3 contains a bridge, then it contains a cut-vertex.

Theorem 10.2. Let v be a cut-vertex in a connected graph G and u,w be vertices in distinct components of

G− v. Then v lies on every uw-path in G.

Corollary 10.2. A vertex v of a connected graph G is a cut-vertex if and only if there are vertices u,w

distinct from v for which v lies on every uw-path in G.

Theorem 10.3. Let G be a connected nontrivial graph and let u ∈ V (G). If v is a vertex that is farthest

from u, then v is not a cut-vertex.

Corollary 10.3. Every connected nontrivial graph contains at least two vertices that are not cut-vertices.

10.2 Blocks

Definition 10.2. A connected graph is called nonseparable if it has no cut-vertices.

Theorem 10.4. A graph of order at least 3 is nonseparable if and only if every two vertices lie on a common

cycle.

Theorem 10.5. Let G be a connected nontrivial graph, and let R be a relation defined on E(G) by eRf ,

where e, f ∈ E(G), if and only if e = f or e and f lie on a common cycle. Then R is an equivalence relation.

Definition 10.3. Let G be a connected nontrivial graph and R be the relation defined in the above theorem.

Then the subgraphs induced by the edges of each equivalence class of R are called blocks of G.

Remark. Note that since blocks are induced subgraphs on a nonempty set of edges, they have no isolated

vertices and they are nontrivial.

Definition 10.4. Let S be a set and P be a property that at least one subset of S satisfies. Let A be a

subset of S.

• We say A is a maximal P-subset of S, if A satisfies P and no subset of S properly containing A

satisfies P.

• We say A is a maximum P-subset of S, if A satisfies P and no subset of S whose size is larger than

|A| satisfies P.

Similarly, the notations of minimal and minimum are defined. The set S can also be replaced with a graph

and the notions of maximal or minimal P-subgraph of G, and maximum or minimum P-subgraph of G are

defined similarly. For maximum and minimum in graphs we use the order of the subgraphs.
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Example 10.4. Every connected component of a graph G is a maximal connected subgraph of G. A

connected component with the largest number of vertices is a maximum connected subgraph of G.

Theorem 10.6 (Properties of Blocks). Let G be a connected nontrivial graph. Then,

(a) Every block of G is a nonseparable graph.

(b) Every two distinct blocks share no edges.

(c) Every two distinct blocks share at most one vertex.

(d) If two distinct blocks share a vertex v, then v is a cut-vertex of G.

Proof. (a) Let B be a block of G. If B is P2, then by definition B is nonseparable and connected. Suppose

B has at least three vertices, and let u and v be two distinct vertices of B and let e1 and e2 be two edges of

B incident to u and v, respectively. If e1 6= e2, then e1 and e2 lie on a common cycle and thus u and v lie

on a common cycle. If e1 = e2, then either u or v has another neighbor. Say vw 6= e1 is another edge. The

same argument shows that vw and uv lie on a common cycle. Therefore, every two vertices lie on a common

cycle. Thus, by Theorem 10.4, B is nonseparable.

(b) This follows from the fact that equivalence classes of an equivalence relation are disjoint.

(c) Suppose two distinct blocks B1 and B2 share vertices u 6= v. Since B1 and B2 are connected, there are

uv-paths P1 and P2 in B1 and B2, respectively. Let x be the neighbor of u in P1 and y be the neighbor of

u in P2. If z is the first vertex of P1 after u that is in P2, then we have a cycle by following P1 from u to z

and then by following P2 from z back to u. Note that ux and uy are in this cycle, which means uy must be

an edge of B1. This contradicts the fact that B1 and B2 are edge-disjoint.

(d) Suppose v is a common vertex of two distinct blocks B1 and B2. Let u and w be vertices of B1 and

B2 that are neighbors of v. (Note that blocks have no isolated vertices.) If v were not a cut-vertex, then

there would be a uw-path in G for which v does not belong to. This path along with the path w, v, u gives

a cycle. This means uv and vw lie on a common cycle, whcih means vw must be an edge of B1, which is a

contradiction.

Theorem 10.7. Every block of a connected nontrivial graph is a maximal nonseparable subgraph.

Proof. Suppose B is a block of G. By Theorem 10.6 B is nonseparable. Suppose on the contrary that H is

a nonseparable subgraph of G properly containing B as a subgraph. Let u be a vertex of B and v ∈ V (H)

be a neighbor of u. We will show that v must belong to B. This along with the fact that H is connected, we

get a contradiction. Suppose on the contrary v does not belong to B. Let w be a neighbor of u in B. Since

H is nonseparable, there is a vw-path P in H that does not contain v. This path along with w, v, u gives a

cycle that contains both edges vw and vu. Therefore, vu must be in B which means v must be in B. This

completes the proof.
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10.3 Vertex-Cut and Edge-Cut Sets

Definition 10.5. A vertex-cut in a graph G is a set U $ V (G) such that G− U is disconnected.

Example 10.5. A vertex v is a cut-vertex in a connected graph G if and only if the set {v} is a vertex-cut.

Example 10.6. Let G be a graph of order n. Prove that if G ∼= Kn, then G has no vertex-cuts, and if G is

not a complete graph, then it has a vertex-cut of size n− 2.

Solution. Removing any proper subset of V (Kn) leaves a complete graph, which is always connected, and

thus Kn has no vertex-cuts. Now, suppose G 6∼= Kn. Assume u and v are two non-adjacent vertices of G,

then U = V (G)− {u, v} is a vertex-cut of size n− 2, since G− U has two vertices u and v and no edge.

Definition 10.6. Let G be a graph of order n. If G 6∼= Kn, then the vertex-connectivity κ(G) is defined

to be the size of a minimum vertex-cut of G; if G ∼= Kn, then κ(G) is defined to be n− 1.

Similar notions may be defined for edges.

Definition 10.7. An edge-cut in a graph G is a set X of edges of G for which G − X is disconnected.

The edge-connectivity λ(G) of a graph G is the cardinality of a minimum edge-cut of G, if G 6∼= K1; while

λ(K1) = 0.

Example 10.7. Let G be a graph.

• If G is nontrivial, then it has an edge-cut. For example E(G) is an edge-cut.

• If G is disconnected, then the empty set is both a vertex-cut and an edge-cut.

• If X is a minimum edge-cut for a connected graph G, then G−X has precisely two connected compo-

nents.

Theorem 10.8. For every positive integer n, λ(Kn) = n− 1.

Proof. For n = 1, the result follows from the definition. Suppose n ≥ 2 and let X be a minimum edge-cut.

Suppose G1 and G2 are the connected component of G−X. All edges between vertices of G1 and G2 must

be in X. Therefore, if G1 has k vertices, we must have |X| ≥ k(n− k). We need to prove k(n− k) ≥ n− 1.

This is equivalent to kn− k2 − n+ 1 ≥ 0 which is equivalent to (k− 1)(n− k− 1) ≥ 0. Since 1 ≤ k ≤ n− 1,

the inequality holds.

Theorem 10.9. For every graph G,

κ(G) ≤ λ(G) ≤ δ(G).

Proof. Let n be the order of G. If G ∼= Kn, then δ(G) = n−1, κ(G) = n−1 by definition, and λ(G) = n−1,

by Theorem 10.8. This proves the theorem for when G is a complete graph.
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Now, assume G is not a complete graph. Let u be a vertex of G with degree δ(G). All edges incident to u form

an edge-cut. Therefore, λ(G) ≤ δ(G). This proves one of the inequalities and also shows that λ(G) ≤ n− 2.

Suppose X is a minimum edge-cut of G. Let G1 and G2 be the connected components of G −X. Suppose

G1 has k vertices. If there is a vertex x in G1 and y in G2 that are not adjacent in G, then for every edge e

in X we remove one vertex that is incident to e and is neither x nor y. This gives us a vertex-cut whose size

is at most |X|. If all vertices of G1 and G2 are adjacent in G, then |X| ≥ k(n − k). This quantity as seen

in Theorem 10.8 is at least n− 1, which is a contradiction since λ(G) ≤ n− 2. Therefore, there is always a

vertex-cut of size at most |X|. This implies κ(G) ≤ λ(G).

Theorem 10.10. If G is a 3-regular graph, then κ(G) = λ(G).

Proof. Note that since κ(Kn) = λ(Kn), we may assume G is not a complete graph.

Since G is 3-regular, we have δ(G) = 3. Thus, κ(G) ≤ λ(G) ≤ 3. Note that if κ(G) = 3, then λ(G) = 3, and

we are done. If κ(G) = 0, then G is disconnected, and hence λ(G) = 0, and we are done. So we are left with

two cases: κ(G) = 1 or κ(G) = 2. Note that we only need to show λ(G) ≤ κ(G).

Assume κ(G) = 1, then G has a cut-vertex u. The graph G − u is disconnected. Since the degree of u is 3

and G− u is disconnected, G− u has a component G1 for which u has precisely one neighbor v in G1. This

means uv is a bridge, which implies λ(G) ≤ 1 = κ(G).

Suppose κ(G) = 2. Let U = {u, v} be a minimum vertex-cut for G. Let G1, G2 be two components of G−U .

If there are at most two edges with one endpoint in G1 and one endpoint in U , then by removing these

edges we get a disconnected graph. Same argument works for G2. So, assume there are at least three edges

between U and G1 and at least three edges between U and G2. Since both u and v have degree 3, there are

precisely three edges between U and G1 and three edges between U and G2. If all the edges between G1

and U are incident to u, then the graph G would be disconnected which is a contradiction. Suppose u has

precisely one neighbor u1 in G1 and v has precisely one neighbor v1 in G2. Then, the set {uu1, vv1} is an

edge-cut. Therefore, λ(G) ≤ 2 = κ(G). This completes the proof.

10.4 More Examples

Example 10.8. Let G be a connected graph. Define a relation R on the vertices of G by uRv if and only if

u = v or u and v belong to a common cycle. Show that in general R is not an equivalence relation. Find a

necessary and sufficient condition for G so that R is an equivalence relation.

Solution. Let H and K be 3-cycles on the vertex sets [3] and {3, 4, 5}, respectively, and let G = H ∪K. Note

that in graph G we have 2R3 and 3R4, but 2 6R 4 because every 24-path must pass through 3 since 3 is a

cut-vertex. Thus, R is not necessarily transitive.
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Clearly R is always reflexive and symmetric. We will have to check if it is transitive. Suppose uRv and vRw.

If u = v, v = w or u = w, then uRw, and we are done. Suppose u, v, w are distinct vertices. Let C1 be

a common cycle of u and v and let C2 be a common cycle of v and w. By definition of blocks C1 and C2

must belong to two (possibly identical) blocks. If C1 and C2 belong to the same block, then since blocks are

nonseparable u and w belong to a common cycle and thus uRw. If C1 belongs to a block B1 and C2 belongs

to a different block B2, then v as a common vertex of B1 and B2 must be a cut-vertex. Thus, every uw-path

must pass through v and thus, u and v do not belong to a common cycle, which means R is not transitive.

This happened because two blocks of order at least three had a common vertex. Therefore, the necessary

and sufficient condition can be stated as follows:

R is an equivalence relation if and only if no two distinct blocks of order at least 3 share a vertex.

The proof of why this is a necessary and sufficient condition should be written based on the arguments

above.

Example 10.9. Find all minimum edge-cuts of Kn for every n ≥ 2.

Solution. Suppose X is a minimum edge-cut of G and let G1 and G2 be components of G−X. Suppose G1 has

k vertices. We know that X must contain all edges between G1 and G2. There are precisely k(n− k) edges.

Since these edges are an edge-cut for Kn, we must have k(n− k) = n− 1. Therefore, (k− 1)(n− k− 1) = 0.

This means k = 1 or k = n− 1. Thus, X must be all edges incident to one vertex of Kn. Note that this set

is indeed an edge-cut. Therefore, every minimum edge-cut of Kn is obtained by taking all edges incident to

a fixed vertex of Kn.

Example 10.10. Prove or disprove each of the following statements:

(a) In a graph, every edge-cut contains a minimum edge-cut.

(b) In a graph, every vertex-cut contains a minimum vertex cut.

(c) If X is an edge-cut of a graph G and U is a set of vertices of G for which each edge in X is incident to

at least one vertex in U , then U = V (G) or U is a vertex-cut.

Solution. (a) This statement is false. Consider the graph G = H ∪K where H is the complete graph on [3]

and K is the complete graph on {3, 4}. X = {23, 13} is a minimal edge-cut, since neither 23 not 13 is an

edge and G− U is disconnected. However λ(G) = 1 since 34 is a bridge.

(b) This statement is false. Consider G = H ∪ K, where H is the 4-cycle v1, v2, v3, v4, v1, and K be the

path v1, v5. Note that κ(G) = 1, since G is connected and v1 is a cut-vertex. The set {v2, v3} is a minimal

vertex-cut of size 2, but neither v2 nor v3 are cut-vertices.

(c) This is false. For example in K2 let X = E(K2) and let U be the set containing one of the vertices of

K2.
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10.5 Exercises

10.5.1 Problems for Grading

The following problems must be submitted on Friday, May 1, 2020 at the beginning of the class. Late

submission will not be accepted.

All proofs must be complete and solutions must be fully justified.

Read and follow the directions carefully. If a problem is asking you to use a certain method, you must use

that method to solve the problem.

Exercise 10.1 (10 pts). Prove that if v is a cut-vertex of a connected graph G, then v is not a cut-vertex of

G.

Exercise 10.2 (10 pts). Prove that for every positive integer n, we have κ(Kn,n) = λ(Kn,n) = n.

Exercise 10.3 (10 pts). Prove that every cut-vertex of a connected graph must belong to at least two blocks.

Exercise 10.4 (10 pts). Find κ(T ) and λ(T ) for every tree T .

Exercise 10.5 (10 pts). Let n be a positive integer. Give an example of a graph G with δ(G) = n and

κ(G) = λ(G) = 1.

Exercise 10.6 (10 pts). Let e be an edge of a connected graph G. Prove that λ(G)− 1 ≤ λ(G− e) ≤ λ(G).

Exercise 10.7 (20 pts). (a) Suppose in a graph G of order n, we have δ(G) ≥ (n − 1)/2. Prove that

λ(G) = δ(G).

(b) Suppose G is a graph for which ∆(G) ≤ (n− 1)/2. Prove that λ(G) = δ(G)

(Hint: Use a method similar to the Proof of Theorem 10.8.)

Exercise 10.8 (10 pts). Prove that a connected graph G of order at least 3 is nonseparable if and only if

any two adjacent edges of G lie on a common cycle.

10.5.2 Problems for Practice

Page 110-111: 2, 8

Page 114-115: 9, 11, 16

Page 122: 19

11 Week 12

Definition 11.1. Let G be a connected graph and k be a positive integer. Then, Gk is defined to be the

graph with V (Gk) = V (G), and two distinct vertices u and v are adjacent in Gk if and only if dG(u, v) ≤ k.
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Remark. Note that if k ≥ diam (G), then Gk is a complete graph since the distance of no two vertices of G

exceeds k.

Definition 11.2. We say a graph G is k-connected for a positive integer k, if κ(G) ≥ k.

Remark. Note that κ(G) ≥ 1 if and only if G is connected. Thus a graph is 1-connected if and only if it is

connected.

Theorem 11.1. If G is a connected graph of order at least 3, then G2 is 2-connected.

Proof. We need to show G2 has no cut-vertices. Suppose v is a cut-vertex of G2 and let u and w be vertices

in different components of G2 − v. Since u and w are not adjacent in G2, we must have k = dG(u,w) ≥ 3.

Since G is connected, there is a uw-path of length k. Let u0 = u, u1, . . . , uk = w be a uw-path in G. Note

that by definition of G2, each uj is adjacent to uj+2 in G2. Let P1 be the path in G2 starting from u and

ending at w that contains all uj ’s, where j is even, and let P2 be the path in G2 starting from u and ending

at w that contains all uj ’s, where j is odd. Note that since u and w are in different connected components of

G2−v, the vertex v must be on both P1 and P2, however these two paths do not share any common vertices,

except u and w, but u and w are in G − v and thus neither of them is v. This contradiction completes the

proof.

Theorem 11.2. κ(Hr,n) = r, where Hr,n is a Harary graph.

11.1 Menger’s Theorem

Definition 11.3. Let G be a connected graph and U be a vertex-cut. If u 6= v are vertices in different

components of G− U , then we say U is a uv-separating set.

Remark. If uv is an edge in a graph of order n, then the graph has no uv-separating set, otherwise there

always exists a uv-separating set of size n− 2.

Definition 11.4. Given a uv-path P : u = u0, u1, . . . , ur = v, the vertices u1, . . . , ur−1 are called the

internal vertices of P . Two uv-paths P and Q are called internally disjoint if they don’t share any

internal vertices. uv-paths P1, P2, . . . , Pk are called internally disjoint if every two Pi and Pj with i 6= j

are internally disjoint.

The following theorem is one of many min-max theorems in Combinatorics:

Theorem 11.3 (Menger’s Theorem). Let u 6= v be nonadjacent vertices of a connected graph G. The

cardinality of a minimum uv-separating set equals the maximum number of internally disjoint uv-paths in G.

Theorem 11.4. A nontrivial graph G is k-connected for some integer k ≥ 2, if and only if for every two

distinct vertices u and v of G there exists at least k internally disjoint uv-paths in G.

Proof. Suppose G is k-connected for some k ≥ 2 and let u and v be two distinct vertices of G. If u and v

are not adjacent, then by Menger’s Theorem there are k internally disjoint uv-paths, as desired.
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Assume u and v are adjacent, and let e = uv. By Exercise 11.3, G−e is (k−1)-connected. Therefore, by the

previous case, G − e contains k − 1 internally disjoint uv-paths. These along with u, v give us k internally

disjoint uv-paths.

For the converse, assume G is not k-connected. Thus, there is a vertex-cut U of size less than k. Let u and v

be vertices in different components of G−U . By Menger’s Theorem, there are no more than k− 1 internally

disjoint uv-paths, which is a contradiction.

Theorem 11.5. Let G be a k-connected graph and S ⊆ V (G) be a set with |S| = k. If a graph H is obtained

from G by adding a new vertex w to G and joining w to all vertices of S, then H is k-connected.

Combining the above theorem with the Menger’s Theorem we obtain the following:

Theorem 11.6. If G is k-connected and u, u1, . . . , uk are distinct vertices of G, then for every j, 1 ≤ j ≤ k,

there is a uuj-path Pj for which P1, P2, . . . , Pk are internally disjoint.

We have previously proved that every two vertices of a nonseparable graph of order at least 3 lie on a common

cycle. The following is a generalization of this theorem.

Theorem 11.7. If G is k-connected for some integer k ≥ 2, then every k vertices of G lie on a common

cycle.

11.2 Eulerian Graphs

Definition 11.5. An Eulerian circuit in a connected graph G is a circuit that traverses all edges of G. A

graph is called Eulerian if it is connected and has an Eulerian circuit. An open trail that traverses all the

edges of a connected graph G is called an Eulerian trail.

Remark. Note that if x1, x2, . . . , xm, x1 is a circuit, then so are all of the following:

x2, x3, . . . , xm, x1, x2

x3, x4, . . . , x1, x2, x3
...

xm, x1, . . . , xm−2, xm−1, xm

Theorem 11.8. Let G be a nontrivial connected graph.

(a) G is Eulerian if and only if all of its vertices are even.

(b) G has an Eulerian trail if and if the degrees of precisely two of its vertices are odd.

Example 11.1. Let G and H be two connected graphs. Find the necessary and sufficient condition for

G×H to be Eulerian.
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Solution. We know that G ×H is connected since both G and H are connected. Note that a vertex (u, v)

is connected to all vertices of the form (u, y) and (x, v), where x is a neighbor of u and y is a neighbor of v.

Thus, the degree of every vertex (u, v) is degG u+ degH v. By Theorem 11.8, G×H is Eulerian if and only

if degG u+ degH v is even for all vertices u of G and v of H. This means the parity of degG u and degH v is

the same for all vertices u of G and v of H. Thus, G ×H is Eulerian if and only if either all vertices of G

and H are even or all vertices of G and H are odd.

11.3 Hamiltonian Graphs

Definition 11.6. A cycle in a graph G that contains every vertex of G is called a Hamiltonian cycle of

G. A graph that has a Hamiltonian cycle is called a Hamiltonian graph. A path in a graph that contains

every vertex of G is called a Hamiltonian path.

Example 11.2. For every integer n ≥ 3, the graphs Kn and Cn are Hamiltonian.

Example 11.3. For what positive integers m and n, is the graph Km,n Hamiltonian?

Solution. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be two partite sets of Km,n. Note that every cycle

must alternate between vertices of X and Y . since, a Hamiltonian cycle contains all vertices of X and Y , we

must have m = n. Now, suppose m = n. If n = 1, then we get the graph K1,1 which is a tree and thus does

not have any cycles and hence is not Hamiltonian. For n > 2, the cycle x1, y1, . . . , xn, yn, x1 is a Hamiltonian

cycle. Thus, Km,n is Hamiltonian if and only if m = n > 1.

The above example can be generalized as follows:

Theorem 11.9. If G is a Hamiltonian graph, then for every nonempty proper set S of vertices of G,

k(G− S) ≤ |S|.

Example 11.4. The Petersen graph is non-Hamiltonian.

Theorem 11.10 (Ore’s Theorem). Let u, v be distinct nonadjacent vertices in a graph G of order n such

that deg u+ deg v ≥ n. Then G+ uv is Hamiltonian if and only if G is Hamiltonian.

Proof. If G is Hamiltonin, then any Hamiltonian cycle of G is also a Hamiltonian cycle of G+ uv.

Suppose G+ uv is Hamiltonian, and let C be a Hamiltonian cycle of G+ uv. If uv is not an edge of C, then

C is a Hamiltonian cycle of G and we are done. So, suppose C : u = u1, u2, . . . , un = v, u is a Hamiltonian

cycle of G + uv. The idea is to swap uv and another edge of C for two other edges. If uui and vui−1 are

edges of G, then u = u1, u2, . . . , ui−1, v, un−1, . . . , ui, u is a Hamiltonian cycle of G. We will have to show

there is some i for which ui is adjacent to u and ui−1 is adjacent to v. Let S = {i | uui ∈ E(G)}, and

T = {i | vui−1 ∈ E(G)}. Note that |S| = deg u and |T | = deg v. By assumption |S| + |T | ≥ n. Note also

that 1 6∈ S and 1 6∈ T . Thus, |S ∩ T | ≥ 1. This completes the proof.
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Definition 11.7. Let G be a graph of order n. The closure of G, denoted by C(G) is the graph obtained

from G by recursively joining distinct nonadjacent vertices whose degree sum is at least n.

Theorem 11.11. A graph is Hamiltonian if and only if its closure is Hamiltonian.

Proof. By Theorem 11.10, if deg u+ deg v ≥ n, where u and v are nonadjacent, then G+ uv is Hamiltonian

if and only if G is Hamiltonian. Repeated use of this theorem implies the result.

Theorem 11.12. Let G be a graph of order n ≥ 3. If

deg u+ deg v ≥ n

for each pair of distinct nonadjacent vertices of G, then G is Hamiltonian.

Proof. The closure of such a graph is the complete graph which is Hamiltonian. Therefore, by Theorem 11.11

we are done.

Remark. The condition

“deg u+ deg v ≥ n for each pair of distinct nonadjacent vertices of G”

is called the Ore’s Condition.

Theorem 11.13. Let G be a graph of order n ≥ 3. If for every positive integer j < n/2, the number of

vertices of G with degree at most j is less than j, then G is Hamiltonian.

11.4 More Examples

Example 11.5. Let G be a connected graph and k, ` be two positive integers for which k` ≤ diam (G).

Prove that (Gk)` = Gk`.

Solution. By definition V ((Gk)`) = V (Gk) = V (G) and V (Gk`) = V (G).

Note that for any two vertices u, v in a graph H, dH(u, v) ≤ k iff there is a sequence of (not necessarily

distinct) vertices u = u0, u1, . . . , uk = v for which dH(uj , uj+1) ≤ 1 for all 0 ≤ j ≤ k − 1. If dH(u, v) ≤ k,

then this sequence can be created by appending a uv-geodesic by some v’s if necessary, and if such a sequence

exists the inequality dH(u, v) ≤ k follows from the triangle inequality.

For vertices u, v in G we have uv is an edge of Gk` iff there is a sequence of vertices u = u0, u1, . . . , u`k = v

for which dG(uj , uj+1) ≤ 1. By triangle inequality dG(u0, uk) ≤ k, dG(uk, u2k) ≤ k, . . . , dG(u(`−1)k, u`k) ≤ k

which is equivalent to dGk(ujk, u(j+1)k) ≤ 1, and this is equivalent to dGk(u, v) ≤ ` which is true if and only

if uv is an edge in (Gk)`. Therefore, (Gk)` = Gk`.

Example 11.6. What is the necessary and sufficient condition on positive integers k and n for there to exist

a graph G with two distinct nonadjacent vertices u and v with a minimum uv-separating set of size k?
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Solution. Let G be such a graph. We know there must exist a uv-separating set U of size k. The set U along

with u and v give us k+2 distinct vertices, which implies n ≥ k+2. Assume n ≥ k+2 and consider n distinct

vertices u, v, u1, . . . , un−2. Create a graph on vertices u, v, u1, . . . , un−2 by including (k − 1) paths of form

u, uj , v for j = 1, . . . , k − 1, along with the path u, uk, . . . , un−2, v. Since these paths are internally disjoint

each uv-separating set must be of size at least k. Furthermore, note that u1, . . . , uk is a uv-separating

set. Thus, this graph satisfies the given conditions. Therefore, n ≥ k + 2 is the necessary and sufficient

condition.

Example 11.7. Prove that every Hamiltonian graph is 2-connected.

Solution. Suppose G is a Hamiltonian graph. If G is a complete graph, since G has a Hamiltonian cycle, its

order must be at least 3, and thus κ(G) ≥ 2, and thus G is 2-connected.

Suppose G is not complete and let v be a vertex of G. Let C be a Hamiltonian cycle of G, then C − v is a

spanning subgraph of G− v which is a path. Therefore, G− v is connected. Therefore, G is 2-connected.

Example 11.8. Is the converse of Theorem 11.12 true?

Solution. The answer is no. If n ≥ 5, then Cn is a 2-regular Hamiltonian graph that does not satisfy the

Ore’s condition.

11.5 Exercises

11.5.1 Problems for Grading

The following problems must be submitted on Monday, May 11, 2020 at the beginning of the class. Late

submission will not be accepted.

All proofs must be complete and solutions must be fully justified.

Read and follow the directions carefully. If a problem is asking you to use a certain method, you must use

that method to solve the problem.

Exercise 11.1 (10 pts). Let k ≥ 2 be an integer. Suppose G is a connected graph of order at least k + 1.

Prove that Gk is k-connected.

(Hint: Use a method similar to Theorem 11.1.)

Exercise 11.2 (10 pts). Let G be a connected graph of diameter d and order n. Prove that G,G2, . . . , Gd

are all distinct graphs, and that Gd ∼= Kn.

Exercise 11.3 (10 pts). Let G be a k-connected graph for some integer k ≥ 2 and let e be an edge of G.

Prove that G− e is (k − 1)-connected.

Note that the above exercise was used in the proof of Theorem 11.4, so you cannot use this theorem to do

the exercise.
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Exercise 11.4 (20 pts). Prove or disprove each of the following:

(a) If G is a 2-connected graph, u, v are two distinct vertices of G, and P is a uv-path, then there is another

uv-path that is internally disjoint from P .

(b) If u, v, w are three distinct vertices in a 2-connected graph, then there is a uv-path containing w.

Exercise 11.5 (10 pts). Let a1, a2, . . . , an be positive integers. Find the necessary and sufficient condition

on integers a1, a2, . . . , an for Ka1,a2,...,an
to be Eulerian.

Exercise 11.6 (20 pts). (a) Let G be a 2-regular disconnected graph of order 19. Prove that G is Eulerian.

(b) Let r < n be two positive integers. Find the necessary and sufficient condition on r and n for which the

complement of every r-regular disconnected graph of order n is Eulerian.

Exercise 11.7 (20 pts). Let k ≥ 2 be an integer. A graph G is called minimally k-connected if it is

k-connected and G− e is not k−connected for every edge e of G.

(a) Give examples of minimally k-connected graphs for k = 2 and k = 3.

(b) Prove that for every two positive integers n > k ≥ 2, there is a minimally k-connected graph of order n.

Exercise 11.8 (10 pts). Use Menger’s Theorem to prove Theorem 10.10: If G is a 3-regular graph, then

κ(G) = λ(G).

Exercise 11.9 (5 pts). Find a Hamiltonian cycle or show none exists for K3,4,7.

Exercise 11.10 (10 pts). Let n ≥ 2 be an integer and 1 ≤ a1 ≤ a2 ≤ . . . ≤ an be a sequence of integers.

Find the necessary and sufficient condition on a1, a2, . . . , an for the complete multipartite graph Ka1,a2,...,an

to be Hamiltonian.

11.5.2 Problems for Practice

Exercise 11.11. Prove that every Eulerian graph is a union of edge-disjoint cycles.

Solution. We will prove this by induction on the size of an Eulerian graph G. Since G is Eulerian the smallest

possible size of G is 3, in which case G ∼= C3 is itself a cycle. Suppose G is an Eulerian graph Theorem 11.8,

every vertex of G is even. Since G does not have any leaves, it cannot be a tree. Suppose C is a cycle of G.

Consider the graph H = G − E(C). Note that all components of H are Eulerian since for every vertex u,

we have degH u = degG u or degG u − 2. Thus, by inductive hypothesis all nontrivial components of H are

unions of edge-disjoint cycles. Those cycles along with C give us edge-disjoint cycles that cover all edges of

G, as desired.

Page 122: 24

Page 129-130: 33, 36.

Page 139-140: 1, 4, 8.
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12 Week 13

12.1 Matchings

Definition 12.1. A set of edged in a graph is called independent if no two of them share an endpoint. A

matching is a set of independent edges. If M = {e1, e2, . . . , ek} is a matching where ej = ujwj , then we say

M matches the set {u1, u2, . . . , uk} to the set {w1, w2, . . . , wk}.

Definition 12.2. Let G be a graph. For any subset X of V (G), the set N(X) consists of all vertices that

are adjacent to some vertex in X.

Theorem 12.1. Let G be a bipartite graph with partite sets U and W such that r = |U | ≤ |W |. Then G

contains a matching of cardinality r if and only if for every subset X of U , we have |N(X)| ≥ |X|.

Definition 12.3. Let S1, S2, . . . , Sk be nonempty finite sets. We say x1, x2, . . . , xk is a system of distinct

representatives for S1, S2, . . . , Sk if xj ∈ Sj for every j ≤ k.

Theorem 12.2. A collection {S1, S2, . . . , Sk} of finite sets has a system of distinct representatives if and

only if for each integer r ≤ k, the union of any r of these sets has at least r elements.

Definition 12.4. A vertex and an incident edge are said to cover each other. An edge cover of a graph

G without isolated vertices is a set of edged of G that cover all vertices of G.

Definition 12.5. The edge independence number α′(G) of a graph G is the size of a maximum matching

of G. The edge covering number β′(G) of a graph G is the size of a minimum edge cover of G.

Theorem 12.3. For every graph G of order n that has no isolated vertices,

α′(G) + β′(G) = n.

Similar notions can be defined for vertices and similar results hold.

Definition 12.6. A 1-regular spanning subgraph of a graph G is called a 1-factor or a perfect matching

of G.

Remark. If a graph has a 1-factor then its order is even.

Example 12.1. let n be a positive integer. The Petersen graph, Cn, Pn, and Kn all have 1-factors.

See page 195 for more examples.

Definition 12.7. A component of a graph G is called odd or even depending on whether its order is odd

or even. For a graph G, the number ko(G) is the number of odd components of G.

Theorem 12.4. A graph G contains a 1-factor if and only if ko(G− S) ≤ |S|, for every proper subset S of

V (G).
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12.2 Exercises

12.2.1 Problems for Grading

The following problems must be submitted on Monday, May 13, 2020 at the beginning of the class. Late

submission will not be accepted.

All proofs must be complete and solutions must be fully justified.

Read and follow the directions carefully. If a problem is asking you to use a certain method, you must use

that method to solve the problem.

Exercise 12.1 (10 pts). Let n be an even integer and G be a connected regular graph of order n for which

G is also connected. Prove that either G or G is Hamiltonian.

Exercise 12.2 (10 pts). Prove a graph G of order n without any isolated vertices has a perfect matching if

and only if α′(G) = β′(G).

Exercise 12.3 (10 pts). Using an idea similar to the one we used in the proof of Theorem 12.3, prove that

if G is a graph of order n containing no isolated vertices, then α(G) + β(G) = n.

Exercise 12.4 (10 pts). A connected bipartite graph G has partite sets U and W , where |U | = |W | = k ≥ 2.

Prove that if every two vertex of U have distinct degrees in G, then G contains a perfect matching.

Exercise 12.5 (10 pts). Prove that if G is a graph of order n having no isolated vertices, then

β(G)(∆(G) + 1) ≥ n.

Exercise 12.6 (10 pts). Let k be a non-negative integer.

(a) For what values of k is there a graph G for which |α′(G)− β′(G)| = k?

(b) For what values of k is there a graph G for which |α(G)− β(G)| = k?

Exercise 12.7 (20 pts). Prove or disprove:

(a) Every vertex cover of a graph contains a minimum vertex cover.

(b) Every vertex cover of a graph contains a minimal vertex cover.

(c) Every independent set of vertices is contained in a maximal independent set of vertices.

(d) Every independent set of vertices is contained in a maximum independent set of vertices.

Repeat all of the above when “vertex” is replaced by “edge”.

12.2.2 Problems for Practice

Page 150-152: 11, 13, 21, 23.

Page 193-194: 5, 11, 14.
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12.2.3 Challenge Problems

Exercise 12.8. Let n be a positive integer and S be a set consisting of n distinct real numbers. What is the

maximum number of pairs (a, b) of elements in S for which 1 < b− a < 2?

Exercise 12.9. A group of 2n+1 people have the property that for every group of n people there is somebody

outside of this group that is friend with all n memebrs of this group. Prove that there is somebody who is

friend with everybody.

Exercise 12.10. A party consists of n + 1 people in such a way that nobody is friend with all the other n

people, every pair of strangers have exactly one common friend, and among every three people at least two of

them are not friends. Prove that everybody has the same number of friends.
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