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Notations

• ∈ belongs to.

• ∀ for all.

• ∃ there exists or for some.

• Im f the image of function f .

• N = {0, 1, 2, . . .} the set of nonnegative integers.

• Z+ = {1, 2, 3, . . .} the set of positive integers.

• Q = {mn | m,n ∈ Z, and n 6= 0} the set of rational numbers.

• R the set of real numbers.

• C the set of complex numbers.

• A ⊆ B set A is a subset of set B.

• A $ B set A is a proper subset of set B.

• A ∪B, the union of sets A and B.

• A ∩B, the intersection of sets A and B.

•
n⋃
i=1

Ai the union of sets A1, A2, . . . , An.

•
n⋂
i=1

Ai the intersection of sets A1, A2, . . . , An.

• A1 ×A2 × · · · ×An the Cartesian product of sets A1, A2, . . . , An.

• ∅ the empty set.

• C(R) the vector space of all continuous functions from R to R.

• Cn(R) the vector space of all functions from R to R whose n-th derivatives are continuous.

• C∞(R) the vector space of all functions from R to R that are infinitely many times differentiable.

• Pn(F) the vector space of polynomials of degree at most n with coefficients in F.

• Mm×n(F) the set of all m× n matrices with entries in F.

• Mn(F) the set of all n× n matrices with entries in F.

• Col A the column space of matrix A.

• Row A the row space of matrix A.



3

• W [Y1, . . . , Yn] Wronskian of Y1, . . . , Yn.

• H(t), Heaviside function.

• (f ? g)(t) Convolution of f(t) and g(t).

• L{f(t)} Laplace of f(t).
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Chapter 1

Preliminaries and Review

1.1 Complex Numbers

1.1.1 Definition and Basic Operations

Definition 1.1. The set of complex numbers C is defined as

C = {a+ bi | a, b ∈ R},

where i is a solution of the equation i2 = −1. The form a+ bi for a complex number is called its standard

form. Two complex numbers a+ bi and c+ di with a, b, c, d ∈ R are said to be equal if and only if a = c and

b = d. We say a and b are the real and the imaginary parts of the complex number z = a+ bi, respectively.

We denote these by Re(z) and Im(z), respectively.

The set C is equipped with two binary operations + and . as follows:

• ∀a, b, c, d ∈ R (a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

• ∀a, b, c, d ∈ R (a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i. (Or (a+ bi)(c+ di), without the dot.)

Note: Both real and imaginary parts of a complex number are real.

Definition 1.2. For a complex number z = a+ bi, where a and b are real numbers, we define its complex

conjugate as z = a− bi and its absolute value (or norm) as |z| =
√
a2 + b2.

Theorem 1.1 (Field properties of C). For every x, y, z ∈ C

• (Commutativity) x+ y = y + x, and xy = yx.

• (Associativity) (x+ y) + z = x+ (y + z) and (xy)z = x(yz).

• (Additive Identity) x+ 0 = x. (Here zero of C is given by 0 = 0 + 0i.)

• (Additive Inverse) There is t ∈ C for which x+ t = 0. (When x = a+ bi, we have t = −a+ (−b)i.)

11
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• (Multiplicative Inverse) If x 6= 0, there is some t ∈ C for which xt = 1. (t is denoted by x−1 or 1/x.)

• (Distributivity) x(y + z) = xy + xz.

Theorem 1.2 (Properties of complex conjugate and norm). For every two complex numbers z and w, we

have

• zw = z w.

• |zw| = |z| |w|.

• |z|2 = z z.

• |z + w| ≤ |z|+ |w|. (Triangle Inequality.)

Example 1.1. Find the additive and multiplicative inverse of 3 + 2i.

1.1.2 Geometry of C

Each complex number z = a+ bi can be plotted on a plane called the complex plane. The horizontal axis

consists of all real numbers and the vertical axis consists of all complex numbers with zero real part. If θ is

the angle between 0z and the positive real axis, then z = |z|(cos θ + i sin θ).

bi

aO

−bi

z = a+ bi

z = a− bi

Re

Im

θ

Theorem 1.3. For every real number θ, we have eiθ = cos θ + i sin θ.

Theorem 1.4. Let x, y be two real numbers and n be an integer. Then,

(a) eixeiy = ei(x+y).

(b) (De Moivre’s Formula) (eix)n = einx.

Example 1.2. Evaluate
∫
ex cosx dx.

Definition 1.3. For every complex number z = a+ bi, with a, b ∈ R we define ez = ea(cos b+ i sin b).

Theorem 1.5. For every two complex numbers z, w we have ez+w = ezew.
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1.1.3 More Examples

Example 1.3. Let z = 2 + i, w = 1 − 3i. Write down the complex numbers z + w, z − w, zw, and z/w in

standard form.

Solution. z+w = 3−2i, z−w = 1+4i, zw = 2+i−6i−3i2 = 5−5i. z/w = zw/|w|2 = (2+i+6i+3i2)/(1+9) =

−0.1 + 0.7i.

Example 1.4. Find all real numbers a, b for which a2 + bi+ 2i = (7 + 3i)(1− i).

Solution. Writing the left hand side in standard form and multiplying the right hand side we obtain:

a2 + (b+ 2)i = 7− 7i+ 3i+ 3 = 10− 4i⇒ a2 = 10, and b+ 2 = −4.

The answer is a = ±
√

10, and b = −6.

Example 1.5. Evaluate (1 + i)1000

Solution. Since we are finding large exponents of a complex number, De Moiver’s formula would be helpful.

So, we will first write down this complex number in polar form. |1+ i| =
√

2. The angle between the segment

from 0 to 1 + i and the positive real axis is π/4. This means 1 + i =
√

2eiπ/4. Therefore, (1 + i)1000 =

2500ei250π = 2500(cos(250π) + i sin(250π)) = 2500.

Example 1.6. Given a positive integer n, solve the equation zn = 1 over complex numbers.

Solution. By taking the absolute value of both sides we obtain |z|n = 1. Since |z| is a nonnegative real

number, we must have |z| = 1. Therefore, using the polar form we obtain z = eiθ for some angle θ ∈ [0, 2π).

This means, we must solve einθ = 1. This holds if and only if cos(nθ) = 1 and sin(nθ) = 0. This is equivalent

to nθ = 2kπ for some integer k. Since θ ∈ [0, 2π), we have k = 0, 1, . . . , n− 1. Therefore, all roots of zn = 1

are z = e2ikπ/n with k = 0, 1, . . . , n− 1.

Example 1.7. Prove that a complex number z satisfies |z| = 1 if and only if z = eiθ for some real number

θ.

Solution. (⇒) Suppose |z| = 1. By the polar form of z we know z = |z|eiθ = eiθ for some θ ∈ [0, 2π).

(⇐) Suppose z = eiθ for some real number θ. Then, z = cos θ + i sin θ. Therefore, |z| =
√

cos2 θ + sin2 θ =

1.

Example 1.8. Find infinitely many complex numbers z for which ez = 2.

Solution. Letting z = a + bi, with real a, b, we obtain ez = eaeib. Taking the absolute value of both sides

yields |ez| = |ea| |(cos θ + i sin θ)| = ea. Therefore, if z = a + bi satisfies ez = 2, then ea = 2 and thus
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a = ln 2. This reduces the equation to eib = 1. This is valid if and only if cos b = 1 and sin b = 0. Therefore,

z = ln 2 + 2kπi, where k ∈ Z yields all solutions of ez = 2.

1.1.4 Exercises

Exercise 1.1. Find all real numbers a, b for which a+ 3bi+ a2b = 2ab+ ai+ 2bi.

Exercise 1.2. Using a method similar to the one we used in this chapter, evaluate

∫
e2x sin(3x) dx.

Exercise 1.3. Using the method of Mathematical Induction, prove the De Moivre’s formula: (eix)n = einx

for every real number x and every integer n. Note that the cases where n is negative or positive should be

dealt with separately.

Exercise 1.4. Prove that if z is a nonzero complex number, then there is a complex number w for which

z = ew. Prove that ew 6= 0 for all complex numbers w.

1.2 Vector Spaces, Subspaces and Bases

Definition 1.4. A nonempty set V (consisting of elements called vectors) is called a vector space over F

(where F = R or C), if there is a binary operation + (assigning a vector v + w ∈ V to every pair of vectors

v,w ∈ V ) and a scalar multiplication (assigning a vector c v ∈ V to every c ∈ F and v ∈ V ) that satisfy the

following for all u,v,w ∈ V , and all c ∈ F:

(i) u + v = v + u.

(ii) (u + v) + w = u + (v + w).

(iii) There is e ∈ V such that for all x ∈ V , we have x + e = x. (This element e is denoted by 0).

(iv) There is z ∈ V for which v + z = 0. (This element z is denoted by −v.)

(v) 1 v = v.

(vi) For all a, b ∈ F, we have a(bv) = (ab)v, and (a+ b)v = av + bv.

(vii) For all a, b ∈ F, we have a(u + v) = au + av.

When F = R, we say the vector space V is a real vector space, and when F = C, we say the vector space

V is a complex vector space.

Example 1.9. Rn, Cn, Mn(R), Mm×n(R), Pn(R), C(R), Cn(R), and C∞(R) are all real vector spaces. Cn,

Pn(C), and Mn(C) are complex vector spaces.

Note: C(R) is the set of all continuous functions from R to R. Similarly, Cn(R) is the set of all functions

from R to R that have continuous n-th derivatives. C∞(R) is the set of all functions from R to R that have
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derivatives of all orders.

Most concepts that we discussed about real vector spaces are true for complex vector spaces. This is funda-

mentally because for the most part we only used the field properties of R.

Definition 1.5. A subset W of a vector space V is called a subspace if W along with the same operations

of V is itself a vector space.

Theorem 1.6 (Subspace Criterion). Let V be a vector space. A subset W of V is a subspace if and only if

it satisfies both of the following:

• W contains the zero vector of V , and

• for all x,y ∈ W and c ∈ F, we have x + y ∈ W and cx ∈ W . [We say W is closed under vector

addition and scalar multiplication.]

Example 1.10. Rn is a subspace of the real vector space Cn.

Definition 1.6. Let S = {v1, . . . ,vn} be a subset of a vector space V , and w be a vector in V . We say

w is a linear combination of S (or elements of S) if w = c1v1 + · · · + cnvn for some c1, . . . , cn ∈ F. By

definition, the only linear combination of the empty set is 0, the zero vector.

Definition 1.7. We say vectors v1,v2, . . . ,vn are linearly dependent if one of these vectors can be written

as a linear combination of the others. Otherwise, we say v1,v2, . . . ,vn are linearly independent.

Theorem 1.7. The vectors v1, . . . ,vn are linearly dependent if and only if there are scalars c1, . . . , cn ∈ F,

not all zero, such that c1v1 + c2v2 + · · ·+ cnvn = 0.

In other words, vectors v1,v2, . . . ,vn are linearly independent if and only if the following statement is true

If c1v1 + c2v2 + · · ·+ cnvn = 0, then c1 = c2 = · · · = cn = 0.

Definition 1.8. We say a subset S of a vector space V is spanning (or generating) if every v ∈ V is a

linear combination of some elements of S.

Definition 1.9. We say a subset B of a vector space is a basis if B is both linearly independent and spanning.

Theorem 1.8. Suppose V is a vector space with a basis consisting of n vectors, where n is an integer.

(a) If m is an integer more than n, then every m vectors of V are linearly dependent.

(b) Every basis of V consists of precisely n vectors.

(c) Every n linearly independent vectors in V form a basis for V .

(d) Every n spanning vectors in V form a basis for V .

Definition 1.10. If V is a vector space that has a basis of size n we say V is n-dimensional and we write

dimV = n. If V has no basis that is finite, we say V is infinite-dimensional.
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Example 1.11. Find the dimensions of C once as a real and once as a complex vector space.

Example 1.12 (Span of vectors). Let A be a set of vectors in a vector space V , and let Span A be the set

consisting of all vectors that are linear combinations of some vectors of A. Then Span A is a subspace of V .

Definition 1.11. Let A be an m × n matrix. The row space of A denoted by Row (A) is the subspace

of Fn spanned by the rows of A, and the column space of A denoted by Col (A) is the subspace of Rm

spanned by the columns of A.

Example 1.13 (Row space and column space). Row space and column space of every matrix are vector

spaces.

1.2.1 More Examples

Example 1.14. Determine which of the following sets under their natural addition and scalar multiplication

is a vector space.

(a) The set C[a, b] of all continuous functions f : [a, b]→ R.

(b) The set of all cubic polynomials.

(c) The set of functions of the form a sin t+ b cos t, where a, b ∈ R are constants and t ∈ R.

(d) The set P(F) consisting of all polynomials of any degree on a variable t with coefficients in F.

(e) The set of all unit vectors in Rn.

(f) The set of all positive real numbers.

Solution. (a) This is a vector space. First, note that if f, g : [a, b] → R are continuous functions and

c ∈ R, then so are f + g and cf . Next, we will check all properties of a vector space. Let f, g, h : [a, b]→ R

be continuous and c, d ∈ R be constants. Note that the zero function 0 is continuous and that −f is also

continuous. Furthermore, we have the following:

(f + g)(t) = f(t) + g(t) = g(t) + f(t) = (g + f)(t)⇒ f + g = g + f

((f + g) + h)(t) = (f + g)(t) + h(t) = f(t) + g(t) + h(t) = (f + (g + h))(t)⇒ (f + g) + h = f + (g + h)

(f + 0)(t) = f(t) + 0 = f(t)⇒ f + 0 = f

(f + (−f))(t) = f(t)− f(t) = 0⇒ f + (−f) = 0

(1f)(t) = f(t)⇒ 1f = f

((cd)f)(t) = (cd)f(t) = c(df(t)) = c((df)(t)) = (c(df))(t)⇒ (cd)f = c(df)

((c+ d)f)(t) = (c+ d)f(t) = cf(t) + df(t) = (cf)(t) + (df)(t)⇒ (c+ d)f = (cf) + (df)

(c(f + g))(t) = c(f + g)(t) = c(f(t) + g(t)) = cf(t) + cg(t) = (cf)(t) + (cg)(t) = (cf + cg)(t)

The last row implies c(f + g) = cf + cg. Therefore, this set satisfies all properties of a vector space.
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(b) This is not a vector space, because it is not closed under addition. x3 and −x3 are both cubic but their

sum is 0 which is not a cubic polynomial.

(c) This is a vector space. Note that 0 = 0 sin t+ 0 cos t is in this set. Also, the set is closed under addition

and scalar multiplication.

(a sin t+ b cos t) + (c sin t+ d cos t) = (a+ c) sin t+ (b+ d) cos t, and c(a sin t+ b cos t) = ca sin t+ cb cos t.

Therefore, this set is a subspace of C(R).

(d) We will show that P(R) is a subspace of C(R) and hence it is a vector space. First, note that every

polynomial is continuous. Thus P(R) ⊆ C(R). We have 0 ∈ P(R). Also, if p(t), q(t) are polynomials and

c ∈ F, then p(t) + q(t) and cp(t) are also polynomials. Therefore, this is a subspace of C(R).

(e) This is not a vector space, since it is not closed under addition. For example e1 and −e1 are both unit

vectors but their sum is not.

(f) This is not a vector space, because it is not closed under scalar multiplication. (−1)2 = −2 is not

positive.

Example 1.15. Using the definition or Theorem 1.7 determine if each of the following vectors are linearly

independent.

(a) (1,−1, 2), (2, 0, 3), (1, 1, 1) as vectors of F3.

(b) 1, t, sin2 t, cos2 t as elements of C(R).

(c) 0 in a vector space V .

(d) 1, t2, 2 + t+ t2 in P2.

Solution. (a) Suppose

c1(1,−1, 2) + c2(2, 0, 3) + c3(1, 1, 1) = (0, 0, 0).

This yields the following system:

c1 + 2c2 + c3 = 0

−c1 + c3 = 0

2c1 + 3c2 + c3 = 0

To find all solutions to this system we need to row reduce the following matrix:
1 2 1

−1 0 1

2 3 1
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Applying the row operations R2 +R1 and R3 − 2R1 we obtain the following
1 2 1

0 2 2

0 −1 −1


The last two rows are multiples. We see that c2 = 1, c3 = −1 and c1 = −2c2 − c3 = −1 are solutions.

Therefore, these three vectors are linearly dependent.

(b) Note that 1 = 0t+ sin2 t+ cos2 t. Therefore, by definition, these functions are linearly dependent.

(c) 0 is always linearly dependent by Theorem 1.7, since we can write 10 = 0.

(d) Suppose c1 + c2t
2 + c3(2 + t+ t2) = 0 for some constants c1, c2, c3 ∈ F. This yields

(c1 + 2c3) + c3t+ (c2 + c3)t2 = 0.

Since this equality holds for every t we must have c1 + 2c3 = c3 = c2 + c3 = 0. Solving this system yields

c1 = c2 = c3 = 0 and thus these three polynomials are linearly independent.

Definition 1.12. The transpose of an m× n matrix A is the n×m matrix AT whose j-th row is the j-th

columns of A for all j.

Definition 1.13. A matrix A is called symmetric if A = AT .

Example 1.16. Let V be the set of all 2× 2 symmetric matrices with entries in F. Prove that V is a vector

space along with the usual matrix addition and scalar multiplication. Find its dimension.

Solution. Every 2× 2 matrix A can be written as

A =

 a b

c d

 , where a, b, c, d ∈ F.

Since A = AT , we must have b = c. Therefore, every symmetric matrix is of the form

A =

 a b

b d

 = a

 1 0

0 0

+ b

 0 1

1 0

+ d

 0 0

0 1

 (∗)

Clearly every such matrix is also symmetric. This means the set of symmetric matrices is the span of three

matrices below:  1 0

0 0

 ,

 0 1

1 0

 ,

 0 0

0 1

 (∗∗)

Thus, this set is a subspace of M2(F), by Example 1.12. Note that the three matrices in (∗∗) are linearly

independent, since every linear combination of them is of the form (∗), and thus it is zero only when

a = b = d = 0. So, the dimension of this vector space is 3.
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Example 1.17. What is the dimension of C∞(R)?

Solution. This vector space is infinite-dimensional. To prove that, we will show functions 1, t, t2, . . . , tn are

linearly independent for every positive integer n. This shows the dimension must be more than any positive

integer n (See Theorem 1.8 part (a)) which means the dimension must be infinite. To prove that, assume

c0 + c1t+ c2t
2 + · · ·+ cnt

n = 0, for all t ∈ R.

Substituting t = 0 we obtain c0 = 0. Differentiating we obtain

c1 + 2c2t+ · · ·+ ncnt
n−1 = 0.

Substituting t = 0 again we obtain c1 = 0. Repeating this we conclude all cj ’s must be zero and thus

1, t, . . . , tn are linearly independent.

1.2.2 Exercises

Exercise 1.5. Recall that Pn is the vector space consisting of all polynomials of degree not exceeding n. Let

S = {f0, f1, . . . , fn} be a set consisting of (n+1) nonzero polynomials for which deg fj = j for all j, 0 ≤ j ≤ n.

Prove that S is a basis for Pn. Deduce that if f(t) is a polynomial of degree n, then {f(t), f ′(t), . . . , f (n)(t)}

is linearly independent.

Hint: Use the definition of linear independence. If you use any other method, you must fully justify your

proof using the theorems from this chapter. Do not assume Pn is the same as Fn+1.

Exercise 1.6. What is the dimension of P(F), the vector space of polynomials of any degree, as a vector

space over F?

Exercise 1.7. Let V be a complex vector space of dimension n. Prove that V is also a real vector space and

its dimension is 2n.

Exercise 1.8. Using axioms of vector space prove that for every vector v we have 0v = 0 and that (−1)v =

−v.

Exercise 1.9. Prove that the set of all even continuous functions in C(R) (i.e. those that satisfy f(−t) =

f(t)) under the natural addition and scalar multiplication is a vector space.

Exercise 1.10. Let S be a set. Prove that the set F(S,F) consisting of all functions f : S → F under their

natural addition and scalar multiplication is a vector space over F.

Exercise 1.11. Suppose v1, . . . ,vn are linearly independent vectors in a vector space V . Let vn+1 ∈ V be a

vector that does not belong to Span {v1, . . . ,vn}. Prove that v1, . . . ,vn,vn+1 are linearly independent.



20 CHAPTER 1. PRELIMINARIES AND REVIEW

1.3 Linear Transformations and Matrices

Definition 1.14. Let V and W be two vector spaces over F. A function T : V →W is called linear if

• (Additivity) T (u + v) = T (u) + T (v), for all u,v ∈ V , and

• (Homogeneity) T (cu) = cT (u) for all u ∈ V and c ∈ F.

Theorem 1.9. Let V,W be vector spaces over F, and T : V →W be a function. The following are equivalent:

(a) For every u,v ∈ V and c ∈ F we have T (u + cv) = T (u) + cT (v).

(b) For every u,v ∈ V and a, b ∈ F we have T (au + bv) = aT (u) + bT (v).

(c) T is linear.

Example 1.18. The following functions are all linear.

(a) T : Fn → Fm defined by T (u) = Au, where A ∈Mm×n(F) is a fixed matrix.

(b) S : C(R)→ C(R), defined by S(f)(x) =
∫ x

0
f(t) dt.

(c) L : C1(R)→ C(R) defined by L(f)(x) = f ′(x).

(d) U : C∞(R)→ C∞(R) defined by U(f)(x) = f ′′(x) + (2x+ 1)f ′(x)− exf(x).

Given a linear transformation T : V → W , recall that Ker T is the set of all u ∈ V for which T (u) = 0 and

Im T is the image of T .

Example 1.19. Solving the differential equation y′′ + (2x+ 1)y′ − exy = 0 is the same as finding the kernel

of the linear transformation U in the previous example.

Note that row reduction and echelon form work for matrices with complex entries as well as those with real

entries. Given that, recall the following:

Theorem 1.10. Let A be an m × n matrix. Suppose E is an echelon form of A obtained by row reducing

A. Suppose E has r pivot columns. Then,

(a) The dimensions of the column space and the row space of A are both r.

(b) The dimension of the kernel of A is n− r.

(c) (The Rank-Nullity Theorem) dim Ker A+ dim Col A = n.

Definition 1.15. (a) A square matrix A is called invertible if there is a square matrix B for which AB =

BA = I.

(b) The rank of a matrix is the dimension of its colum (or row) space.

(c) The trace of a square matrix A is the sum of its (main) diagonal entries and is denoted by tr A or

trace A.
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Theorem 1.11. For a matrix A ∈Mn(F) the following are qequivalent:

(a) A is invertible.

(b) Col A = Fn.

(c) Ker A = {0}.

Remark. To find the inverse of a square matrix A we form the augmented matrix (A|I). Apply row

operations until we obtain the matrix (I|B). This matrix B is the inverse of A.

Definition 1.16. Let A be an m× n and B be an n× k matrix. The matrix AB is an m× k matrix whose

j-th column is obtained from multiplying A by the j-th column of B. In other words, the (i, j) entry of AB

is obtained by finding the dot product of the i-th row of A with the j-th column of B.

Remark. For every m× n matrix A and every column vector v ∈ Rn the vector Av is a linear combination

of columns of A with coefficients from entries of v.

Theorem 1.12. A function T : Fn → Fm is linear if and only if there is an m × n matrix A for which

T (v) = Av for every column vector v ∈ Fn. Furthermore, for a given linear mapping T the matrix A is

unique, and the columns of A are given by T (e1), . . . , T (en). In other words,

A = (T (e1) · · ·T (en)) .

Example 1.20. Prove that the trace function tr : Mn(F)→ F is linear.

Theorem 1.13. Let A and B be two square matrices. Then

(a) (AB)T = BTAT .

(b) If A and B are invertible, then AB is also invertible and (AB)−1 = B−1A−1.

(c) If A is invertible, then AT is also invertible and (AT )−1 = (A−1)T .

Here we assume the matrix sizes are so that the multiplications are all defined.

Consider the linear transformation T : R2 → R given by T (x, y) = 2x− y. The kernel of this transformation

is the set consisting of all points (x, y) satisfying 2x− y = 0, which is a line through the origin. At the same

time, T−1(2) consists of all points on the line 2x−y = 2. This is a line parallel to the kernel. In other words,

T−1(2) is a translation of Ker T by the vector (1, 0) as seen in the picture below:
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The following theorem formalizes the above observation.

Theorem 1.14. Let T : V → W be a linear transformation between vector spaces and let w ∈ W . Then,

either the inverse image T−1(w) is empty or

T−1(w) = v + Ker T = {v + u | u ∈ Ker T},

for every v ∈ T−1(w).

1.3.1 More Examples

Example 1.21. Let T : F3 → F2 be defined by T (a, b, c) = (2a + c, b − c). Using the above theorem, find

T−1(2, 3).

Solution. First, note that T is linear, since

T (a, b, c) =

 2 0 1

0 1 −1




a

b

c

 .

We will now find Ker T . By definition of kernel, (a, b, c) ∈ Ker T if and only if 2a + c = b − c = 0, which

happends if and only if b = c = −2a. Thus,

Ker T = {(a,−2a,−2a) | a ∈ F} .

We also see that T (1, 3, 0) = (2, 3). Therefore,

T−1(2, 3) = (1, 3, 0) + Ker T = {(1 + a, 3− 2a,−2a) | a ∈ F} .

Example 1.22. Describe the kernel and image of each of the linear mappings

(a) S : C(R)→ C(R), defined by S(f)(x) =

∫ x

0

f(t) dt.

(b) L : C1(R)→ C(R) defined by L(f)(x) = f ′(x).

Solution. (a) If f ∈ Ker S , then S(f) = 0. This means

∫ x

0

f(t) dt = 0 for all x ∈ R. Differentiating both

sides we obtain f(x) = 0. Clearly 0 is in the kernel of S. Therefore, Ker S = {0}.

Suppose F (x) is in the image of S. This means F (x) =

∫ x

0

f(t) dt for some continuous function f : R→ R.

By the Fundamental Theorem of Calculus, we have F ′(x) = f(x). Therefore, F has continuous derivative

and thus F ∈ C1(R). On the other hand F (0) =

∫ 0

0

f(t) dt = 0. We will show that the image of S is

the set of all functions F ∈ C1(R) that satisfy F (0) = 0. Since F is continuously differentiable its deriva-

tive F ′ is continuous. Note that by Fundamental Theorem of Calculus,

∫ x

0

F ′(t) dt and F have the same
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derivatives. Therefore, they must differ by a constant. However, since both are zero at x = 0, we must have

F (x) =

∫ x

0

F ′(t) dt = S(F ′)(x).

(b) If f ∈ Ker L, then L(f) = 0 and thus f ′(x) = 0 for all x ∈ R. Therefore, f is a constant function.

Conversely, if f is constant, then f ′(x) = 0 and thus L(f)=0. Therefore, Ker L is the set of all constant

functions c : R→ R.

A function F is in the image of L iff F = f ′(x) for some continuously differentiable function f : R→ R. We

can take f(x) =

∫ x

0

F (t) dt. By the Fundamental Theorem of Calculus f ′(x) = F (x). Since F is continous

f is continuously differentiable. Therefore, the image of L is C(R).

Example 1.23. Prove that rank (AB) ≤ rank A and rank (AB) ≤ rank B for every two matrices A,B

where AB is defined.

Solution. Let columns of A be a1, . . . ,an. Then, every column of AB is a linear combination of a1, . . . ,an.

If v is a vector in the column space of AB, then it is a linear combination of a1, . . . ,an. Since a1, . . . ,an are

in Col A, the vector v is also in Col A. This shows Col (AB) ⊆ Col A. Therefore, rank (AB) ≤ rank A.

The proof for rank (AB) ≤ rank B is similar. You’d just need to swap columns for rows in the argument

above.

Example 1.24. Let A1, . . . , An be invertible square matrices of the same size. Prove that

(A1 · · ·An)−1 = A−1
n · · ·A−1

1 .

Solution. We will proceed by induction on n.

Basis step: For n = 1 both sides are A−1
1 .

Inductive step: Assume (A1 · · ·An)−1 = A−1
n · · ·A−1

1 . We have

(A1 · · ·AnAn+1)−1 = A−1
n+1(A1 · · ·An)−1 = A−1

n+1A
−1
n · · ·A−1

1 .

Here, we are using the inductive hypothesis and the fact that (AB)−1 = B−1A−1.

Example 1.25. Determine if each of the following is a linear transformation.

(a) T : P(F)→ P(F) given by T (f)(t) = f(t2).

(b) S : C(R)→ C(R) given by S(f)(t) = f(sin t).

(c) U : C(R)→ C(R) given by U(f)(t) = sin(f(t)).
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Solution. (a) This is linear. For every two polynomials f, g and constant c we have

T (f + cg)(t) = (f + cg)(t2) = f(t2) + cg(t2) = T (f)(t) + cT (g)(t)⇒ T (f + cg) = T (f) + cT (g).

Therefore, T is linear.

(b) This is linear. For every two continuous functions f, g and constant c we have

S(f + cg)(t) = (f + cg)(sin t) = f(sin t) + cg(sin t) = S(f)(t) + cS(g)(t)⇒ S(f + cg) = S(f) + cS(g).

Therefore, S is linear.

(c) U is not linear. U(2t) = sin(2t), while 2U(t) = 2 sin t. We know sin(2t) and 2 sin t are not always the

same (e.g. for t = π/2.) Therefore, U(2t) 6= 2U(t). This shows U is not linear.

Example 1.26. Suppose V is a real vector space and T : V → R is a linear transformation for which

T (V ) ⊆ [0,∞). Prove that T (v) = 0 for all v ∈ V .

Solution. Let v ∈ V . By assumption both T (v) and T (−v) are nonnegative. By linearity T (−v) = −T (v).

Since both T (v) and −T (v) are nonnegative, we must have T (v) = 0, as desired.

1.3.2 Exercises

Exercise 1.12. Determine if the transformation f : Rn → R given by f(v) = ||v||2 is linear.

Exercise 1.13. Let A be an m × n matrix. Prove that there is an n ×m matrix B for which AB = I iff

Col A = Fm. Deduce that if for an m × n matrix A there is an n ×m matrix B for which AB = I, then

m ≤ n.

Exercise 1.14. Let P3 be the vector space of polynomials of degree at most 3 with real coefficients. Suppose

T : P3 → P3 is a linear transformation with

T (t+ 1) = T (1) = T (t2 − 1) = T (t3 − 2t) = t.

(a) Find a basis for Ker T .

(b) Find T−1(−t). (i.e. all polynomials p(t) for which T (p(t)) = −t.)

Exercise 1.15. Let A be an m× n matrix. Define two functions S, T : Mn×m(F)→ F by S(X) = tr (AX),

and T (X) = tr (XA).

(a) Prove that S and T are both linear.

(b) Prove that S and T are the same over a basis of Mn×m(F).
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(c) Deduce that tr (AB) = tr (BA) for every two matrices A and B, where both products AB and BA are

defined.

Exercise 1.16. Prove that if A ∈Mm×n(F) is a matrix with rank 1, then there are column vectors u ∈ Fm,

and v ∈ Fn for which A = uvT . In other words,

A =


a1

a2

...

am


(
b1 b2 . . . bn

)
.

Exercise 1.17. Use the previous exercise to prove that if A ∈Mn(F) is a rank 1 matrix, then tr Ak = (tr A)k

for all positive integers k.

Exercise 1.18. Find the matrix of reflection about the line y = mx, where m is a given real number.

Hint: Let θ be the angle that this line makes with the positive x axis. This reflection can be written as a

composition of three transformations: A rotation with angle −θ, a reflection about the x-axis and finally a

rotation with angle θ. You may assume rotations and reflections are linear transformations.

Exercise 1.19. Find the inverse of each matrix:

 3 2

2 1

 ,


1 2 4

0 −1 1

1 3 1


Exercise 1.20. Suppose A is a 45× 23 matrix with rank 19. Find the dimension of each of the following:

Ker A,Ker AT ,Col (A),Col (AT ).

Exercise 1.21. Prove that if A ∈ Mn(R), then it is not possible for Col (A) and Ker AT to be the same.

With an example show this is possible if A has non-real complex entries.

Exercise 1.22. Let A be a given m×n matrix. Suppose Ax = 0 has the unique solution x = 0 ∈ Fn. Prove

that for every vector v ∈ Fn the equation ATx = v has at least one solution x ∈ Fm.

1.4 Determinants

All properties of determinant remain the same for matrices over R and C. Below is a list of the most

important properties of determinant:

Theorem 1.15 (Properties of Determinant). Let A and B be two square matrices of the same size. Then:

(a) If B is obtained from A by swapping two rows (or columns), then detB = −detA.
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(b) If B is obtained from A by adding a multiple of one row (or column) to another row (or column), then

detB = detA.

(c) If B is obtained from A by multiplying a row (or column) by a scalar c, then detB = cdetA,

(d) detAT = detA.

(e) det(AB) = (detA)(detB).

(f) A is invertible if and only if detA 6= 0.

(g) detA can be obtained using co-factor expansion along a row or a column.

Definition 1.17. Two vector spaces V and W over F are said to be isomorphic if there is a one-to-one

and onto linear transformation T : V →W .

Example 1.27. Fn+1 and Pn(F) are isomorphic.

Theorem 1.16. Two finite-dimensional vector spaces are isomorphic if and only if their dimensions are the

same.

1.4.1 More Examples

Example 1.28. Let A ∈Mn(F) and c ∈ F. Prove det(cA) = cn detA.

Solution. Suppose rows of A are a1, . . . ,an. Then rows of cA are c a1, . . . , c an. By properties of determi-

nant, we have the following:

det(cA) = det


c a1

...

c an

 = cdet


a1

c a2

...

c an

 = c2 det



a1

a2

c a3

...

c an


= · · · = cn det


a1

...

an

 = cn detA.

Example 1.29. A matrix A is called skew-symmetric if AT = −A. Prove that if an n × n matrix A is

skew-symmetric and n is odd, then A is not invertible.

Solution. By a theorem we know det(AT ) = detA. At the same time, we know det(−A) = (−1)n detA =

− detA, since n is odd. Therefore, detA = − detA and hence detA = 0. This implies that A is not

invertible.

Example 1.30. Let A be the n × n matrix, whose entries above or on the main diagonal are all 1’s and

whose entries below the main diagonal are all a variable t. Find detA in terms of n and t.
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Solution. The matrix A is as follows:

A =



1 1 . . . 1 1

t 1 . . . 1 1
...

...
. . .

...
...

t t . . . 1 1

t t . . . t 1


n×n

We will apply the row operations R2 − tR1, R3 − tR1, . . . , Rn − tR1 to obtain the following:

detA = det



1 1 . . . 1 1

0 1− t . . . 1− t 1− t
...

...
. . .

...
...

0 0 . . . 1− t 1− t

0 0 . . . 0 1− t


n×n

This is an upper triangular matrix and thus detA = (1− t)n−1.

Example 1.31. Evaluate the determinant of an n×n matrix whose off-diagonal entries are all 1 and whose

diagonal entries are all t.

Solution. Let

E =



t 1 . . . 1 1

1 t . . . 1 1
...

...
. . .

...
...

1 1 . . . t 1

1 1 . . . 1 t


n×n

Subtracting the first row from all other rows does not change the determinant and we obtain the following

determinant:

detE = det



t 1 . . . 1 1

1− t t− 1 . . . 0 0
...

...
. . .

...
...

1− t 0 . . . t− 1 0

1− t 0 . . . 0 t− 1


Adding all columns to the first we obtain the following:



28 CHAPTER 1. PRELIMINARIES AND REVIEW

detE = det



t+ n− 1 1 . . . 1 1

0 t− 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . t− 1 0

0 0 . . . 0 t− 1


This is an upper triangular matrix. Thus, its determinant is the product of its diagonal entries. Therefore,

detE = (t− 1)n−1(t+ n− 1).

1.4.2 Exercises

Exercise 1.23. For every matrix A with complex entries, let A be the matrix obtained by conjugating all

entries of A. Prove the following for every two matrices A,B and every c ∈ C. In each case assume the

appropriate operation is defined.

(a) AB = A B.

(b) A+B = A+B.

(c) cA = c A.

(d) tr A = tr A.

(e) detA = detA.

Exercise 1.24. Let n be a positive integer.

(a) Prove that if n is odd, then there is no n× n matrix A with real entries that satisfies A2 + I = 0.

(b) Prove that if n is even, then there is an n× n matrix A with real entries that satisfies A2 + I = 0.

Exercise 1.25. Find the determinant of an n × n matrix whose minor diagonal entries are a1, . . . , an and

all of whose entries below the minor diagonal are zero. In other words, find the determinant of the matrix:
∗ ∗ · · · a1

∗ · · · a2 0
... . .

. ...

an 0 · · · 0


Exercise 1.26. Let A ∈Mn(F). Prove that the set

V = {B ∈Mn(F) | AB = BA}

along with natural matrix multiplication and scalar multiplication forms a vector space.
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Exercise 1.27. Let A be a square matrix. Prove that all of the following matrices

 A ∗

0 I

 ,

 I ∗

0 A

 ,

 A 0

∗ I

 ,

 I 0

∗ A


have determinant equal to detA. In each case ∗ is an arbitrary matrix that makes the given matrix a square

matrix.

Exercise 1.28. Let Dn be the determinant of the n × n matrix–shown below–whose main diagonal entries

are all 1’s, the entries immediately above the main diagonal (if any exists) are all −1’s and the entries

immediately below the main diagonal (if any exists) are all 1’s, and whose all other entries (if any exists)

are all 0’s. 

1 −1 0 0 · · · 0 0 0 0

1 1 −1 0 · · · 0 0 0 0

0 1 1 −1 · · · 0 0 0 0

0 0 1 1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 −1 0 0

0 0 0 0 · · · 1 1 −1 0

0 0 0 0 · · · 0 1 1 −1

0 0 0 0 · · · 0 0 1 1


(a) Evaluate D1, D2, D3, D4 and D5.

(b) Conjecture a recursion for Dn.

(c) Prove your claim in part (b). (Hint: Expand along the first column.)

Exercise 1.29. Let Dn be the determinant of the n×n matrix–shown below–whose main diagonal entries are

all 3’s, the entries immediately above the main diagonal (if any exists) are all 2’s and the entries immediately

below the main diagonal (if any exists) are all 1’s, and whose all other entries (if any exists) are all 0’s.

3 2 0 0 · · · 0 0 0 0

1 3 2 0 · · · 0 0 0 0

0 1 3 2 · · · 0 0 0 0

0 0 1 3 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 3 2 0 0

0 0 0 0 · · · 1 3 2 0

0 0 0 0 · · · 0 1 3 2

0 0 0 0 · · · 0 0 1 3


(a) Evaluate D1, D2, D3 and D4.
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(b) Conjecture a formula for Dn, for every n.

(c) Prove your claim in part (b) using induction.

For the next exercise you will need the following familiar theorem:

Theorem 1.17. Suppose p(x) = A0+A1x+· · ·+Anxn is a polynomial with complex coefficients A0, A1, . . . , An.

Suppose p(x) has n distinct roots r1, . . . , rn ∈ C. Then

p(x) = An(x− r1) · · · (x− rn).

Exercise 1.30 (Vandermonde Determinant). In this exercise you will prove the Vandermonde Determinant

using induction:

det


1 c0 c20 · · · cn0

1 c1 c21 · · · cn1
...

...
... · · ·

...

1 cn c2n · · · cnn

 =
∏

0≤j<k≤n

(ck − cj) (∗)

(a) Prove (∗) for n = 1.

(b) Prove (∗) holds if ck = cj for some j 6= k. For the rest of the problem assume cj’s are distinct.

(c) Instead of cn in the last row use a variable x. Using co-factor expansion along the last row show that this

determinant can be written as A0 +A1x+ · · ·+Anxn, where Aj’s are constants depending on c0, . . . , cn−1.

(d) Prove that the polynomial p(x) = A0 + A1x + · · · + Anx
n has n roots x = c0, c1, . . . , cn−1. Use this to

show p(x) = An(x− c0) · · · (x− cn−1). (Hint: Use Theorem 1.17.)

(e) Assuming (∗) is true for n − 1, find An. Use that to obtain a proof of the Vandermonde determinant

using induction.

Exercise 1.31. Let Fn be the Fibonacci sequence given by F1 = F2 = 1, Fn+2 = Fn+1 + Fn for all n ≥ 1.

Find a square matrix A for which det(An) = Fn for all n ≥ 1, or show no such matrix exists.

Exercise 1.32. Suppose A ∈Mn(R) is such that lim
n→∞

det(An) = 1. Prove that A is invertible.

Exercise 1.33. Prove that there are no 5× 5 matrices A,B for which AB −BA = I.

Exercise 1.34. Let r ∈ F. Prove that for every integer n ≥ 2, there is a matrix A ∈ Mn(F) for which

detA = r and A has no zero entries.

Exercise 1.35. Suppose a matrix A has positive rank r. Prove that there are r rows and r columns of A for

which the submatrix formed by these r rows and r columns has a nonzero determinant.
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1.4.3 Challenge Problems

Exercise 1.36. Prove that if z and w are two distinct complex numbers for which |z| = |w| = 1, then
1− zw
z − w

is a real number.

Exercise 1.37. Find a formula for

sinx+ sin(2x) + · · ·+ sin(nx).

(Hint: Use sin θ = Imeiθ.)

Solution. Since sin θ = Imeiθ for all θ ∈ R we have:

sinx+ sin(2x) + · · ·+ sin(nx) = Im

(
n∑
k=1

eikx

)
.

We will now evaluate the imaginary part of the sum. The above sum is a geometric sum which is equal to

eix − ei(n+1)x

1− eix
.

Now, we will use the fact that

sin θ =
eiθ − e−iθ

2i
.

eix − ei(n+1)x

1− eix
=
ei

(n+2)x
2 (e−ni

x
2 − eni x2 )

ei
x
2 (e−i

x
2 − ei x2 )

= ei
(n+1)x

2
2i sin(−nx2 )

2i sin(−x2 )
=

sin(nx2 )ei(n+1) x
2

sin(x2 )
.

Thus, the answer is
sin(nx/2) sin((n+ 1)x/2)

sin(x2 )
.

Exercise 1.38. Consider the subset

B = {1, sin t, cos t, sin(2t), cos(2t), sin(3t), cos(3t), . . .}

of the vector space C(R).

(a) Prove that B is linearly independent.

(b) Prove that for every two positive integers n and m we have sinn t cosm t ∈ Span B.

Exercise 1.39. Let V be a vector space over F. Prove that V cannot be written as a union of finitely many

proper subspaces of V .

Exercise 1.40. Consider a square matrix A whose entries in the j-th row from left to right form an arithmetic

sequence with common difference dj and first term xj. Find det(A) in terms of xj’s and dj’s.

Exercise 1.41. Find the determinant of the n × n matrix whose entries from left to right and from top to

bottom are cos 1, cos 2, . . . , cos(n2), where all angles are measured in radians.

Exercise 1.42. Generalize Exercises 1.28 and 1.29.

Exercise 1.43. Suppose A,B ∈Mn(R) satisfy AB = BA. Prove that det(A2 +B2) ≥ 0.
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Exercise 1.44. Let r ∈ F and M be a positive real number. Prove that for every integer n ≥ 2, there is a

matrix A ∈Mn(F) for which detA = r and A has no entries with absolute value less than M .

Exercise 1.45. Suppose A,B are square matrices of the same size. Assume A is invertible. Prove there are

infinitely many real numbers r for which A+ rB is also invertible.

1.5 Summary

• Addition, subtraction, multiplication and division in C were discussed.

• Two complex numbers are the same whenever their real parts and imaginary parts are the same.

• Polar form of a complex number z is given as |z|eiθ, where eiθ = cos θ + i sin θ.

• ea+bi = ea(cos b+ i sin b).

• ezew = ez+w for every z, w ∈ C.

• When the scalars of a vector space are real numbers we say the vector space is a real vector space.

When the scalars are complex numbers we say it is a complex vector space.

• Most properties of matrices, vector spaces, linear transformations, and determinants remain the same

over R and C.
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Diagonalization of a Matrix

2.1 Change of Coordinates

In this section all vector spaces are assumed to be finite-dimensional.

Definition 2.1. Let B = (b1,b2, . . . ,bn) be an ordered basis for a vector space V . The coordinate vector

of a vector v ∈ V relative to B is a column vector (c1 c2 · · · cn)T for which v =
n∑
j=1

cjbj . This vector is

denoted by [v]B. The scalars c1, . . . , cn are called the coordinates of v in basis B.

Example 2.1. Find the coordinate vector of 2t+ 1 in ordered basis (1, 1 + t) for P1.

Theorem 2.1. Let B = (b1, . . . ,bn) be an ordered basis for the vector space V over F. Then, the function

T : V → Fn defined by T (v) = [v]B is an isomorphism.

Theorem 2.2. Let V and W be two vector spaces with ordered bases A = (a1,a2, . . . ,an) and B =

(b1,b2, . . . ,bm), respectively, and let T : V → W be a linear transformation. Then, there is a unique

m × n matrix A for which [T (v)]B = A[v]A. Furthermore, this matrix A can be obtained by the following

formula:

A = ([T (a1)]B · · · [T (an)]B) .

Notation. The unique matrix A in the previous theorem is called the matrix of T relative to bases A and

B, and is denoted by [T ]BA. So, in shorts we have [T (v)]B = [T ]BA[v]A.

Example 2.2. Consider the linear transformation T : F2 → P1 defined by T (a, b) = a+ b+ (a− b)t. Write

down the matrices of T relative to the following ordered bases:

(a) (e1, e2) for F2 and (1, t) for P1.

(b) ((1, 1), (0, 1)) for F2 and (t, 1− t) for P1.

Theorem 2.3. Suppose U, V,W are three vector spaces with ordered bases A,B, and C, respectively. Let

S : U → V , and T : V →W be linear transformations. Then, [T ◦ S]CA = [T ]CB[S]BA.

33
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Now, consider the identity transformation I : V → V defined by I(v) = v, from a vector space V to itself,

and let A,B be two ordered bases for V . We have [v]B = [I]BA[v]A. This matrix [I]BA is called the matrix

of change of coordinates from A to B, because it allows us to change the coordinates of a vector from a

basis A to a basis B.

Theorem 2.4. With the notations above, [I]BA = [I]−1
AB.

The above theorem is especially useful when one of the bases is a standard basis. If S is the standard basis

of Fn, then [I]SA = (a1 · · ·an), and thus

[I]AS = (a1 · · ·an)
−1
.

Example 2.3. Write down
(

2
3

)
in the ordered basis (

(
1
2

)
,
(

3
5

)
).

Example 2.4. Find the change of coordinate matrix from the ordered basis (1, 1 + t) to the ordered basis

(1 + 2t, 1− 2t) of P1. (You do not need to show these are bases of P1.)

Let A,B be ordered bases for a vector space V , and let T : V → V be a linear transformation. By what we

discussed

[T ]BB = [I]BA[T ]AA[I]AB = [I]BA[T ]AA[I]−1
BA.

We say [T ]BB and [T ]AA are similar matrices.

Definition 2.2. Two square matrices A,B of the same size are said to be similar if there is an invertible

matrix P for which A = PBP−1.

2.2 Eigenpairs and Diagonalization

Example 2.5. Evaluate A100v, where A =

 2 −3

−4 1

 ,v =

 1

−1


Definition 2.3. Suppose T : V → V is a linear transformation and v ∈ V is a nonzero vector for which

T (v) = λv for some λ ∈ F. We say λ is an eigenvalue, v is an eigenvector, and the ordered pair (λ,v) is

called an eigenpair of T . Similarly we define eigenvalues, eigenvectors, and eigenpairs of a square matrix A.

Theorem 2.5. λ is an eigenvalue of a square matrix A if and only if det(A− λI) = 0.

Definition 2.4. Given a square matrix A, the polynomial p(z) = det(A− zI) is called the characteristic

polynomial of A.

Remark. Note that if A is an n × n matrix, then det(zI − A) = (−1)n det(A − zI). Therefore, the roots of

det(zI − A) = 0 and det(A − zI) = 0 are the same. In some textbooks, det(zI − A) is defined to be the

characteristic polynomial of A.

Definition 2.5. A square matrix A is said to be diagonalizable if there is a diagonal matrix D and an

invertible matrix P for which A = PDP−1. In other words, a matrix is diagonalizable if it is similar to a

diagonal matrix.
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Theorem 2.6. A matrix A ∈ Mn(F) is diagonalizable if and only if there is a basis for Fn consisting of

eigenvectors of A. Furthermore, if (λ1,v1), . . . , (λn,vn) are eigenpairs of A whose eigenvectors form a basis

for Fn, then A = PDP−1, where

D =



λ1 0 · · · 0 0

0 λ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · λn−1 0

0 0 · · · 0 λn


, and P =

(
v1 · · · vn

)
.

Notation. The diagonal matrix whose diagonal entries are λ1, . . . , λn in this order is denoted by diag(λ1, . . . , λn).

In other words:

diag(λ1, . . . , λn) =



λ1 0 · · · 0 0

0 λ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · λn−1 0

0 0 · · · 0 λn


.

Remark. The process of finding an invertible matrix P and a diagonal matrix D for which A = PDP−1 is

called diagonalizing matrix A.

Example 2.6. Diagonalize the matrix A =

 2 −3

−4 1

. Use that to find An for every n.

Remark. For every nonzero integer n we have (PAP−1)n = PAnP−1.

Theorem 2.7. Every two similar matrices have the same characteristic polynomial and therefore they have

the same eigenvalues.

Theorem 2.8 (Fundamental Theorem of Algebra). Every polynomial p(x) of degree n with complex coeffi-

cients can be completely factored into linear terms. In other words, there are complex numbers c, a1, . . . , an

for which:

p(x) = c(x− a1) · · · (x− an).

Theorem 2.9. Eigenvectors corresponding to distinct eigenvalues are linearly independent. Furthermore, if

an n× n matrix A has n distinct eigenvalues, then it is diagonalizable.

Example 2.7. Show that the matrix

 1 2

0 1

 is not diagonalizable.

We will now look at some applications of diagonalization.

Suppose we want to define eA for a square matrix A. We could use the power series expansion of ex and

define eA by

eA = I +A+
A2

2!
+
A3

3!
+ · · · .

However, we would need to first show this infinite sum converges. Then, we need to find a way to evaluate

it.
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Example 2.8. Evaluate eA, where A =

 2 −3

−4 1

.

In general if A is diagonalizable we can find eA fairly easily.

Theorem 2.10. Suppose A is a diagonalizable matrix with A = PDP−1, where D = (λ1, . . . , λn). Then

eA = P diag(eλ1 , . . . , eλn) P−1.

2.3 More Examples

Example 2.9. Suppose (λ,v) is an eigenpair for a square matrix A with real entries. Prove that (λ,v) is

also an eigenpair for A.

Solution. By assumption Av = λv. Note that since for every two complex numbers z, w we have zw = z w

and z + w = z + w, we will obtain the following:

Av = λv⇒ Av = λv⇒ Av = λv.

Above we use the fact that all entries of A are real and thus A = A. Since v is nonzero, v is also nonzero

and thus (λ,v) is an eigenpair of A, as desired.

Example 2.10. Find the coordinate vector of 1− t+ 3t2 in each ordered basis of P2 below. Assume these

are bases.

(a) A = (1, t, t2).

(b) B = (t, 1, t2).

(c) C = (1 + t, 1− t2, t− t2).

Solution. (a) By definition the answer is (1 − 1 3)T .

(b) By definition the answer is (−1 1 3)T .

(c) For simplicity let p(t) = 1− t+ 3t2. We know [p(t)]A = (1 − 1 3)T . In order to find [p(t)]C we will find

[I]CA. Then use the fact that [p(t)]C = [I]CA[p(t)]A. By Theorem 2.2 we have

[I]AC =
(
[1 + t]A [1− t2]A [t− t2]A

)
=


1 1 0

1 0 1

0 −1 −1

 .

Therefore, by Theorem 2.4 we have the following:

[I]CA =


1 1 0

1 0 1

0 −1 −1


−1

=


1/2 1/2 1/2

1/2 −1/2 −1/2

−1/2 1/2 −1/2
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The final answer is obtained by evaluating [I]CA[p(t)]A. The answer is (3/2 − 1/2 − 5/2)T .

Example 2.11. Prove that a 2 × 2 matrix with complex entries is not diagonalizable if and only if it is

similar to a matrix of the form  a b

0 a

 ,

where a, b ∈ C and b 6= 0.

Solution. (⇒) Assume A is a 2× 2 matrix that is not diagonalizable. By Theorem 2.9 the two eigenvalues

of A must be identical. Assume a is the only eigenvalue of A and let v be an eigenvector corresponding to a.

Let w ∈ C2 be a vector that is not a scalar multiple of v. Since Av = av, the matrix A in the basis (v,w)

is of the form  a b

0 c

 .

Since this matrix is similar to A, its only eigenvalue must be a. Therefore, c = a. On the other hand b

cannot be zero, for otherwise A would be diagnozalizable.

(⇐) Assume A is similar to a matrix of the form a b

0 a

 ,

where a, b ∈ C and b 6= 0. On the contrary assume A is diagonalizable. Since the eigenvalues of A are both

a, we must have:

A = Q

 a 0

0 a

Q−1 = QaIQ−1 = aI.

Therefore,

P

 a b

0 a

P−1 = aI ⇒

 a b

0 a

 = P−1aIP = aI =

 a 0

0 a

 .

This implies b = 0, which is a contradiction. Therefore, A is not diagonalizable.

Example 2.12. Prove that if A and B are similar matrices, then detA = detB and tr A = tr B.

Solution. Since A and B are similar, B = PAP−1 for some invertible matrix P . By properties of determi-

nant, we have

det(PAP−1) = (detP )(detA)(detP−1) = (detP )(detA)(detP )−1 = detA.

Also, by Exercise 1.15, we have tr (PAP−1) = tr (P−1PA) = tr A. Therefore, detA = detB and tr A =

tr B, as desired.
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Example 2.13. Determine which of the following matrices are similar. 2 −2

1 2

 ,

 4 1

−1 0

 ,

 2 0

1 3

 ,

 3 2

1 1

 ,

 2 1

3 2


Solution. Let’s call these matrices A,B,C,D,E in order. We note that

detA = detC = 6, detB = detD = detE = 1.

Therefore, A and C may be similar and B,D,E may be similar. We notice tr A = 4 and tr C = 5 are not

the same. Therefore, A and C are also not similar. Thus, A and C are not similar to any of the above

matrices. Note that tr B = tr D = tr E = 4, so these three may be similar. The characteristic equations of

B,D and E are all z2 − 4z + 6 = 0 which has 2 distinct roots r, s. Thus, all matrices B,D,E are similar to

the diagonal matrix diag(r, s). This means B,D,E are all similar.

Definition 2.6. A square matrix A is said to be nilpotent if Ak = 0 for some positive integer k.

Example 2.14. Suppose a diagonalizable matrix A is also nilpotent. Prove that A = 0.

Solution. Since A is diagonalizable A = PDP−1 for some diagonal matrix D = diag(c1, . . . , cn). By

assumption, Ak = 0 for some positive integer k. Therefore,

(PDP−1)k = 0⇒ PDkP−1 = 0⇒ Dk = 0.

This implies

diag(ck1 , . . . , c
k
n) = 0⇒ ck1 = · · · = ckn = 0⇒ c1 = · · · = cn = 0⇒ D = 0.

Therefore, A = P0P−1 = 0, as desired.

Example 2.15. Prove that the set of all eigenvectors of a linear transformation T : V → V corresponding

to a fixed eigenvalue λ along with the zero vector, is a subspace of V . Prove a similar result for a square

matrix.

Solution. Let W be the set of all eigenvectors of T corresponding to λ along with the zero vector. We see

that x ∈ W if and only if T (x) = λx or x = 0, however T (0) = 0 = λ0. Therefore, x ∈ W if and only if

T (x) = λx, which is equivalent to (T − λI)(x) = 0, which is equivalent to x ∈ Ker (T − λI). Therefore,

W = Ker (T − λI) and hence it is a subspace of V . A similar argument works for a square matrix.

Example 2.16. Diagonalize each matrix or show the matrix is not diagonalizable.

A =


−1 −2 2

−2 −1 2

−2 −2 3

 , B =


−2 −4 5

−2 0 1

−3 −3 5

 , C =

 2 1

1 2
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Solution. det(A − λI) = −λ3 + λ2 + λ − 1. We guess λ = 1 as a root. After performing long division we

can factor this polynomial as (λ− 1)(−λ2 + 1). Therefore, the eigenvalues of A are 1, 1,−1.

For λ = 1 we can find the eigenvectors by solving the following:


−2 −2 2

−2 −2 2

−2 −2 2




x

y

z

 = 0⇒ −2x− 2y + 2z = 0⇒ z = x+ y.

This yields, two linearly independent eigenvectors for λ = 1: (1 0 1)T and (0 1 1)T .

For λ = −1 we can find the eigenvectors by solving the following:


0 −2 2

−2 0 2

−2 −2 4




x

y

z

 = 0⇒


−2y + 2z = 0

−2x+ 2z = 0

−2x− 2y + 4z = 0

⇒ z = x = y.

This yields an eigenvector (1 1 1)T for λ = −1. Therefore, A = PDP−1, where D = diag(1, 1,−1) and

P =


1 0 1

0 1 1

1 1 1

 .

det(B − λI) = −λ3 + 3λ2 − 4. By inspection a root of this polynomial can be obtained as λ = −1. After

performing long division we obtain −λ3 +3λ2−4 = (λ+1)(−λ2 +4λ−4) = −(λ+1)(λ−2)2. The eigenvalues

are λ = −1, 2, 2. Following the same process as before we can find an eigenvector for λ = −1. For λ = 2 we

need to solve the following:


−4 −4 5

−2 −2 1

−3 −3 3




x

y

z

 = 0⇒


−4x− 4y + 5z = 0

−2x− 2y + z = 0

−3x− 3y + 3z = 0

After solving we obtain z = 0 and y = −x. Therefore, the eigenspace corresponding to λ = 2 is one-

dimensional. This means we cannot find three linearly independent eigenvectors, which implies B is not

diagonalizable.

det(C−λI) = λ2−4λ+3. The eigenvalues, thus, are λ = 1, 3, which are distinct and thus C is diagonalizable.

After finding the eigenvectors we will get the following diagonalization of C:

C =

 −1 1

1 1

 1 0

0 3

 −1 1

1 1

−1

.
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Example 2.17. Find all scalars c for which the matrix A given below is not diagonalizable.

A =

 1 c

2 −1

 .

Solution. The characteristic polynomial is (1 − z)(−1 − z) − 2c = z2 − 1 − 2c. The eigenvalues of A are

then z = ±
√

1 + 2c. If the eigenvalues are distinct, then by Theorem 2.9 the matrix A is diagonalizable.

Suppose the two eigenvalues are identical. This means 1 + 2c = 0, which implies c = −1/2. In this case the

eigenvalues are both zero. If A were diagonalizable, then A = P0P−1 = 0, which is a contradiction, because

A is not the zero matrix. Therefore, the answer is c = −1/2.

Example 2.18. Find all scalars c for which λ = 1 is an eigenvalue of the matrix

A =


1 c −1

c 1 0

2 3 −1


Solution. λ = 1 is an eigenvalue of A if and only if det(A− I) = 0. This is equivalent to

det


1− 1 c −1

c 1− 1 0

2 3 −1− 1

 = 0

Expanding along the second row we obtain

−cdet

 c −1

3 −2

 = 0⇒ c(−2c+ 3) = 0.

Therefore, the answer is c = 0, 3/2.

Example 2.19. Show that the characteristic polynomial of an n × n matrix has degree n and its leading

coefficient is (−1)n.

Solution. We will prove this by induction on n. Suppose A = (aij) ∈Mn(F) and let B be the (n−1)×(n−1)

upper left corner submatrix of A. In other words,

A =

 B ∗

∗ ann

 .

This yields the following:

A− zI =

 B − zI ∗

∗ ann − z

 .

Expanding along the last row we obtain

det(A− zI) = (ann − z) det(B − zI) +

n−1∑
j=1

(−1)j+nanj detAjn,
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where Ajn is the matrix obtained by removing the j-th column and n-th row of A − zI. Since anj is a

constant and Ajn is of size (n− 1)× (n− 1), none of the terms ajn detAjn contains a term of the form zn.

By inductive hypothesis, the leading term of det(B − zI) is (−1)n−1zn−1. Therefore, the leading term of

(ann − z) det(B − zI) is −z(−1)n−1zn−1 = (−1)nzn, as desired.

2.4 Exercises

Exercise 2.1. Diagonalize each matrix or show it is not diagonalizable.
1 0 1

1 0 −1

0 0 0

 ,

 5 −4

6 −5

 ,


5 0 −3

2 1 −2

6 0 −4

 ,


1 0 0

1 1 1

0 0 1


Exercise 2.2. Suppose T : P3 → P2 is a linear transformation for which

T (t+ 2) = T (t3 + 2t− 1) = T (t2 − 1) = T (1) = t.

(a) Find the dimension of Ker T and a basis for this subspace.

(b) Find all polynomials p(t) for which T (p(t)) = 3t.

Hint: Use Theorem 1.14.

Exercise 2.3. Let A,P be two square matrices of the same size for which P is invertible. Using induction,

prove that (PAP−1)n = PAnP−1 for every nonzero integer n. Note that you would have to deal with the

cases where n is negative and positive separately.

Exercise 2.4. Prove that the characteristic polynomial of any matrix A ∈M2(F) is

p(z) = z2 − (tr A)z + detA.

Exercise 2.5. Find the change of coordinate matrix from the basis (t+1, 2t−1) for P1 to the basis (1, t+2).

(You may assume these are bases of P1.)

Exercise 2.6. Let n be a positive integer. For every 1 ≤ i, j ≤ n let fij(x) be a differentiable function.

Consider the n× n matrix A(x) whose (i, j) entry is fij(x). For example, when n = 2, we get the following

matrix

A(x) =

 f11(x) f12(x)

f21(x) f22(x)


Let F (x) = det(A(x)). In this problem we will find a formula for F ′(x).

For every i with 1 ≤ i ≤ n, let Ai(x) be the matrix obtained from A(x) by replacing the i-th row of A(x) with

the derivative of the i-th row of A(x), keeping everything else intact. In other words, the i-th row of Ai(x) is

(f ′i1(x) f ′i2(x) . . . f ′in(x)). For example, when n = 2, we get the following matrices

A1(x) =

 f ′11(x) f ′12(x)

f21(x) f22(x)

 , and A2(x) =

 f11(x) f12(x)

f ′21(x) f ′22(x)
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(a) When n = 2, prove that

F ′(x) = det(A1(x)) + det(A2(x)).

(b) Using induction on n, prove that

F ′(x) = det(A1(x)) + det(A2(x)) + · · ·+ det(An(x)).

Exercise 2.7. Construct a matrix A for which A3 = 0 but A2 6= 0.

Exercise 2.8. Find all eigenpairs of the linear transformation T : P2 → P2 defined by

T (at2 + bt+ c) = (a− b)t+ (c− b),∀a, b, c ∈ F.

You may assume T is linear.

Exercise 2.9. Suppose a square matrix A satisfies A2 − 2A+ 7I = 0. Prove that:

(a) A is invertible.

(b) A has no real eigenvalues!

Exercise 2.10. Let Fn be the sequence of Fibonacci numbers F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn for all

n ≥ 0.

(a) Prove that

 Fn+2

Fn+1

 = A

 Fn+1

Fn

, where A =

 1 1

1 0

. Deduce

 Fn+1

Fn

 = An

 F1

F0

 for

all n ≥ 1.

(b) Diagonalize A and evaluate An.

(c) Find an explicit formula for Fn.

Exercise 2.11. Suppose A,B ∈Mn(R) are invertible matrices. Is it true that A+ iB must be invertible?

Exercise 2.12. Suppose A is a 2× 2 matrix with eigenvalues 1 and 2. Find two sequences an, bn for which

An = anA+ bnI for all positive integers n.

Exercise 2.13. Suppose the list of all eigenvalues of an n× n matrix is

λ1, λ2, . . . , λn.

Prove that for every r ∈ F, the list of all eigenvalues of A+ rI is

λ1 + r, λ2 + r, . . . , λn + r.

Hint: Write down the characteristic polynomial of A in terms of λj ’s.

Exercise 2.14. Consider a 2× 2 matrix

A =

 a b

c d


with complex entries. Find the necessary and sufficient condition on a, b, c, d for which A is not diagonalizable.
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Hint: Find the characteristic polynomial. Under what condition are the eigenvalues identical? If the eigen-

values are identical and A is diagonalizable, show A = λI for some λ ∈ C.

Exercise 2.15. Consider the transformation T : F2 → F2 given by T (a, b) = (2a+ b, 3a− b).

(a) Prove T is linear.

(b) Find the matrix of T in the standard basis.

(c) Find the matrix of T in the ordered basis ((1, 2), (−1, 3)).

Exercise 2.16. Determine which of the following matrices are similar:

 2 1

1 0

 ,

 3 1

1 0

 ,

 −2 −1

−3 2

 ,

 2 3

1 1


Exercise 2.17. Consider the function T : C→ C defined by T (a+ bi) = (3a− b) + bi, for all a, b ∈ R.

(a) Is T linear, if C is considered a real vector space?

(b) Is T linear, if C is considered a complex vector space?

(c) In each case above, if T is linear find its matrix in the standard basis.

Exercise 2.18. Consider the matrix

A =

 a b− a

0 b

 .

(a) Evaluate A2, A3, and A4.

(b) Guess and prove a formula for An for every n ∈ Z+, once using induction and once using diagonalization.

Exercise 2.19. Let A =

 −2 3

−6 7


(a) Find a diagonalization of A.

(b) Using part (a) find four different matrices B for which B2 = A. You do not need to simplify your

answers.

Exercise 2.20. Given a square matrix A, prove that

(a) detA is the product of eigenvalues of A.

(b) tr A is the sum of eigenvalues of A.

Exercise 2.21. Suppose A and B are two square matrices of the same size that have the same eigenvalues.

(a) By an example show that A and B do not have to be similar.
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(b) Suppose all eigenvalues of A are distinct. Prove that A and B are similar.

Exercise 2.22. Suppose A ∈ M2(F) has eigenvalues λ1, λ2. Prove that every column of A − λ1I is either

zero or it is an eigenvector of A corresponding to λ2.

Hint: Use Cayley-Hamilton Theorem.

Exercise 2.23. State the converse of Theorem 2.7, and by an example show it is false.

2.5 Challenge Problems

Exercise 2.24. Let A ∈ Mn(C) be an invertible matrix with n distinct eigenvalues. Prove that there are

precisely 2n matrices B for which B2 = A.

Exercise 2.25. Let A ∈ Mn(R) be a matrix all of whose eigenvalues are real. Suppose A as a matrix in

Mn(C) is diagonalizable. Is it true that A is diagonalizable in Mn(R)?

Exercise 2.26. Suppose A,B ∈ Mn(R) are matrices that are similar in Mn(C). Is it true that A and B

must be similar as matrices of Mn(R)?

Exercise 2.27. Prove that if A,B are square matrices of the same size for which A + B = AB, then

AB = BA.

Exercise 2.28. Let Fn be the Fibonacci sequence given by F1 = F2 = 1, Fn+2 = Fn+1 + Fn for all n ≥ 1.

For every positive integer k, find a matrix A ∈Mk(R) for which

lim
n→∞

det(An)

Fn
= 1,

or show no such matrix exists.

Exercise 2.29. Suppose A1, . . . , An are diagonalizable matrices that commute pairwise. Prove that they can

all be simultaneously diagonalized. In other words, there is an invertible matrix P for which PAjP
−1 is

diagonal, for every j.

2.6 Summary

• The matrix of a linear transformation T relative to bases A and B is given by

[T ]BA = ([T (a1)]B · · · [T (an)]B) .

• The matrix of change of coordinates can often be found using [I]BA = [I]BS [I]SA and the fact that

[I]BS = [I]−1
SB.

• The matrix of a linear transformation T : V → V in two different bases of V are similar. (Similar

means B = PAP−1.)
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• To find eigenvalues of A, solve det(A− λI) = 0.

• To find eigenvectors of A solve Av = λv after having found an eigenvalue λ.

• A matrix is diagonalizable iff there is a basis of eigenvectors: A = PDP−1, where D = diag(λ1, . . . , λn),

and P = (v1 · · ·vn).

• Eigenvectors corresponding to distinct eigenvalues are linearly independent. Thus, if an n × n matrix

has n distinct eigenvalues, then it is diagonalizable.
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Chapter 3

Jordan Canonical Form

3.1 Triangularization

Not all matrices can be diagonalized. Fortunately, we can do something close to diagonalization!

Definition 3.1. A square matrix A is said to be upper triangular if all of its entries below the main

diagonal are zero.

Theorem 3.1 (Block Multiplication). Suppose matrices A and B are given as block matrices below

A =

 A11 A12

A21 A22

 , B =

 B11 B12

B21 B22

 ,

where Ajk, Bjk are themselves matrices. Then, assuming all appropriate multiplications and additions are

defined we obtain

AB =

 A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22


Theorem 3.2. Every square matrix with complex entries is similar to an upper triangular matrix with

complex entries.

Example 3.1. Write the following matrix in the form PTP−1, where T is upper triangular.
0 0 −1

5 2 3

2 0 3


Example 3.2. Give an example of a matrix with real entries that is not similar to an upper triangular

matrix with real entries.

Definition 3.2. Given a polynomial p(x) = amx
m + · · ·+ a1x+ a0 and an n× n matrix A we define

p(A) = amA
m + · · ·+ a1A+ a0I.

Theorem 3.3 (Cayley-Hamilton Theorem). Let A be a square matrix, and p(x) be the characteristic poly-

nomial of A. Then, p(A) = 0.

47
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3.2 Jordan Canonical Form

We have so far shown that every matrix is similar to an upper triangular matrix, but can we write these

upper triangular matrices in a more specific form? Let’s look at an example.

Example 3.3. Consider the matrix A =


2 0 1 0

0 2 −1 0

0 0 2 2

0 0 0 2

.

(a) Find all eigenpairs of A and show A is not diagonalizable.

(b) Find a basis for Ker (A− 2I)2.

(c) Find a basis for Ker (A− 2I)n for all n.

(d) Use that to write a matrix similar to A in an “almost diagonal” form.

Theorem 3.4. Let λ be an eigenvalue of an n× n matrix A. Then, there is an integer k ≤ n for which

Ker (A− λI) $ Ker (A− λI)2 $ · · · $ Ker (A− λI)k = Ker (A− λI)k+1 = · · · .

Definition 3.3. For an eigenvalue λ of an n× n matrix A, every nonzero vector in Ker (A− λI)n is called

a generalized eigenvector of A corresponding to eigenvalue λ. The vector space Ker (A − λI)n is called

the generalized eigenspace of A corresponding to eigenvalue λ.

Example 3.4. Suppose (λ,v) is an eigenpair of a square matrix A and p(x) is a polynomial. Prove that

p(A)v = p(λ)v.

Theorem 3.5. Generalized eigenvectors correspoding to distinct eigenvalues are linearly independent.

Definition 3.4. The multiplicity of a root r of a polynomial p(z) is m if

p(z) = (z − r)mq(z),

for some polynomial q(z) with q(r) 6= 0.

Theorem 3.6. The dimension of the generalized eigenspace corresponding to the eigenvalue λ for a square

matrix A is the same as the multiplicity of λ as a root of the characteristic polynomial of A.

The above theorem implies that given an n×n matrix A we can find a basis for Fn consisting of generalized

eigenvectors of A by finding a basis for each generalized eigenspace and putting all of these bases together.

Definition 3.5. A matrix is said to be in Jordan canonical form (or Jordan form for short) if it is a block

matrix of the form 

B1 0 · · · 0 0

0 B2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Bn−1 0

0 0 · · · 0 Bn


,
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where each Bj , called a Jordan block, is a matrix with an eigenvalue λj on its main diagonal, 1’s immediately

above the main diagonal, and zeros everywhere else. In other words:

Bj =



λj 1 0 · · · 0

0 λj 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · λj 1

0 0 · · · 0 λj


.

Example 3.5. Write down the following matrix in Jordan form:
2 −1 0

−1 5 −1

−4 13 −2


Theorem 3.7. Every matrix in Mn(C) is similar to a matrix in Jordan form. Furthermore, this matrix in

Jordan form is unique up to a permutation of Jordan blocks.

Example 3.6. How many 5×5 nonsimilar matrices in Jordan form are there all of whose eigenvalues are 0?

Example 3.7. Find the number of nonsimilar 6×6 matrices in Jordan form whose eigenvalues are 1, 2, 2, 3, 3, 3.

Theorem 3.8. Let A be a matrix in Mn(C) and J be a matrix in Jordan form that is similar to A. Then,

for every positive integer k, the number of Jordan blocks of J with size at least k × k corresponding to an

eigenvalue λ is given by

dim Ker (A− λI)k − dim Ker (A− λI)k−1.

Here (A− λI)0 = I and thus its kernel has dimension zero.

Using the above theorem, we can find the Jordan form of any matrix rather easily, however finding the matrix

P in A = PJP−1 is more difficult.

Example 3.8. The characteristic polynomial of a matrix A is p(z) = z6(z − 1)4. Suppose

dim Ker A = 1, and dim Ker (A− I) = 3.

Find a matrix in Jordan form that is similar to A.

To find P in A = PJP−1, where J is in Jordan form, start with a vector vk in Ker (A− λI)k that does not

lie in Ker (A − λI)k−1. Evaluate vectors vk−1 = (A − λI)vk, vk−2 = (A − λI)vk−1,. . . , v1 = (A − λI)v2.

Repeat this until you get enough vectors. These vj ’s give us columns of matrix P .

3.3 Applications of Jordan Canonical Form

Theorem 3.9. For any square matrix A with complex entries, there are matrices D and N of the same size

for which all of the following hold:
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• D is diagonalizable and N is nilpotent;

• The eigenvalues of D and A are the same;

• DN = ND; and

• A = D +N.

Previously we defined eA for any square matrix A by

eA =

∞∑
n=0

An

n!
,

but we never proved this sum in fact converges. Here we will prove that and we will also define f(A) for a

class of functions called analytic functions.

Definition 3.6. A function f : R → R is said to be analytic if there is a sequence an of real numbers for

which

f(x) =

∞∑
n=0

anx
n, for all x ∈ R.

Theorem 3.10. Suppose f : R→ R is analytic, i.e. f(x) =
∞∑
n=0

anx
n. Then, an =

f (n)(0)

n!
and

f(z) =

∞∑
n=0

anz
n, for all z ∈ C.

Definition 3.7. Given a sequence of matrices An = (aij,n), we define the matrix A = lim
n→∞

An to be the

matrix whose (i, j) entry is the limit of the sequence of (i, j) entries of An. In other words

lim
n→∞

(aij,n) = ( lim
n→∞

aij,n).

When An(t) is a sequence of matrices whose entries are functions of t, then their limit A(t) is defined the

same way for every real number t.

The following theorem can be easily proved using the above definition and properties of limit.

Theorem 3.11. Let j, k, ` be three positive integers and let An, Bn be two sequences of j × k matrices, and

Cn be a sequence of k × ` matrices. Let an ∈ F be a sequence of scalars. Suppose

lim
n→∞

An = A, lim
n→∞

Bn = B, lim
n→∞

Cn = C, and lim
n→∞

an = a.

Then,

• lim
n→∞

(An +Bn) = A+B.

• lim
n→∞

(AnCn) = AC.

• lim
n→∞

(anAn) = aA.
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Now, suppose f(t) is an analytic function. By Theorem 3.9, we can write A = D + N , where D is diago-

nalizable and N is nilpotent and ND = DN . We will define f(A) =
∞∑
k=0

akA
k, where

∞∑
k=0

akt
k is the Taylor

series for f(t). We will need to show
∞∑
k=0

akA
k converges for every matrix A.

Let pm(t) =
m∑
k=0

akt
k be the m-th partial sum of the Taylor series for f(t).

Since D is diagonalizable we can write D = S diag{λ1, . . . , λn} S−1. Since, pm is a polynomial, we have:

pm(D) = S diag{pm(λ1), . . . , pm(λn)} S−1

As m→∞, we have pm(λj)→ f(λj) for every j. Therefore,

f(D) = lim
m→∞

pm(D) = S diag{f(λ1), . . . , f(λn)} S−1.

From calculus, we know the Taylor polynomial of pm centered at x0 is given by

pm(x) =

∞∑
k=0

p
(k)
m (x0)

k!
(x− x0)k.

Substituting x = A and x0 = D, we see that

pm(A) =

∞∑
k=0

p
(k)
m (D)

k!
Nk.

Since N is nilpotent, Nn = 0 for some positive integer n. Therefore,

pm(A) =

n−1∑
k=0

p
(k)
m (D)

k!
Nk,

since Nn = Nn+1 = · · · = 0. As m→∞, p
(k)
m (D)→ f (k)(D). Therefore, we have:

f(A) = lim
m→∞

pm(A) =

n−1∑
k=0

f (k)(D)

k!
Nk.

This means the pm(A) converges and thus the power series for f(A) is convergent.

If we substitute f(x) = ex, we obtain: eA = eD
n−1∑
k=0

Nk

k!
.

(Note: We define A0 = I for every square matrix A.)

We summarize this in the following two theorems.

Theorem 3.12. Suppose f : R→ R is an analytic function, with its Taylor series given as f(t) =
∞∑
k=0

akt
k.

Then, for every matrix A ∈Mn(C), the series f(A) =
∞∑
k=0

akA
k converges. Furthermore, if A = D+N with

DN = ND, D diagonalizable, and N nilpotent, then f(A) =
n−1∑
k=0

f (k)(D)

k!
Nk.
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Theorem 3.13. Suppose f : R→ R is an analytic function, D = Pdiag(λ1, . . . , λn)P−1 is a diagonalizable

matrix. Then,

f(D) = Pdiag(f(λ1), . . . , f(λn))P−1.

Example 3.9. Evaluate sinA where A =

 1 1

3 −1

 .

Example 3.10. Evaluate eB , where B =

 1 1

0 1

 .

3.4 More Examples

Example 3.11. Suppose a matrix A with complex entries satisfies the equation A3 − A = 0. Prove that A

is diagonalizable.

Solution. First, note that in order to show A is diagonalizable it is enough to show the Jordan form J

similar to A is diagonal. Note that since A = PJP−1 we have PJ3P−1 = PJP−1, and thus J3 = J . Note

that using block multiplication of matrices we conclude that if B is a Jordan block of J then B3 = B. So,

we will have to show if B is a Jordan block for which B3 = B then B is diagonal. After calculation we can

see that the (1, 2) entry of B3 is 3λ which must be the same as the (1, 2) entry of B which is 1. However by

comparing the diagonal entries of B and B3 we conclude that λ3 = λ. This is impossible.

Example 3.12. Suppose A = PBP−1 for three square matrices A,B, P . Prove that eA = PeBP−1.

Solution. By definition eA = lim
m→∞

pm(A), where pm(z) =
m∑
k=0

zk

k!
. Substituting A = PBP−1 we obtain the

following:

pm(A) =

m∑
k=0

(PBP−1)k

k!
=

m∑
k=0

PBkP−1

k!
= P

(
m∑
k=0

Bk

k!

)
P−1 = Ppm(B)P−1.

By properties of limit we have the following:

eA = lim
m→∞

pm(A) = lim
m→∞

Ppm(B)P−1 = P
(

lim
m→∞

pm(B)
)
P−1 = PeBP−1.

Therefore, eA = PeBP−1.

Example 3.13. Find a matrix in Jordan form that is similar to the following matrix:

A =


−6 5 −3 9

−1 2 0 1

4 −4 4 −4

−5 3 −2 8

 .

Solution. The characteristic polynomial of A is det(A − zI) = z4 − 8z3 + 23z2 − 28z + 12. By inspection,

we see that z = 1 is a root. After performing long division we obtain the following:

z4 − 8z3 + 23z2 − 28z + 12 = (z − 1)(z3 − 7z2 + 16z − 12).
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By inspection, we find z = 2 as a root of z3−7z2 + 16z−12 = 0. Repeating this process we find out that the

four eigenvalues of A are 1, 2, 2, 3. For the eigenvalue z = 2, the eigenspace Ker (A− 2I) is one-dimensional

(and is generated by (1 1 2 1)T ). Thus, A is not diagonalizable and thus the Jordan block corresponding to

eigenvalue 2 must be 2× 2. Therefore, the matrix in Jordan form that is similar to A is
2 1 0 0

0 2 0 0

0 0 1 0

0 0 0 3

 .

Example 3.14. Suppose a 2× 2 matrix A satisfies tr A = 0. Prove that A2 = cI for some scalar c.

Solution. Since A is 2× 2 and tr A = 0, the matrix A must be of the form

A =

 a b

c −a

 .

The characteristic polynomial of A is p(z) = (a − z)(−a − z) − bc = z2 − a2 − bc. By the Cayley-Hamilton

Theorem, we must have p(A) = 0 and thus A2 = (a2 + bc)I, as desired.

Example 3.15. Find an explicit formula for An, where n is a positive integer, and

A =


1 1 −1

3 −3 7

2 −3 6

 .

Solution. The characteristic polynomial of this matrix is det(A− zI) = −z3 + 4z2 − 5z + 2. By inspection

we can find a root of this polynomial to be z = 1. Dividing by z− 1 and factoring we obtain (z− 1)2(2− z).

For z = 2 we find v1 = (1 2 1)T as an eigenvector. For z = 1 we see that Ker (A− I) is one-dimensional and

is generated by (0 1 1)T . We also obtain

(A− 2I)2 =


0 1 −1

3 −4 7

2 −3 5


2

=


1 −1 2

2 −2 4

1 −1 2

 .

The vector (x, y, z) is in Ker (A− I)2 if and only if

x− y + 2z = 0, and 2x− 2y + 4z = 0.

Solving for x we obtain x = y − 2z. Thus, elements of Ker (A− I)2 are of the form
y − 2z

y

2z

 = y


1

1

0

+ z


−2

0

1

 .
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Now, we will choose a vector in Ker (A− I)2 that does not belong to Ker (A− I). We set v3 = (1 1 0)T , and

v2 = (A− I)v3 =


1

−1

−1

 .

Since Av1 = 2v1, Av2 = v2 and Av3 = v2 + v3 we have the following decomposition:

A = PJP−1, where P =


1 1 1

2 −1 1

1 −1 0

 , and J =


2 0 0

0 1 1

0 0 1

 .

We know An = PJnP−1. By block multiplication of matrices Jn =

 2n 0

0 Bn

 , where B =

 1 1

0 1

.

Note that B = I + E, where I is the 2 × 2 identity matrix and E2 = 0. By the binomial theorem we have

Bn = I + nE +
(
n
2

)
E2 + · · · = I + nE. Therefore,

An =


1 1 1

2 −1 1

1 −1 0




2n 0 0

0 1 n

0 0 1




1 1 1

2 −1 1

1 −1 0


−1

.

Example 3.16. Find all A ∈Mn(C) satisfying A2 = A.

Solution. First, note that if λ is an eigenvalue of A, then Av = λv for some nonzero v and thus A2v = λ2v,

which implies λ2 = λ, since A = A2. Therefore, λ = 0, 1. We will now write A in Jordan form: A = PJP−1.

A2 = A ⇐⇒ PJ2P−1 = PJP−1 ⇐⇒ J2 = J.

By block multiplication of matrices B2 = B for every Jordan block of J . If B is of size more than 1× 1, then

the (1, 2) entry of B2 is 2λ, while the (1, 2) entry of B is 1. Therefore, λ = 1/2, which is a contradiction.

Therefore, all Jordan blocks of J are 1× 1, and thus A is diagonalizable. This means A2 = A if and only if

A = PDP−1, where D is a diagonal matrix whose diagonal entries are 0 and 1.

Example 3.17. Suppose A is a diagonalizable matrix all of whose distinct eigenvalues are λ1, . . . , λn. Prove

that

(A− λ1I) · · · (A− λnI) = 0.

Solution. For simplicity let f(x) = (x−λ1) · · · (x−λn). Suppose A = PDP−1, where D is a diagonal matrix.

We know f(A) = Pf(D)P−1, since Aj = PDjP−1 for every positive integer j. Therefore, it is enough to

show f(D) = 0. We will now prove this by induction on the size of D. If D is 1 × 1, then D = (λ1) = λ1I,

and thus f(D) = 0, as desired.
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Write D as

D =

 λ1 0

0 B

 ,

where B is a diagonal (n− 1)× (n− 1) diagonal matrix. Since the diagonal entries of B are λ2, . . . , λk and

possibly λ1, by inductive hypothesis we will have f(B) = 0. On the other hand f(λ1) = 0. Using block

multiplication of matrices,

f(D) =

 f(λ1) 0

0 f(B)

 = 0.

Therefore, f(D) = 0, as desired.

3.5 Exercises

Exercise 3.1. Prove that for every two square matrices A,B we have

det

 A ∗

0 B

 = det

 A 0

∗ B

 = detAdetB.

Here ∗ is an arbitrary matrix with an appropriate size.

Hint: Use block multiplication of matrices: I 0

0 B

 A C

0 I

 .

Exercise 3.2. Suppose all eigenvalues of a matrix A in Mn(R) are real. Prove that there is an upper

triangular matrix T and an invertible matrix P with real entries for which A = PTP−1.

Hint: Use the same proof as in Theorem 3.2.

Exercise 3.3 (Cayley-Hamilton for 2× 2 matrices). Let A = (aij) be a 2× 2 matrix.

(a) Find the characteristic polynomial p(z) = det(zI −A).

(b) Algebraically verify the Cayley-Hamilton Theorem for A.

Exercise 3.4. An incorrect “proof” of the Cayley-Hamilton Theorem is provided below:

“The characteristic polynomial is p(z) = det(A − zI). Substituting z = A we obtain p(A) =

det(A−AI) = det(A−A) = 0. This shows p(A) = 0, as desired.”

What is the flaw in this “proof”?

Provide two square matrices A,B of the same size for which det(A − BI) = 0, but p(B) 6= 0, where p(z) =

det(A− zI) is the characteristic polynomial of A.

Exercise 3.5. Suppose A is an invertible matrix. Use the Cayley-Hamilton Theorem to prove A−1 can be

written as a polynomial of A.
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Hint: Write down the characteristic polynomial p(z) = c0 + c1z + · · ·+ cnz
n. Then, use p(A) = 0. What is

c0?

Exercise 3.6. Recall that a square matrix A is called nilpotent if Ak = 0 for some positive integer k.

Suppose A is a nilpotent n× n matrix.

(a) Prove that 0 is the only eigenvalue of A.

(b) Use part (a) and the Cayley-Hamilton Theorem to show An = 0.

Exercise 3.7. Prove there is no matrix A ∈M2(C) for which

A2 =

 0 1

0 0

 .

Exercise 3.8. Suppose A ∈ Mn(C) has a single eigenvalue. Prove that there is a complex number c for

which A− cI is nilpotent.

Exercise 3.9. Let A be a square matrix.

(a) Consider the matrices I, A,A2, . . .. Using the fact that Mn(F) is a finite dimensional vector space over

F, prove that there are constants ci, not all zero, for which c0I+ · · ·+ckAk = 0, for some k ≤ n2. Deduce

that there is a nonzero polynomial f(z) for which f(A) = 0. (Do not use the Cayley-Hamilton Theorem

for this part.)

(b) Prove that if f(A) = 0 for a polynomial f and λ is an eigenvalue of A, then f(λ) = 0.

(c) Suppose g(z) 6= 0 is a monic polynomial with the smallest degree for which g(A) = 0. (Such a polynomial

exists by part (a).) Let p(z) be the characteristic polynomial of A. Prove that p(z) is divisible by g(z).

(Hint: Using long division write p(z) = g(z)q(z) + r(z), where q(z) and r(z) are the quotient and

remainder when p(z) is divided by g(z).)

(d) Use a method similar to the one in part (c) to show that if h(A) = 0 for some polynomial h(z), then

g(z) divides h(z), where g(z) is the polynomial in part (c). Use that to prove such a polynomial g(z) is

unique.

The polynomial g(z) in the above exercise is called the minimal polynomial of A.

Exercise 3.10. Let

A =


1 −1 3

0 1 2

0 0 −1

 .

Evaluate A7 −A6 −A5 +A4 + 3A− I.

Exercise 3.11. In each of the following determine if A is invertible. If it is, find an expression for A−1 as

a polynomial of A.
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(a) A is a 3× 3 matrix with eigenvalues 1 + i,−1 + 2i, 0.

(b) A is a 4× 4 matrix with eigenvalues 1 + i, 1− i, 2,−2.

Exercise 3.12. Show that a matrix is diagonalizable if and only if its Jordan form J is diagonal.

Exercise 3.13. Is it true that if a square matrix A satisfies A3 = A2, then A is diagonalizable?

Exercise 3.14. Suppose A,B ∈M2(C) for which (AB)2 = 0. Prove that (BA)2 = 0.

Hint: Prove det(BA) = tr (BA) = 0 and then use the Cayley-Hamilton Theorem.

Exercise 3.15. Two (n+ 1)× (n+ 1) matrices A and B with complex entries are given. Assume the list of

eigenvalues of both A and B is

1, 2, . . . , n− 2, n− 1, n, n.

Suppose further that neither A nor B is diagonalizable. Prove that A and B are similar matrices.

Hint: Find Jordan forms of A and B.

Exercise 3.16. Given nonzero numbers a1, . . . , an find the matrix in Jordan form that is similar to the

(n + 1) × (n + 1) matrix (shown below) whose entries immediately below the main diagonal are a1, . . . , an,

and all of its other entries are zero.



0 0 · · · 0 0

a1 0 · · · 0 0

0 a2 · · · 0 0
...

...
. . .

...
...

0 0 · · · an 0


.

Definition. For every positive integer n, the number of sequences of positive integers a1 ≤ a2 ≤ a2 ≤ · · · ≤ ak
satisfying a1 + a2 + · · ·+ ak = n is denoted by p(n).

The answer to the next problem could be in terms of the function p(n) defined above.

Exercise 3.17. How many n × n matrices J in Jordan form are there that have a single given eigenvalue

λ? How about if J were to have two distinct given eigenvalues λ1 and λ2?

Exercise 3.18. Suppose B is a Jordan block with eigenvalue λ, i.e. a square matrix of the form:

B =



λ 1 0 · · · 0

0 λ 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · λ 1

0 0 · · · 0 λ
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(a) Prove that B is similar to BT .

(b) Using part (a) and Jordan canonical form, prove that every matrix in Mn(C) is similar to its transpose.

Exercise 3.19. Suppose λ is an eigenvalue of a matrix A, and that λ is a root of the characteristic polynomial

of A with multiplicity k. Furthermore assume dim Ker (λI − A) = 1. Prove that dim Ker (λI − A)j = j for

all j ≤ k.

Exercise 3.20. Let A,B be two square matrices of the same size.

(a) Prove that det(AB + I) = det(BA+ I).

(b) Deduce that the characteristic polynomials of AB and BA are the same. Deduce, AB and BA have the

same eigenvalues.

(c) With an example show that AB and BA may not have the same eigenvectors.

Hint: For part (a) consider both products of the following block matrices: A I

I −B

 , and

 B I

I 0

 .

Exercise 3.21. Suppose the list of all eigenvalues of an n× n matrix is

λ1, λ2, . . . , λn.

Prove that for every positive integer k, the list of all eigenvalues of Ak is

λk1 , λ
k
2 , . . . , λ

k
n.

Exercise 3.22. Write the matrix A in the form PJP−1, where J is in Jordan form:

A =


3 −1 0 0

9 −3 0 0

0 0 5 −2

0 0 12 −5

 .

Use this to find eA. You could leave your answers as products of matrices.

Exercise 3.23. Let A be an n × n matrix. Recall that A can be written as A = D + N , where D is

diagonalizable, N is nilpotent and ND = DN . Also, recall that eigenvalues of A and D are the same.

(a) Using the fact that N is nilpotent, prove that for any positive integer m, we have Am =
n−1∑
k=0

(
m
k

)
Dm−kNk.

(b) Suppose every eigenvalue λ of A satisfies |λ| < 1. Prove that Dm approaches the zero matrix as m→∞.

(c) Prove that Am approaches the zero matrix as m→∞.

Hint: You may use the fact that exponential decay is faster than polynomial growth.
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Exercise 3.24. Suppose A is a square matrix satisfying A4 = A. Prove that A is diagonalizable.

Exercise 3.25. Find cos(A) and eA if A is each of the following matrices.
1 0 2

0 2 0

0 0 1

 ,

 2 1

0 2


Exercise 3.26. Suppose λ is an eigenvalue of an n×n matrix A for which Ker (A−λI)n−1 6= Ker (A−λI)n.

Prove that A is similar to a single Jordan block.

Exercise 3.27. Prove that for every analytic function f , two square matrices A,P of the same size, with P

being invertible, we have f(PAP−1) = Pf(A)P−1.

Exercise 3.28. Prove that for every block matrix

A =

 B 0

0 C

 ,

where B,C are square matrices, and every analytic function f : R→ R we have

f(A) =

 f(B) 0

0 f(C)

 .

Exercise 3.29. Consider the matrices

A =

 0 1

0 0

 , and

 0 0

−1 0

 .

Evaluate eA, eB and eA+B. Show that eAeB 6= eA+B.

Exercise 3.30. Prove Theorem 3.11.

3.6 Challenge Problems

Exercise 3.31. Suppose A,B are m × n and n ×m matrices, respectively, where n ≤ m. Let p(z), q(z) be

the characteristic polynomials of AB and BA, respectively. Prove that p(z) = zm−nq(z).

Exercise 3.32. Determine all complex numbers λ for which there is a square matrix A with λ as its eigenvalue

such that A2 = AT .

Exercise 3.33. Let A be an n × n matrix whose entries are all ±1 and that whose rows are pairwise

orthogonal. Prove that if A has an a× b submatrix all of whose entries are 1, then ab ≤ n.

Exercise 3.34. Prove that if for a square matrix A we know tr (Ak) = 0 for all positive integers k, then A

is nilpotent.

Exercise 3.35. Suppose A,B ∈M2(F) satisfy A = AB −BA. Prove that A2 = 0.
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Exercise 3.36. Suppose p(z) is a polynomial with complex coefficients. We know the number of roots of

p(z) in C does not exceed its degree. Let n be a positive integer. How many matrices A ∈ Mn(C) exist that

satisfy p(A) = 0?

Exercise 3.37. Suppose A,B,C,D are matrices of size m×m, m×n, n×m, and n×n, respectively. Prove

that if D is invertible, then

det

 A B

C D

 = det(A−BD−1C) detD.

Exercise 3.38. Prove that for every square matrix A we have sin2A+ cos2A = I.

Hint: First prove this identity for a diagonalizable and a nilpotent matrix.

3.7 Summary

• Every matrix can be upper triangularized over C.

• The Cayley-Hamilton Theorem states that every square matrix satisfies its characteristic equation.

• To find the Jordan form of a matrix A:

– Find all eigenvalues of A.

– For each eigenvalue λ, find the dimension dk of Ker (A− λI)k for k = 1, 2, . . . until they level off.

– The number of Jordan blocks of size at least k × k is evaluated by the formula dk − dk−1, with

d0 = 0.

– After determining how many Jordan blocks of each size we have, we can determine the blocks of

the Jordan form of A corresponding to eigenvalue λ.

– Repeat this for every eigenvalue and create a block matrix in Jordan form.

• To find P in A = PJP−1, start with a vector vk ∈ Ker (A − λI)k and repeatedly evaluate vj−1 =

(A− λI)vj . Columns of P are vj ’s.

• To find f(A) for a square matrix A and an analytic function f :

– Write A = D +N , using the Jordan form.

– Evaluate the least n for which Nn = 0.

– Find f(D), f ′(D), . . . , f (n−1)(D), using the formula: f(D) = S diag{f(λ1), . . . , f(λn)} S−1.

– f(A) =
n−1∑
j=0

f (j)(D)

j!
N j .

– When f(x) = ex, use the formula eA = eD
n−1∑
j=0

N j

j!
.



Chapter 4

Ordinary Differential Equations

4.1 Introduction

A differential equation is an equation involving derivatives of one or more functions. If there are some partial

derivatives in the equation we call the equation a partial differential equation (PDE), and if there are

no partial derivatives we say it is an ordinary differential equation (ODE). The order of a differential

equation is the largest integer n for which the equation involves the n-th derivative of one of the functions

we are solving for.

Example 4.1. Determine if each of the following is an ODE or a PDE. Find the order of each equation.

(a)

(
dx

dt

)2

+ x sin t = cosx.

(b)
∂y

∂t

∂y

∂s
+ y

∂z

∂t
= sin(st).

(c) y′′ + ty′ + y = cos t.

In this class we will only focus on ordinary differential equations. Note that the domain and range of all

solutions to differential equations are assumed to be subsets R.

The main questions that we are trying to answer are the following:

• What is the general solution of an ODE?

• Can we find solutions satisfying certain initial values?

• How many solutions are there satisfying given initial values?

• If finding an explicit formula for a solution is not possible, can we approximate the solution?

• What are all solutions that are constant?

• Are all solutions bounded? Are there any bounded solutions?

61
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• Are all solutions periodic? Are there any periodic solutions?

• What is the long term behavior of solutions?

• How do solutions change when we change their initial values?

4.2 Explicit First Order Equations

An equation of the form
dy

dt
= f(t) is called a (first order) explicit differential equation.

Example 4.2. Find all solutions of the differential equation
dy

dt
=

1

t2 − t
.

Theorem 4.1 (Existence and Uniqueness Theorem for Explicit Equations). Suppose f(t) is continuous over

an open interval (a, b). Then, for every t0 ∈ (a, b) and every real number y0, there is a unique solution to the

initial value problem
dy

dt
= f(t), y(t0) = y0.

This solution is given by

y(t) = y0 +

∫ t

t0

f(s) ds.

4.3 First Order Linear Equations

An n-th order linear differential equation in normal form (i.e. with the leading coefficient of 1) is an

equation of the form:

y(n) + an(t)y(n−1) + · · ·+ a2(t)y′ + a1(t)y = f(t).

f(t) is called forcing and ai(t)’s are called coefficients. This equation is often written as L[y] = f(t), where

L is the differential operator given by

L = Dn + an(t)Dn−1 + · · ·+ a2(t)D + a1(t).

Here, we write D instead of
d

dt
.

We would also like to explore initial value problems (i.e. equations along with initial values in a specific

format) or IVP’s of the form:



y(n) + an(t)y(n−1) + · · ·+ a2(t)y′ + a1(t)y = f(t).

y(t0) = y0

y′(t0) = y1

...

y(n−1)(t0) = yn−1

Example 4.3. Solve the equation: y′ + y = et.
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To solve an equation of the form
dy

dt
+a(t)y = f(t), we find a function A(t) for which A′(t) = a(t). Multiplying

both sides by eA(t) we can rewrite the equation as

d

dt
(eA(t)y) = eA(t)f(t).

Theorem 4.2 (Existence and Uniqueness Theorem for First Order Linear Equations). Suppose a(t) and

f(t) are continuous over an open interval (a, b). Let t0 ∈ (a, b) and y0 be a real number. Then, the initial

value problem given below has a unique solution defined over (a, b).

dy

dt
+ a(t)y = f(t), y(t0) = y0.

4.4 Separable Equations

A first order equation is called separable if it can be written in the form

dy

dt
= f(t)g(y).

The name “separable” refers to the fact that we can separate the variables and write the differential equation

in the form
dy

g(y)
= f(t) dt.

Solutions can then be obtained by simply integrating both sides.

Example 4.4. Solve the equation
dy

dt
= 2ty2 + 3t2y2. Can you find a solution that satisfies y(1) = 0?

Definition 4.1. A solution to a differential equation is called stationary or equilibrium or a fixed point

or a critical point if it is constant.

All stationary solutions of the separable equation
dy

dt
= f(t)g(y) are found by solving g(y) = 0 for y.

Example 4.5. Find all solutions of
dy

dt
= ty2 − ty, y(1) = 2.

4.5 Change of Variables

Example 4.6. Solve the equation y′ =
ey+t − y − t

y + t
.

An equation of the form
dy

dt
= f(at + by + c) can be transformed into a separable equation by substituting

u = at+ by + c.

Example 4.7. Solve the equation
dy

dt
=
y − t
y + t

.

To solve an equation of the form y′ = f(y/t) we use the substitution u = y/t. This yields y = ut, which

implies

y′ = u′t+ u⇒ u′t+ u = f(u)⇒ u′ =
f(u)− u

t
.
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This equation is separable that can be solved using the method discussed earlier.

One common example is equations of the form

dy

dt
=
ay + bt

cy + dt
(∗)

for constants a, b, c, d. For these we can use the substitution u = y/t.

Example 4.8. Solve the equation
dy

dt
=
y − t+ 1

y + t− 3
.

To solve equations of the form
dy

dt
=
ay + bt+m

cy + dt+ n

for constants a, b, c, d,m, n first choose T = t+ r, Y = y + s for constants r, s. Find r, s in such a way that

the equation turns into one of the form (∗). Then, use the substitution u = Y/T.

4.6 Exact Equations and Integrating Factors

Suppose the solution to a differential equation is given by an implicit equation φ(t, y) = constant. This is

equivalent to
dφ(t, y)

dt
= 0. Using the chain rule we obtain φt + φy

dy

dt
= 0.

Definition 4.2. An equation of the form M(t, y) + N(t, y)y′ = 0 is called exact over an open rectangle

R = (a, b)× (c, d) in the ty-plane, if there is a function φ(t, y) for which φt = M and φy = N over R.

All solutions of an exact equation are of the form φ(t, y) = c. The name exact refers to the fact that the left

hand side is exactly the derivative of one function.

Example 4.9. Solve the equation exy + 2x+ (2y + ex)
dy

dx
= 0.

Remark. Sometimes equations of the form M(t, y)+N(t, y)
dy

dt
= 0 are written as M(t, y) dt+N(t, y) dy = 0.

Theorem 4.3. Suppose M(t, y) and N(t, y) are continuous over the rectangle R = (a, b) × (c, d) in the

ty-plane. If φ(t, y) is a function satisfying φt = M and φy = N over R, then the general solution to the

differential equation M(t, y) +N(t, y)y′ = 0 over R is given by φ(t, y) = C, where C is a constant.

Question. How do we know which equations are exact?

From multivariable calculus we know φty = φyt, assuming second partials of φ are continuous. Therefore, in

order for an equation M + N
dy

dt
= 0 to be exact we need to make sure My = Nt. The following theorem

shows that under certain conditions, the converse is also true.

Theorem 4.4. Let M(t, y), N(t, y) be continuous and have continuous first partials over an open rectangle

R = (a, b) × (c, d). Then, there is a function φ(t, y) defined over R for which φt = M and φy = N if and

only if My = Nt.
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Example 4.10. Solve (xy2 + y + ex) + (x2y + x)
dy

dx
= 0.

Example 4.11. Solve the initial value problem 3t2y + 8ty2 + (t3 + 8t2y + 12y2)
dy

dt
= 0, y(2) = 1.

Example 4.12. Solve the equation 2ty + (2t2 − ey)
dy

dt
= 0.

When the equation is not exact one possible remedy is to multiply both sides by a factor µ(t, y) in such a

way that the equation becomes exact. Such a factor µ is called an integrating factor.

Example 4.13. Solve the equation: 4xy + 3y3 + (x2 + 3xy2)
dy

dx
= 0.

Example 4.14. Find all functions M(t, y) with continuous first partials for which t is an integrating factor

of the equation

M(t, y) + t
dy

dt
= 0.

4.7 More Examples

Example 4.15. Consider the differential equation y′ = f(t), where f(t) =

2t− 1 if t > 0

1 if t < 0

Find all

continuous solutions y to this differential equation.

Solution. Integrating we obtain y = t2 − t + C1 for t > 0, and y = t + C2 for t < 0. Since this function is

continuous, we must have

lim
t→0+

t2 − t+ C1 = lim
t→0−

t+ C2 = y(0).

Therefore, C1 = C2 = y(0). This means all solutions are of the following form:

f(t) =

t
2 − t+ C if t > 0

t+ C if t ≤ 0

where C is a constant.

Example 4.16. Consider the linear transformation T : C1(R) → C(R) given by T (f)(t) = f ′(t). Find all

eigenpairs of this transformation.

Solution. (λ, f(t)) is an eigenpair iff T (f)(t) = λf(t), which means f ′(t) = λf(t). Note that since f and f ′

are real valued functions and f(t) 6= 0, the scalar λ must be real. The equation f ′(t) − λf(t) = 0 is a first

order differential equation with integrating factor e−λt. This yields e−λtf(t) = c is a constant. Therefore,

f(t) = ce−λt yields all eigenvector of T , where c 6= 0 is a constant. This means all eigenpairs of T are of the

form

(λ, ceλt),

where c, λ ∈ R are constants and c 6= 0.
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Example 4.17. Solve each of the following differential equations.

(a) y′ + 2ty = 0.

(b) ty′ + y = sin t.

(c)
y′

cos t
+ y = 1.

(d) y′′ + y′ = 0

Solution. (a) Integrating 2t we obtain t2. Thus, one integrating factor is et
2

. This yields

d

dt

(
et

2

y
)

= 0⇒ et
2

y = C ⇒ y = Ce−t
2

.

(b) The left hand side is already the derivative of ty, so we can rewrite the equation as

d(yt)

dt
= sin t⇒ yt = − cos t+ C ⇒ y = −cos t− C

t
.

(c) Multiplying by cos t we obtain y′ + y cos t = cos t. An integrating factor is esin t. This yields the equation

d

dt

(
esin ty

)
= esin t cos t⇒ esin ty = esin t + C ⇒ y = 1 + Ce− sin t.

(d) This is not a first order equation, but if you think of z = y′ as a new function, then it becomes a first

order linear equation. An integrating factor is et. This yields

d

dt

(
ety′

)
= 0⇒ ety′ = C ⇒ y′ = Ce−t ⇒ y = −Ce−t +D,

where C,D are two constants.

Example 4.18. Discuss the long term behavior of solutions, i.e. the limit of each solution as t→∞.

(a) y′ + αy = α, where α is a constant.

(b) y′ + 2ty = 1.

Solution. (a) The integrating factor is eαt. Therefore, we can rewrite the equation as

d

dt

(
eαty

)
= αeαt ⇒ eαty = eαt + C ⇒ y = 1 + Ce−αt,

where C = y(0)− 1.

When α = 0, we have y = 1 + C is a constant.

When α > 0, we see that e−αt → 0 as t→∞. Therefore, y → 1.

When α < 0, e−αt →∞ as t→∞. Therefore, depending on if C = 0, C < 0 or C > 0, the solution stays at

1, tends to −∞, or tends to ∞ as t→∞.
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(b) The integrating factor is et
2

. The equation then becomes

d

dt

(
et

2

y
)

= et
2

⇒ et
2

y = C +

∫ t

0

es
2

ds⇒ y = Ce−t
2

+

∫ t

0

es
2−t2 ds.

As t → ∞, we have t2 → −∞ and thus e−t
2 → 0. The integral above cannot be evaluated, but we can

estimate this integral. Note that since we are looking for the limit of y as t→∞ we may assume 0 ≤ s ≤ t.

Note also that when x ≥ 0, the Taylor series for ex yields

ex = 1 + x+ · · · ≥ 1 + x⇒ e−x ≤ 1

1 + x
⇒ es

2−t2 ≤ 1

1 + t2 − s2
⇒
∫ t

0

es
2−t2 ds ≤

∫ t

0

1

1 + t2 − s2
ds.

The integral can now be evaluated using the method of partial fractions. For simplicity set a =
√

1 + t2.

Note that a > t ≥ s ≥ 0.

∫ t

0

1

a2 − s2
ds =

1

2a

∫ t

0

1

a+ s
+

1

a− s
ds =

1

2a
ln

(
a+ s

a− s

)
]s=ts=0 =

1

2a

(
ln

(
a+ t

a− t

)
− ln 1

)
=

1

2a
ln

(
a+ t

a− t

)
.

Substituting a =
√

1 + t2 we see the following:

a+ t

a− t
=

(a+ t)2

a2 − t2
= (a+ t)2 ⇒ ln

(
a+ t

a− t

)
= 2 ln(a+ t) ≤ 2 ln(2a).

Therefore, ∫ t

0

1

a2 − s2
ds ≤ 2 ln(2

√
1 + t2)

2
√

1 + t2
=

ln(2
√

1 + t2)√
1 + t2

.

As t→∞, so does
√

1 + t2. Since lnx grows slower than x, we have
ln(2
√

1 + t2)√
1 + t2

→ 0 as t→∞. Therefore,

by the squeeze theorem applies to

0 ≤
∫ t

0

es
2−t2 ds ≤ ln(2

√
1 + t2)√

1 + t2
,

we conclude that y → 0 as t→∞.

Example 4.19. Consider the differential equation y′ + αy = t. For which constants α does this equation

have at least one periodic solution?

Solution. Suppose y is a periodic solution. This means there is a positive constant p for which y(t+p) = y(t)

for all t ∈ R. This means y′(t+ p) = y′(t). Therefore,

y′(t+ p) + αy(t+ p) = y′(t) + αy(t).

Since y(t) is a solution to the given differential equation, the left hand side is t+ p, while the right hand side

is t. Therefore, p = 0, which implies no such constant α exists.

Example 4.20. Prove that the equation y′ + y = 2 sin t has a unique periodic solution.
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Solution. The integrating factor is et. This yields the equation

d

dt

(
ety
)

= 2et sin t⇒ ety = et(sin t− cos t) + C ⇒ y = sin t− cos t+ Ce−t.

Note that by the Extreme Value Theorem, a periodic continuous function must also be bounded. As t→ −∞,

e−t approaches infinity. Therefore, if C is nonzero, the function would be unbounded and thus not periodic.

Therefore, the only solution where y is peridic is y = sin t−cos t, which is clearly periodic with period 2π.

Example 4.21. Solve each differential equation.

(a)
dy

dt
=

tey

1 + t2
.

(b)
dy

dt
= cos(y + 2t)− 2.

(c)
dy

dt
=

ty + t

y2 + ty2
.

(d)
dy

dt
= ty2 − t+ 2y2 − 2.

(e)
dy

dt
=
y + 2t

2y + t
.

(f)
dy

dt
=
y + 2t+ 1

2y + t− 1
.

Solution. (a) This is a separable equation. First, note that ey cannot be zero and thus, there are no

stationary solutions.

Rearranging we have∫
e−y dy =

∫
t

1 + t2
dt⇒ −e−y =

1

2
ln(1 + t2) + C ⇒ −2e−y = ln(1 + t2) + C.

(b) We will use the change of variable u = y + 2t. This yields

u′ = y′ + 2 = cosu⇒ secu du = dt⇒ ln | secu+ tanu| = t+ C ⇒ | secu+ tanu| = eCet.

Since eC can be any positive constant we can drop the absolute value and write sec(y+2t)+tan(y+2t) = Cet

with C 6= 0.

The stationary solutions of the equation u′ = cosu are those satisfying cosu = 0 or u = πk +
π

2
. Therefore,

the solutions are

sec(y + 2t) + tan(y + 2t) = Cet with C 6= 0, and y + 2t = πk +
π

2
, with k ∈ Z.

(c) The equation is separable and can be written as
dy

dt
=

t

1 + t

y + 1

y2
. This means the only stationary

solution is y = −1.
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Rearranging and using long division we obtain:

y2 dy

y + 1
=

t

1 + t
dt⇒

∫ (
y − 1 +

1

y + 1

)
dy =

∫ (
1− 1

1 + t

)
dt⇒ y2

2
− y + ln |y + 1| = t− ln |1 + t|+ C.

Therefore, the solutions are

y = −1, and y + t+ C =
y2

2
+ ln

∣∣∣∣y + 1

1 + t

∣∣∣∣ .
(d) The equation can be written as

dy

dt
= (t + 2)(y2 − 1). This means it is a separable equation. The

stationary solutions must satisfy y2 = 1. Thus, there are two stationary solutions y = ±1.

Separating the variables we find the rest of the solutions:

dy

y2 − 1
= (t+ 2) dt⇒ 1

2

∫ (
1

y − 1
− 1

y + 1

)
dy =

t2

2
+ 2t⇒ 1

2
ln

∣∣∣∣y − 1

y + 1

∣∣∣∣ =
t2

2
+ 2t+ C.

Here, we used partial fractions to integrate
1

y2 − 1
.

(e) This is a function of y/t since
y + 2t

2y + t
=

y/t+ 2

2y/t+ 1
.

Setting u = y/t we obtain ut = y. Differentiating we have

u+ u′t = y′ =
u+ 2

2u+ 1
⇒ u′ =

2− 2u2

t(2u+ 1)
.

This is a separable equation. Its stationary solutions are obtained by solving 2 − 2u2 = 0, which yields

u = ±1. The nonstationary solutions are obtained as follows:

(2u+ 1) du

1− u2
=

2 dt

t
⇒ −3

2
ln |1− u| − 1

2
ln |1 + u| = 2 ln |t|+ C.

The integration on the left is obtained using partial fractions.

(f) Setting Y = y + r, T = t + s we have
dY

dT
=

dy

dt
, y = Y − r, t = T − s. Substituting we obtain the

following:

dY

dT
=
Y − r + 2T − 2s+ 1

2Y − 2r + T − s− 1
.

In order to homogenize this we need r + 2s = 1 and 2r + s = −1. This yields r = −1, s = 1. This yields the

equation
dY

dT
=
Y + 2T

2Y + T
.

By the previous part its solutions are

−3

2
ln |1− Y/T | − 1

2
ln |1 + Y/T | = 2 ln |T |+ C, and Y/T = ±1.

Substituting back Y, T in terms of y, t we obtain the solutions.
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Example 4.22. Solve each of the following equations:

(a) (t2 + y2 + 2t) dt+ 2ty dy = 0.

(b)
dy

dt
= − y sin(ty)

t sin(ty) + y
.

(c) sin2 y cos y dy + tan2 x dx = 0.

Solution. (a) (t2 + y2 + 2t)y = 2y, and (2ty)t = 2y. Since these are the same, the equation is exact. We

can find the solutions by solving the systemφt = t2 + y2 + 2t

φy = 2ty

The first equation yields φ =
t3

3
+ ty2 + t2 + f(y). Substiuting this into the second equation we obtain

2ty + f ′(y) = 2ty. Thus f(y) = 0 works. Therefore, the general solution is

t3

3
+ ty2 + t2 = C.

(b) This equation can be written as

(t sin(ty) + y)
dy

dt
+ y sin(ty) = 0 (∗)

We see (t sin(ty) + y)t = sin(ty) + ty cos(ty) and (y sin(ty))y = sin(ty) + yt cos(ty). Therefore, the equation

(∗) is exact. Its general solution may be obtained by solving the system:

φy = t sin(ty) + y

φt = y sin(ty)

The first equation yields φ = − cos(ty) + y2/2 + f(t). Substituting into the second equation we obtain

y sin(ty) + f ′(t) = y sin(ty). Thus, f(t) = 0 is a solution. The general solution is:

− cos(ty) +
y2

2
= C.

(c) This equation is both exact and separable and can be solved using either method.

Example 4.23. Show the following equations are not exact. In each case find an integrating factor and

solve. When necessary, the form of an integrating factor is given.

(a) (1 + 3t2 sin y) dt− t cot y dy = 0.

(b) (y + ty2) dt− t dy = 0.

(c) (t3y2 + y) dt+ (t2y3 + t) dy = 0; µ = ω(ty).

(d) (2 sin t+ (t+ y) cos t) dt+ 2 sin t dy = 0; µ = ω(t+ y).
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Solution. (a) (1 + 3t2 sin y)y = 3t2 cos y 6= (−t cot y)t = − cot y. Thus, the equation is not exact.

Let µ be an integrating factor. We must have

(µ+ 3µt2 sin y)y = (−µt cot y)t ⇒ µy + 3µyt
2 sin y + 3µt2 cos y = −µtt cot y − µ cot y.

Setting µy = 0 we obtain the following:

3µt2 cos y = −µ′t cot y − µ cot y ⇒ µ(3t2 cos y + cot y) = −µ′t cot y

This implies
µ

µ′
=

−t cot y

3t2 cos y + cot y
.

This is impossible since the right hand side is a function of both t and y but the left hand side is a function

of t, only.

Setting µt = 0, thus assuming µ is a function of y, only, we obtain the following:

µ′(1 + 3t2 sin y) = −µ(cot y + 3t2 cos y)⇒ µ′

µ
= −cot y + 3t2 cos y

1 + 3t2 sin y
= −cos y + 3t2 cos y sin y

sin y(1 + 3t2 sin y)
=
− cos y

sin y
.

Integrating we obtain ln |µ| = − ln | sin y| = ln | csc y|. Therefore, µ = csc y is one integrating factor.

(b) (y + ty2)y = 1 + 2ty 6= (−t)t = −1. Thus, the equation is not exact.

Let µ be an integrating factor. We must have

(yµ+ ty2µ)y = (−tµ)t ⇒ µ+ yµy + 2tyµ+ ty2µy = −µ− tµt.

Setting µy = 0 we obtain the following:

µ+ 2tyµ = −µ− tµ′ ⇒ µ(2 + 2ty) = −tµ′.

The left is a function of both t and y, while the right side is a function of t, only. So, this is impossible. We

will now try setting µt = 0. This yields:

µ+ yµy + 2tyµ+ ty2µy = −µ⇒ µ(2 + 2ty) + yµ′(1 + ty) = 0⇒ 2µ+ yµ′ = 0.

This equation is separable and yields ln |µ| = −2 ln |y| = ln |y−2|. Therefore, µ = 1/y2 is one integrating

factor. Therefore, the following equation is exact.

(
1

y
+ t

)
dt− t

y2
dy = 0.

The general solution is obtained by solving the system:
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φt =

1

y
+ t⇒ φ =

t

y
+
t2

2
+ f(y)

φy = − t

y2

Substituting into the second equation we obtain:

− t

y2
+ f ′(y) = − t

y2
⇒ f(y) = 0 works

The general solution, therefore, is
t

y
+
t2

2
= C.

(c) (t3y2 + y)y = 2t3y 6= (t2y3 + t)t = −2ty3 − 1. Thus, the equation is not exact.

Let µ = ω(ty) be an integrating factor. By the Chain Rule, we have µt = yω′(ty) and µy = tω′(ty). We also

have

(t3y2µ+ yµ)y = (t2y3µ+ tµ)t ⇒ 2t3yµ+ t3y2µy + µ+ yµy = 2ty3µ+ t2y3µt + µ+ tµt.

Substituting what we found above, we obtain the following:

(2t3y − 2ty3)ω = (−t4y2 − ty + t2y4 + ty)ω′ ⇒ 2ty(t2 − y2)ω = −t2y2(t2 − y2)ω′ ⇒ 2ω(ty) = −tyω′(ty).

This means we need to solve 2ω(x) = −xω′(x). This separable equation has a solution ω(x) = x−2. Therefore,

an integrating factor is µ = (ty)−2. Therefore, the equation below is exact:

(
t+

1

t2y

)
dt+

(
y +

1

ty2

)
dy = 0.

The solution satisfies 
φt = t+

1

t2y
⇒ φ =

t2

2
− 1

ty
+ f(y)

φy = y +
1

ty2

Substituting into the second equation we obtain

1

ty2
+ f ′(y) = y +

1

ty2
⇒ f(y) =

y2

2
is one solution.

The general solution is, therefore,
t2

2
− 1

ty
+
y2

2
= C.

(d) (2 sin t+ (t+ y) cos t)y = cos t 6= (2 sin t)t = 2 cos t. Thus, the equation is not exact.

Let µ = ω(t+ y) be an integrating factor. By the Chain Rule we have µt = ω′(t+ y) and µy = ω′(t+ y). We

have the following:

(2µ sin t+ (t+ y)µ cos t)y = (2µ sin t)t ⇒ 2µy sin t+ µ cos t+ (t+ y)µy cos t = 2µt sin t+ 2µ cos t.
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Using µt = µy = ω′ we will obtain the following:

(t+ y)ω′ cos t = ω cos t⇒ (t+ y)ω′ = ω ⇒ xω′(x) = ω(x)⇒ ω(x) = x works.

Therefore, t+ y is an integrating factor, which means the following equation is exact:

(2(t+ y) sin t+ (t+ y)2 cos t) dt+ 2(t+ y) sin t dy = 0

The solution can be obtained by solving the system below:


φt = 2(t+ y) sin t+ (t+ y)2 cos t

φy = 2(t+ y) sin t⇒ φ =
(t+ y)2 sin t

2
+ f(t)

Substituting in the first equation we obtain

2(t+ y) sin t+ (t+ y)2 cos t+ f ′(t) = 2(t+ y) sin t+ (t+ y)2 cos t⇒ f(t) = 0 works.

Therefore, the solution is given by
(t+ y)2 sin t

2
= C or (t+ y)2 sin t = C.

Example 4.24. Suppose φ(t, y) has first partial derivatives over a rectangle (a, b) × (c, d) in the ty-plane.

Prove that φ(t, y) = f(t) + g(y) for two differential functions f and g if and only if φty = 0.

Solution. First, assume φ(t, y) = f(t) + g(y). We have φt = f ′(t), and thus φty = 0.

Now, assume φty = 0. The equality φty = 0 implies φt = f(t) is independent of y for all y ∈ (c, d), and hence

a function of t, only. By integrating again we obtain φ(t, y) =

∫
f(t) dt + g(y) for some function g for all

t ∈ (c, d), as desired.

Example 4.25. Show that every equation of the form f(t) + g(y)
dy

dt
= 0 is exact.

Note: This means all separable equations can be written in the form of an exact equation.

Solution. We note that
∂f(t)

dy
=
∂g(y)

dt
= 0, and thus this equation is exact.

Example 4.26. Show that a first order linear equation
dy

dt
+a(t)y−f(t) = 0, where a(t), f(t) are continuous,

is exact if and only if a(t) = 0. Show that there is always an integrating factor that turns this equation into

an exact equation.

Solution. Suppose
dy

dt
+ a(t)y − f(t) = 0 is exact. We need to have

∂1

∂t
= 0 =

∂(a(t)y − f(t))

∂y
= a(t).
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Now, suppose µ is an integrating factor. We need to have µt = a(t)µ+ a(t)yµy − f(t)µy. Taking µy = 0 we

obtain µt = a(t)µ. We realize that µ = eA(t) is a solution if A′(t) = a(t).

Example 4.27. Find all constants c for which the equation

2t dt+ (t+ cy) dy = 0

has an integrating factor of the form µ = ω‘(t+ y). For each of these constants solve the equation.

Solution. Suppose µ = µ(t+ y) is an integrating factor. We must have the following:

(2tµ)y = (tµ+ cyµ)t ⇒ 2tµy = µ+ tµt + cyµt.

By the chain rule, we have µt = µy = ω′(t+ y). This yields the following:

2tω′ = ω + tω′ + cyω′ ⇒ (t− cy)ω′ = ω.

Since ω and thus ω′ are functions of t+ y, the function t− cy must also be a function of t+ y. This function

can be written as t− cy = t+ y − (1 + c)y. It is a function of t+ y if and only if c = −1. When c = −1 we

have (t+ y)ω′ = ω. One solution is µ = t+ y. This yields2t(t+ y) = φt

(t− y)(t+ y) = φy

The first equation yields φ =
2t3

3
+ t2y + f(y). Substituting this into the second equation we obtain

t2 − y2 = t2 + f ′(y)⇒ f(y) = −y
3

3
is one solution.

Therefore, the general solution is
2t3 − y3

3
+ t2y = c.

Example 4.28. Suppose M(t, y) and N(t, y) are continuous over a rectangle R = (a, b) × (c, d) and they

have continuous partials over R. Assume, further that M2 + N2 6= 0 over R. Prove 1/(M2 + N2) is an

integrating factor of M dt+N dy = 0 if Mt = Ny and My = −Nt.

Solution. By definition, for 1/(M2 +N2) to be an integrating factor the equation

M

M2 +N2
dt+

N

M2 +N2
dy = 0

must be exact. By Theorem 4.4 this equation is exact if and only if(
M

M2 +N2

)
y

=

(
N

M2 +N2

)
t

.

By the quotient rule this is equivalent to

My(M2 +N2)− (2MMy + 2NNy)M

(M2 +N2)2
=
Nt(M

2 +N2)− (2MMt + 2NNt)N

(M2 +N2)2
.
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Eliminating the denominator and combining like terms, this equality is equivalent to

My(N2 −M2)− 2MNNy = Nt(M
2 −N2)− 2MNMt.

Since by assumption My = −Nt and Ny = Mt the result follows.

4.8 Exercises

Solutions to some differential equations may be implicit.

Exercise 4.1. Draw a Venn Diagram for the following “sets”:

1. All ODE’s.

2. Separable Equations.

3. Linear Equations.

4. Explicit Equations.

5. Autonomous Equations.

6. Exact Equations.

7. Equations with Integrating Factors.

Exercise 4.2. Prove each function is a solution to the corresponding differential equation:

(a) y = 2t3/2 with t > 0; 2t1/2y′′ + t−1/2y′ − 6 = 0.

(b) y = sin(t2); ty′′ − y′ + 4t3y = 0.

(c) y = t4 + 17t3 + 14t; y(5) = 0.

Exercise 4.3. Find all solutions of the following differential equations:

(a)
dy

dt
= cos3 t sin t.

(b)
dy

dt
= tan2 t.

(c)
dy

dt
=

2

t2 − 1
.

(d)
dy

dt
=

2t

t4 + 1
.

(e)
dy

dt
=

1√
1− t2

.

(f)
dy

dt
= e2t−et .
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Exercise 4.4. Find a continuous solution y : R → R to the initial value problem and prove this solution is

unique.

y′ =

(t− 1)y if t > 0

(1− t)y if t < 0

y(0) = 2.

Exercise 4.5. Let p, f, g : R → R be continuous functions. Prove that for every y0 ∈ R there is a unique

continuous solution y : R→ R to the initial value problem

y′ + p(t)y =

f(t) if t > 0

g(t) if t < 0

y(0) = y0

Exercise 4.6. Solve each of the following initial value problems:

(a)
dy

dt
=
t2 + 1

t3 − t
, y(2) = 1.

(b)
dy

dt
= sin4 t, y(0) = 1.

(c)
dy

dt
= tan t, y(π) = 1.

(d)
dy

dt
=
√

3t− 1, y(1) = 2, t > 1/3.

(e)
dy

dt
= tet, y(0) = 1.

Exercise 4.7. Let y be the solution to the initial value problem
dy

dt
= sin(t3) + 2, y(−1) = 5. Evaluate y(1).

Exercise 4.8. Solve each differential equation:

(a) ty′ − 2y = 1/t, with t < 0.

(b) y′ cos t+ y = sin t, with t ∈ (−π2 ,
π
2 ).

Exercise 4.9. Find all real constants c or show no such constant c exists, for which the differential equation

y′ + cy = t has at least one solution that satisfies y(0) = 1, y(1) = −1.

Exercise 4.10. Find all bounded solutions of each equation:

(a) (t+ 1)y′ − y + 1 = 0.

(b) y′ = 2t+ 2ty.

Exercise 4.11. Find all continuous functions f : R→ R satisfying f(x) = 2+

∫ x

2

(t− tf(t))dt, for all x ∈ R.

Exercise 4.12. Find the general solution of each equation:

(a) ty′ + sec y = 0.

(b) (1 + t2)y′ + (1− y2)t = 0.

(c) y′ = cos y sin2 t.
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(d) y′ = y2 − (a+ b)y + ab, where a, b ∈ R are constants.

Exercise 4.13. Solve each of the following equations:

(a)
dy

dt
= (y − t)2

(b)
dy

dt
=
et+y

t+ y
− 1.

(c) y′ − 4t2 = 4yt+ y2.

(d) y′ =
y + t

y + t+ 1
.

Exercise 4.14. Find an integrating factor for the following equation, given the integrating factor is of the

form µ = tmyn.

(y − y2) + ty′ = 0.

Exercise 4.15. Find all stationary and nonstationary solutions of the equation
dy

dt
= yt− y − t+ 1.

Exercise 4.16. Solve the initial value problem (t2 + 1)y′ + y2 + 1 = 0, y(3) = 2. Your final answer must be

explicit and simplified.

Exercise 4.17. Prove that if y1, y2 are solutions to y′+a(t)y = f(t), then y1−y2 is a solution to y′+a(t)y = 0.

Exercise 4.18. Find all solutions to each equation satisfying the given condition:

(a) t2y′ sin y = 1, lim
t→∞

y(t) = π.

(b) y′ + 2y = 5 cos t, and y is periodic.

(c) y′ − 2ty = 0, and y is bounded.

(d) y′ =
y + t

y + t+ 1
, and y(0) = 1.

Exercise 4.19. Determine lim
t→∞

y(t), for all solutions of the differential equation y′ + y cos t = cos t. Find

your answer in terms of y(0).

Exercise 4.20. Solve the initial value problem (t2 + y2)
dy

dt
+ (3t2y + 2ty + y3) = 0, y(0) = 1.

Exercise 4.21. Find the general solution to each equation:

(a) (3ty2 + 2y) dt+ (2t2y + t) dy = 0.

(b) y cos t dt+ (y sin t+ sin t+ 1) dy = 0.

(c) (y cos t+ y2) dt+ (3 sin t+ 4yt) dy = 0.

(d) (7y + 8ty3) dt+ (t+ 3t2y2) dy = 0.

(e) (t2y + y + 1) dt+ (t+ t3) dy = 0.
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Exercise 4.22. Let f(t) and g(y) be continuous functions. Show that the equation

f(t)

y
+ 1 + (g(y) + t/y)

dy

dt
= 0

is not generally exact. Find an integrating factor and use that to find a general solution for this equation.

Exercise 4.23. Determine all constants c, for which the differential equation (t2 + y2) +
ct3 + t2

y

dy

dt
= 0 has

an integrating factor µ =
1

t2y2
. For all such constants c, solve the resulting equation.

Exercise 4.24. Find all curves of the form y = f(x) on the xy-plane that intersect the x-axis at an angle

of
π

4
and satisfy the differential equation xy′ + y = 2.

Exercise 4.25. Prove that the IVP

y′′ = et
2

, y(0) = 1, y′(1) = −1

has a unique solution.

Exercise 4.26. Let f : I → R be a continuous function, where I is an open interval, t0, t1 ∈ I , and

y0, y1 ∈ R. Prove that there is a unique function y defined over I for which

y′′ = f(t), y(t0) = y0, y
′(t1) = y1.

Exercise 4.27. Let f : I → R be a continuous function, where I is an open interval, t0, t1 ∈ I be distinct

real numbers, and y0, y1 be two real numbers. Prove that there is a unique function y defined over I for which

y′′ = f(t), y(t0) = y0, y(t1) = y1.

Exercise 4.28. Solve each second order IVP.

(a) y′′ = t2 + sin t, y(0) = 1, y′(0) = 0.

(b) y′′ = y′, y(0) = y′(0) = 2.

(c) y′′ + 1 = (y′ + t)2, y(0) = 1, y′(0) = 2.

(d) y′′ = (y′)2, y(0) = y′(0) = 1.

Hint: Substitute z = y′.

Exercise 4.29. Find all real constants y0, y1 for which the equation

y′′ = et
2

, y(0) = y0, y(1) = y1

has a unique solution defined over R.

Exercise 4.30. Suppose M(t, y) and N(t, y) have continuous first partials over a rectangle R. Prove that

the equation M(t, y) dt+N(t, y) dy = 0 has a C1 integrating factor of the form µ(y) if and only if
Nt −My

M
only depends on y.
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Exercise 4.31. Suppose M(t, y) and N(t, y) have continuous first partials over a rectangle R. Prove that the

function µ(t, y) with continuous first partials is an integrating factor for the equation M(t, y) dt+N(t, y) dy =

0 if and only if

µ (My −Nt) = Nµt −Mµy

on R.

In the next exercise we will prove that each first order IVP can be turned into one with initial time t0 = 0.

Exercise 4.32. Consider the IVP
dy

dt
= f(t, y), y(t0) = y0.

Set z(s) = y(s+ t0). Prove that the above IVP is equivalent to the following IVP

dz

ds
= f(s+ t0, z), z(0) = y0.

Exercise 4.33. Suppose M(t, y) and N(t, y) are continuous and have continuous first partials on the rectangle

R given by |t− t0| < a, |y − y0| < b. Assume My = Nt on R. Prove that the solution to the equation

M(t, y) +N(t, y)y′ = 0

is given by ∫ y

y0

N(t, u) du+

∫ t

t0

M(u, y0) du = C,

where C is a constant.

Exercise 4.34. Suppose the differential equation

M(t, y) dt+N(t, y) dy = 0 (∗)

is exact and has a nonconstant integrating factor µ(t, y). Prove that µ(t, y) = C is a solution to (∗).

4.9 Challenge Problems

Exercise 4.35. Suppose f : R → R is a continuous function. Prove that all solutions of the differential

equation y′ = f(t) are periodic with period L > 0 if and only if f is periodic with period L and

∫ L

0

f(t) dt = 0.

Exercise 4.36. Solve the initial value problem y2 + 2yy′ + 2t+ 2 = 2et, y(0) = 2.

Exercise 4.37. Suppose a, f : R→ R are continuous functions and c is a positive constant for which

lim
t→∞

f(t) = 0, and ∀ t ∈ R a(t) ≥ c.

Let y(t) be a solution to the differential equation y′ + a(t)y = f(t). Prove that

lim
t→∞

y(t) = 0.
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Exercise 4.38. Let a : R→ R be a continuous function. prove that all solutions of the equation y′+a(t)y = 0

are periodic with period L if and only if a(t) is periodic with period L and that

∫ L

0

a(t) dt = 0.

Exercise 4.39. Solve the equation
dy

dt
= − 2y + 3ty2

2t+ 4t2y2
.

Definition 4.3. Let k be a positive integer. A function f : Rn → R is said to be homogeneous of degree

k, if

f(tx1, tx2, . . . , txn) = tkf(x1, x2, . . . , xn),

for all t, x1, . . . , xn ∈ R.

Exercise 4.40. Suppose P (x, y) and Q(x, y) are homogeneous functions of the same degree with continuous

partial derivatives. Prove that 1
xP+yQ is an integrating factor for the equation

P (x, y) dx+Q(x, y) dy = 0.

Exercise 4.41. Solve each of the following:

(a) (t− ty) dt+ (t2 + y) dy = 0.

(b) (t2 + y2 + 1) dt− 2ty dy = 0.

(c) t2y′y + ty′ + ty2 + y − ty = 0.

Exercise 4.42. Suppose M(t, y) and N(t, y) have continuous partials over a rectangle R. Assume both t

and y are integrating factors for the equation

M(t, y) dt+N(t, y) dy = 0.

Prove that all solutions of this equation are either lines of the form y = Ct for a constant C, or satisfy

tN(t, y) = 0.

Exercise 4.43. Consider the differential equation

y′ = f(t, y) (∗)

over a rectangle R = (a, b)× (c, d) in the ty-plane, where f, ft, fy, fty = fyt are all continuous. Assume f 6= 0

on R. Prove that the equation (∗) is separable if and only if ffty = ftfy.

Exercise 4.44. Solve the initial value problem

y′′ + (cos t)y′ − (sin t)y = − sin t, y(0) = 1, y′(0) = 1.

4.10 Summary

• An explicit IVP
dy

dt
= f(t), y(t0) = y0 has a unique solution as long as f(t) is continuous. The solution

can be found by integrating both sides from t0 to t and using the initial condition y0 as the constant.
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• To solve a linear equation
dy

dt
+ a(t)y = f(t):

– Keep in mind that the goal is to write the left hand side as the derivative of one function.

– Find A(t) for which A′(t) = a(t).

– Rewrite the equation as
d

dt

(
eA(t)y

)
= eA(t)f(t). Then integrate both sides.

• Existence and Uniqueness Theorem for linear first order equations requires the coefficient a(t) and the

forcing f(t) to be continuous.

• To solve a separable equation of the form
dy

dt
= f(t)g(y):

– Find all stationary solutions by solving g(y) = 0.

– For nonstationary solutions: separate the variables and rewrite the equation as
dy

g(y)
= f(t)dt.

Then integrate both sides.

• There are three common types of equations that require change of variables:

1. Equations of the form y′ = f(ay+ bt+ c) can be solved by the change of variable u = ay+ bt+ c.

2. Equations of the form y′ = (ay + bt)/(cy + dt) can be solved by the change of variable u = y/t.

3. For equations of the form y′ = (ay+bt+m)/(cy+dt+n) we first do a translation Y = y+r, T = t+s

to determine which constants r, s change this equation into one of the form #2 above. After finding

r, s we proceed with the change of variable u = y/t. Note that some problems that might look

like #3 are actually instances of #1. So make sure you check for #1 first.

• An equation M +N
dy

dt
= 0 is exact if My = Nt.

• To solve an exact equation M + N
dy

dt
= 0 we will find φ(t, y) for which φt = M , and φy = N . The

solutions then are given by φ(t, y) = c.

• To solve equations using the integrating factor method:

– First check if the equation is exact.

– If it is not, multiply both sides by µ and set up the equation (µM)y = (µN)t.

– Find an appropriate µ. Generally, finding µ is not easy and there is no method that always works.

Test if µy = 0 would yield a function of t for µ, or if µt = 0 would yield a function of y for µ.

– Multiply both sides of the equation by µ, and solve the resulting equation using the method for

exact equations.
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Chapter 5

Existence and Uniqueness Theorems

5.1 Existence and Uniqueness for Linear Equations

Recall that a differential equation of the form

dny

dtn
+ an(t)

dn−1y

dtn−1
+ · · ·+ a2(t)

dy

dt
+ a1(t)y = f(t)

is called an n-th order linear differential equation in standard or normal form (i.e. the leading coefficient is

1). When f(t) = 0, we say the equation is homogeneous, otherwise we say it is nonhomogeneous.

Theorem 5.1 (Exietence and Uniqueness Theorem for Linear Equations). Let I be an open interval and let

aj(t), 1 ≤ j ≤ n, and f(t) be continuous over I. Then, for every t0 ∈ I and every y0, y1, . . . , yn−1 ∈ R, the

initial value problem 

dny

dtn
+ an(t)

dn−1y

dtn−1
+ · · ·+ a2(t)

dy

dt
+ a1(t)y = f(t)

y(t0) = y0

...

y(n−1)(t0) = yn−1

has a unique solution over I.

Example 5.1. Find the largest interval I for which the Existence and Uniqueness Theorem guarantees a

unique solution y(t) with t ∈ I to the IVP exists:

ty′′ +
tan t

t− 3
y′ − y = et, y(1) = 2, y′(1) = 4.

Example 5.2. Prove that sin(t2) cannot be a solution to a second order homogeneous linear differential

equation whose coefficients are continuous over (−1, 1).

5.2 Picard Iterates

Some initial value problems have multiple solutions despite the fact that all functions involved are continuous.

83
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Example 5.3. Solve the initial value problem y′ = y2, y(0) = 1. Show this solution is not defined over R.

Example 5.4. Find two solutions for the initial value problem

dy

dt
= 3y2/3, y(0) = 0.

We would like to know in what circumstances a first order initial value problem is guaranteed to have a

unique solution.

First, note that solving most differential equations is impossible, so we need to show the existence of a

solution without actually solving the equation, but how could this be done? We have seen this idea being

used previously when dealing with series.

Example 5.5. Prove that the function f(x) =
∞∑
n=1

sin(nx)

n2
is defined for every x ∈ R.

Similar to the above example we need to follow the following steps to prove a first order initial value problem

has a solution:

• Construct a sequence of functions yn(t) that approximate the solution.

• Prove that this sequence converges to a function y(t) as n approaches infinity.

• Show that y(t) is a solution to the IVP.

The IVP y′ = f(t, y), y(t0) = y0 can be written as y(t) = y0 +

∫ t

t0

f(s, y(s))ds. Let us call the right hand

side L(t, y). The first guess for a solution would naturally be y = y0. Our next estimate for the solution

will be evaluated by applying L to get y1 = L(t, y0), and the next approximation for the solution would be

y2 = L(t, y1), and so on.

Definition 5.1. Given an initial value problem
dy

dt
= f(t, y), y(t0) = y0, the Picard iterates associated to

this IVP are functions yn that are defined recursively by:

• y0 is the constant given by the initial value.

• For every n ≥ 0, we have yn+1 = y0 +

∫ t

t0

f(s, yn(s))ds.

Example 5.6. Compute the Picard iterates for the IVP y′ = y, y(0) = 1, and show they converge to the

solution to the given IVP.

Theorem 5.2 (Existence and Uniqueness Theorem). Suppose f(t, y) and
∂f

∂y
are continuous over a rectangle

R on the ty-plane given by t0 ≤ t ≤ t0 + a, |y − y0| ≤ b. Let M be the maximum value of |f(t, y)| over R,

and let α = min(a, b/M). Then the initial value problem

dy

dt
= f(t, y), y(t0) = y0 (∗)

has a unique solution y(t) defined over [t0, t0 + α]. Furthermore, |y(t) − y0| ≤ b for all t ∈ [t0, t0 + α]. A

similar result holds if the interval for t is changed to [t0 − α, t0] or [t0 − α, t0 + α].
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Remark. M does not have to be the exact value of the maximum of f over R. It is enough to find a value

of M for which |f(t, y)| ≤M for all (t, y) ∈ R.

Example 5.7. Consider the IVP
dy

dt
= t+ e−y

2

, y(0) = 0. Show that there is a solution defined over [0, 0.5]

and that the solution satisfies |y(t)| ≤ 1 for all t ∈ [0, 0.5].

The proof of Theorem 5.2 comes in two parts: (1) The existence of a solution, and (2) The uniqueness of the

solution. The proof of existence requires us to show Picard Iterates approach a solution. We will skip the

proof of existence, however we will prove the uniqueness using some facts from calculus.

Definition 5.2. Let I be an interval. A function f : I → R is said to be piecewise continuous if f has

only finitely many points of discontinuity inside each bounded interval.

Theorem 5.3. Suppose two piecewise continuous function f, g defined over an interval [a, b] satisfy

f(x) ≤ g(x) for all x ∈ [a, b].

Then, ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

A similar result holds if the interval [a, b] is replaced by [a,∞)

Example 5.8. Using the above theorem, prove that for every piecewise continuous function f(x) over an

interval [a, b] we have ∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx.

Prove a similar result if [a, b] is replaced by [a,∞).

Recall also that the Mean Value Theorem implies that if f(t, y) is continuous and fy exists, then for every

y1 < y2 there exists a real number c ∈ (y1, y2) for which f(t, y1)− f(t, y2) = fy(t, c)(y1 − y2).

Proof. (Uniqueness) Suppose z1(t), z2(t) are two solutions to (∗). Then,

|z1(t)−z2(t)| =
∣∣∣∣∫ t

t0

[f(s, y(s))− f(s, z(s))]ds

∣∣∣∣ ≤ ∫ t

t0

|f(s, y(s))−f(s, z(s))|ds =

∫ t

t0

|(z1(s)−z2(s))fy(s, c)|ds,

for some c between y(s) and z(s). (Note that c depends on s, but that is unimportant.) The existence of c

is guaranteed by the Mean Value Theorem.

Since |fy| is continuous over R and R is closed, by the Extreme Value Theorem there is a real number L for

which |fy| ≤ L over R. Thus, the integral above does not exceed L

∫ t

t0

|z1(s) − z2(s)|ds. To summarize, we

have shown

|z1(t)− z2(t)| ≤ L
∫ t

t0

|z1(s)− z2(s)|ds

for all t ∈ [t0, t0 + α].
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Let W (t) =

∫ t

t0

|z1(s) − z2(s)|ds. We know W ′(t) ≤ LW (t). We will multiply both sides by an integrating

factor to obtain:

e−LtW ′(t)− Le−LtW (t) ≤ 0⇒ d

dt
(e−LtW (t)) ≤ 0.

Integrating both sides from t0 to t and applying Theorem 5.3, we obtain e−LtW (t)− e−Lt0W (t0) ≤ 0. Since

W (t0) =

∫ t0

t0

|z1(s) − z2(s)|ds = 0 this implies W (t) ≤ 0. However W (t) ≥ 0, since |z1(s) − z2(s)| ≥ 0.

Therefore, W (t) = 0. Differentiating we get |z1(t)− z2(t)| = 0 or z1 = z2, as desired.

Example 5.9. Show that the following initial value problem has a unique solution over [0,
√

2
4+2
√

2
]:

y′ = e−t
2

+ y2, y(0) = 1.

Example 5.10. Show that the following initial value problem has a unique solution over [0,∞) :

dy

dt
= e−y

2

+ t4, y(0) = 1.

5.3 More Examples

Example 5.11. Find the largest interval for which a unique solution to each IVP is guaranteed to exist.

(a) ty′ + y = tan t, y(1) = −1.

(b) y′′ + ln(t− 1)y′ +
√

10− t2 y = 1, y(2) = 4.

Solution. (a) This IVP written in normal form is:

y′ +
y

t
=

tan t

t
, y(1) = −1.

We will use the Existence and Uniqueness Theorem for linear equations. For that we need all coefficients

and the forcing to be continuous. Therefore, we need t 6= 0 and t 6= kπ + π/2 for k ∈ Z. We also need the

initial value t0 = 1 to be inside the interval of definition. Therefore, the answer is (0, π/2).

(b) Similar to above, we need t − 1 > 0 and 10 − t2 ≥ 0. This yields t > 1 and −
√

10 ≤ t ≤
√

10. We also

need the initial value t0 = 2 to be inside the interval of definition. Therefore, the answer is (1,
√

10).

Example 5.12. Consider the initial value problem y′ = ty and y(0) = 1. Find all Picard iterates of this IVP

and show they converge to the solution.

Solution. This is a linear equation with integrating factor e−t
2/2. This yields

d

dt

(
e−t

2/2y
)

= 0⇒ e−t
2/2y = C ⇒ y = Cet

2/2.

Using the initial condition we obtain C = 1, and thus the solution is y = et
2/2.
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Picard iterates are

y0 = 1

y1 = 1 +

∫ t

0

s ds = 1 +
t2

2

y2 = 1 +

∫ t

0

s(1 +
s2

2
) ds = 1 +

t2

2
+

t4

2 · 4

y3 = 1 +

∫ t

0

s(1 +
s2

2
+

s4

2 · 4
) ds = 1 +

t2

2
+

t4

2 · 4
+

t6

2 · 4 · 6
Using induction on n we will prove

yn = 1 +
t2

2
+

t4

2 · 4
+

t6

2 · 4 · 6
+ · · ·+ t2n

2 · 4 · · · (2n)
.

The base case was proved above. For the inductive step we have

yn+1 = 1 +

∫ t

0

syn(s) ds = 1 +

∫ t

0

s+
s3

2
+ · · ·+ s2n+1

2 · 4 · · · (2n)
= 1 +

t2

2
+

t4

2 · 4
+ · · ·+ t2n+2

2 · 4 · · · (2n+ 2)
.

This completes the proof of the claim above. yn can be rewritten as

yn = 1 +
t2

2
+

t4

2 · 4
+ · · ·+ t2n

2 · 4 · · · (2n)
= 1 +

t2

2 · 1!
+

t4

22 · 2!
+ · · ·+ t2n

2nn!

This is the n-th partial sum of the Taylor series for et
2/2. This means yn tends to et

2/2 as n→∞.

Example 5.13. Suppose y = y0 is a stationary solution to a first order equation y′ = f(t, y), where f is

continuous over R2. Prove that all Picard iterates to the IVP y′ = f(t, y), y(t0) = y0 are the same, i.e.

yn(t) = y0 for all n and for all t ∈ R. Is the converse true?

Solution. Since y = y0 is a solution to the given equation, we obtain 0 = f(t, y0) for all t ∈ R. By definition

y1 = y0 +

∫ t

t0

f(s, y0)ds = y0 +

∫ t

t0

0ds = y0.

Therefore, y1 = y0. By repeating the same argument we obtain yn = · · · = y1 = y0. Thus, yn(t) = y0 for all n.

Now, assume yn(t) = y0 for all n. Therefore,

y1 = y0 ⇒ y0 = y0 +

∫ t

t0

f(s, y0)ds⇒
∫ t

t0

f(s, y0)ds = 0,

for all t ∈ R. Differentiating with respect to t we conclude that f(t, y0) = 0 and thus y = y0 is a stationary

solution to the equation y′ = f(t, y).

Example 5.14. Prove each equation has a unique solution over the given interval.

(a) y′ = e−y
2

+ e−t, y(0) = 2 given 0 ≤ t.
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(b) y′ = ey
2+t2 , y(0) = 0 given 0 ≤ t ≤ 1/e2.

(c) y′ = y2 + e−t, y(1) = 2 given |t− 1| ≤ (
√

5− 2)/2.

Solution. (a) First note that e−y
2

+e−t as well as its partial derivative with respect to y are both continuous.

Let a, b be two positive constants and assume 0 ≤ t ≤ a and |y − 2| ≤ b. We have

|e−y
2

+ e−t| ≤ e0 + e0 = 2⇒M = 2⇒ α = min(a, b/2).

Setting b = 2a we conclude that there is unique solution to the IVP over the interval [0, a]. Since a is arbi-

trary with a method similar to the one used in Example 5.10 we can show there is a unique solution over [0,∞).

(b) The function ey
2+t2 and its partial with respect to y are both continuous. For two positive constants a, b,

if |t| ≤ a and |y| ≤ b, then

ey
2+t2 ≤ ea

2+b2 ⇒M = ea
2+b2 ⇒ α = min(a, b/ea

2+b2).

Setting a = b = 1 we conclude that there is a unique solution with t ∈ [0, 1/e2].

(c) Similar to above y2 + e−t and its partial with respect to y are continuous. Let a, b be positive constants

and assume |t− 1| ≤ a, |y − 2| ≤ b. We have

|y2 + e−t| ≤ (b+ 2)2 + ea−1 ⇒M = (b+ 2)2 + ea−1.

For simplicity choose a = 1, this yields α = min(1, b
(b+2)2+1 ). Solving b

(b+2)2+1 = (
√

5− 2)/2 we obtain

2b = (
√

5− 2)(b2 + 4b+ 5)⇒ (
√

5− 2)b2 + (4
√

5− 10)b+ 5(
√

5− 2) = 0⇒ b2 − 2
√

5b+ 5 = 0⇒ b =
√

5.

This completes the proof.

Example 5.15. Consider the initial value problem

y′ = t2 + y2, y(0) = 0.

(a) Prove that this equation has a unique solution on |t| ≤ 1√
2
.

(b) Let y be the unique solution to this IVP. Prove that −y(−t) is also another solution to this IVP. Deduce

the solution to this IVP must be an odd function.

Solution. (a) First, note that t2 + y2 as a polynomial is continuous and has continuous partials. Therefore,

we may apply the Existence and Uniqueness Theorem.

Let a, b be two positive real numbers. Consider the rectangle R given by |t| ≤ a, |y| ≤ b. Over this rectangle

we have

|t2 + y2| ≤ a2 + b2 ⇒M = a2 + b2 ⇒ α = min(a,
b

a2 + b2
).
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The equation has a unique solution over [−α, α]. We would like to maximize α. Given a, we let f(b) =
b

a2 + b2
.

We have f ′(b) =
a2 − b2

(a2 + b2)
. Therefore, the maximum for f is obtained when b = a. This means the largest α

can be is min(a, 1
2a ). Setting a = 1√

2
we conclude the equation has a solution with |t| ≤ 1/

√
2.

(b) Let z(t) = −y(−t). By the Chain Rule we have z′(t) = y′(−t). Since y is a solution to the given IVP we

have

y′(−t) = (−t)2 + (y(−t))2 ⇒ z′(t) = t2 + (z(t))2.

This means z satisfies z′ = t2 + z2. On the other hand z(0) = −y(−0) = −y(0) = 0. Thus, z also satisfies

the given IVP. The uniqueness implies z = y. Therefore, −y(−t) = y(t), i.e. y is an odd function.

Example 5.16. Prove that the equation y′ =
sin(t+ ty2)

1− t2
, y(0) = 1 has a unique solution over (−1, 1).

Solution. Let a ∈ (0, 1) and b > 0. Note that f(t, y) =
sin(t+ ty2)

1− t2
and its partial fy =

2ty cos(t+ ty2)

1− t2
are continuous over the rectangle [−a, a] × [−b, b]. Furthermore, |f(t, y)| ≤ 1/(1 − a2) = M. Thus, if we

take α = min(a, b/M) = min(a, b(1 − a2)), then the equation has a unique solution over [−α, α]. Taking

b = a/(1 − a2), we obtain α = a. Thus, for every a ∈ (0, 1) the given initial value problem has a unique

solution over [−a, a]. Assume yn is the solution over [−1 + 1/n, 1 − 1/n] for n = 2, 3, . . .. By uniqueness

yn(t) = yn+1(t) for every t ∈ [−1+1/n, 1−1/n]. So, if we define y(t) = yn(t) for every t ∈ [−1+1/n, 1−1/n]

we can show this y is the unique solution over (−1, 1). The process is the same as the one in Example 5.10.

Example 5.17. Suppose y = y0 is a stationary solution to the autonomous equation y′ = g(y), where

g : R → R is a continuously differentiable function. Prove that for every t0 ∈ R, the solution y = y0 is the

unique solution to the initial value problem

y′ = g(y), y(t0) = y0, t ∈ R (∗)

Solution. We will show this IVP has a unique solution over any interval [t0, t0 + α] for every α > 0. Let

a > 0 and consider the rectangle R given by t0 ≤ t ≤ t0 + a, |y − y0| ≤ 1. Note that since y0 is a stationary

solution, g(y0) = 0. Therefore, by the Mean-Value Theorem there is c between y and y0 for which

|g(y)| = |g(y)− g(y0)| = |g′(c)(y − y0)| ≤ L,

where L is the maximum of g′ over |y−y0| ≤ 1, which is guaranteed to exist, by the Extreme Value Theorem,

since g′ is continuous. This yields M = L, which means α = min(a, 1/L). Letting a = 1/L we obtain α = 1/L.

Therefore, y = y0 is the unique solution over [t0, t0 + 1/L], so every solution to (∗) must be constant over

[t0, t0 + 1/L]. Now, we will consider the initial value problem y′ = g(y), y(t0 + 1/L) = y0. Similar to above

this initial value problem has the unique solution y = y0 over [t0 + 1/L, t0 + 2/L]. Therefore, every solution

to (∗) must be constant over [t0, t0 + 2/L]. Repeating this, we see that each solution to (∗) is constant over
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[t0, t0 + n/L]. Thus the only solution to (∗) over [t0,∞) must be y = y0. A similar argument shows y = y0

is the unique solution to (∗) over R.

A more general version of the above example is left as an exercise. See Exercise 5.25.

5.4 Exercises

Exercise 5.1. Find the largest interval that the Existence and Uniqueness Theorem for Linear Equations

guarantees the existence of a unique solution to each IVP:

(a) ty′′ + (t2 − sin t)y′ + 3
√
t2 − 1y = sin t, y(2) = 5.

(b) y′′′ + p(t)y′′ − q(t)y′ + tan t = csc t, y(π/4) = 2π/3, where p(t), q(t) are polynomials.

(c) y′′ − ln(2−
√
t− 1)y = et, y(0) = 6.

Exercise 5.2. In this chapter we proved that sin(t2) is not a solution to any second order homogeneous

linear differential equation. (See Example 5.2.) Let n be a positive integer. Prove that the function sin(tn)

is not a solution to any homogeneous linear differential equation in standard form of order not exceeding n,

for which its coefficients are all continuous over (−1, 1).

Hint: Taylor series for sin t might help.

Exercise 5.3. Consider the following IVP:

y′ cos t− y sin t = cos t, y(0) = 1.

(a) Using the Existence Uniqueness Theorem for Linear Equations prove that the largest interval for which

a unique solution is guaranteed to exist is (−π/2, π/2).

(b) Find the solution.

(c) Prove a solution exists over the larger interval (−3π/2, π/2). Hint: Some trigonometric identities would

help change the format of the solution.

Exercise 5.4. Consider the IVP y′ = ey, y(0) = 0.

(a) Prove that the Existence and Uniqueness Theorem guarantees the existence of a solution over (−1/e, 1/e).

(b) By solving the equation show that a solution exists over the larger interval (−∞, 1).

Exercise 5.5. Prove that each IVP has a unique solution over the given interval:

(a) y′ = e−t
2

+ y4, y(0) = 0, with 0 ≤ t ≤ 0.5.

(b) y′ = t+ y2, y(0) = 0, with 0 ≤ t ≤ (1/2)2/3.

(c) y′ = sin t+ cos(ty), y(1) = 5, with t ∈ R.
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(d) y′ =
sin(t+ y)

1 + t2 + y2
, y(0) = 0, with t ∈ R.

(e) y′ = sin(ty2 + y) + cos t, y(0) = −1, with t ∈ R.

(f) y′ =
e−y

2

t2 + 4t+ 5
, y(0) = 2, with t ∈ R.

(g) y′ = t(y + 1), y(0) = −1, with t ∈ R. Hint: This one is different from all the others!

Exercise 5.6. Consider the following initial value problems.

1. ty′ = 2y − 2, y(0) = −1.

2. ty′ = 2y − 2, y(0) = 1.

Prove that the first IVP has no solutions, while the second one has multiple solutions. How do you reconcile

these with the Existence and Uniqueness Theorem, i.e. Theorem 5.2?

Exercise 5.7. Prove that the IVP has infinitely many solutions: y′ = −2t
√

1− y2, y(0) = 1. How do you

reconcile this with the Existence and Uniqueness Theorem?

Exercise 5.8. Consider the initial value problem y′ = 3y + 2, y(0) = −0.5.

(a) Solve the IVP.

(b) Find the Picard iterates yn(t) of this equation.

(c) Does yn(t) approach the solution found in part (a)?

Exercise 5.9. Let t0, y0 be real numbers. Suppose for every real number r > t0 the initial value problem

y′ = f(t, y), y(t0) = y0 has a unique solution over [t0, r]. Prove that there is a unique solution to the initial

value problem y′ = f(t, y), y(t0) = y0 over [t0,∞).

Exercise 5.10. Suppose f(t, y) is continuous and bounded on R2. Assume also that fy is continuous over

R2. Prove that for every t0, y0 ∈ R the IVP y′ = f(t, y), y(t0) = y0 has a unique solution defined over R.

Exercise 5.11. For each initial value problem find yn(t), the n-th Picard iterate. Show that this sequence

approaches the solution to the equation.

(a) y′ = y + 1− t, y(0) = 1.

(b) y′ = ty + 2t− t3, y(0) = 0.

(c) y′ = 2y, y(0) = 0.

Exercise 5.12. Prove that the initial value problem
dy

dt
= sin t + 3

√
1 + y2, y(0) = 0 has a unique solution

defined over R.

Exercise 5.13. Prove y = sin t is the only solution to the following IVP

y′ =
2 cos t

y2 + cos2 t+ 1
, y(0) = 0, t ∈ R.
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Exercise 5.14. Suppose f, g : R → R are continuous, and p, q : R → R are continuously differentiable

functions. Prove that for every t0, y0 ∈ R the following IVP has a unique solution defined over R.

y′ = f(t)p(cos y) + g(t)q(sin y), y(t0) = y0.

Hint: M does not depend on b.

Exercise 5.15 (Existence and Uniqueness Theorem for Separable Equations). Suppose f(t) is continuous

over an open interval (t0 − a, t0 + a) and g(y) is differentiable over an interval (y0 − b, y0 + b). Prove that,

the IVP

y′ = f(t)g(y), y(t0) = y0

has a unique solution defined over some open interval (t0 − ε, t0 + ε).

Exercise 5.16. Suppose y = y0 is a stationary solution for the first order autonomous equation

dy

dt
= f(y).

Assume f : R → R is C1. Prove that if y is a nonstationary solution to y′ = f(y) defined over an open

interval I, then either y(t) > y0 for all t ∈ I or y(t) < y0 for all t ∈ I.

Hint: Use Example 5.17.

Exercise 5.17 (Gronwall’s Inequality). Suppose f : R→ R is continuous and nonnegative. Assume A,B,C

are three positive constants for which

f(t) ≤ A+B

∫ t

0

f(s) ds for all t ∈ [0, C].

Prove f(t) ≤ AetB for every t ∈ [0, C].

Exercise 5.18. Consider the linear IVP of order n:

L[y] = f(t), y(t0) = y0, . . . , y
(n−1)(t0) = yn−1.

Suppose this IVP has two distinct solutions. Prove that it must have infinitely many solutions.

Hint: Assume y1, y2 are two distinct solutions. Use y = cy1 + (1− c)y2.

Exercise 5.19. Suppose f : R→ R is a C1 even function. Assume y0(t) is a solution to the IVP

y′ = f(y), y(0) = 0.

Prove that y0 is an odd function defined over some open interval (−ε, ε).

Hint: First, prove that the given IVP has a unique solution over some interval centered at the origin. Then,

show that −y0(−t) is a solution to the same IVP.

Exercise 5.20. Consider the initial value problem

y′ = |t|+ e−y
2

, y(0) = 0.
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(a) Prove that this equation has a unique solution on R.

(b) Prove the solution to this IVP is an odd function.

Hint: Let y be the unique solution to this IVP. Prove that −y(−t) is also another solution to this IVP.

Exercise 5.21. Consider the initial value problem

y′ = y(1− y), y(0) = y0.

(a) Show that if y0 ∈ [0, 1], then there is a unique solution to this IVP that is defined over R.

(b) Show that if y0 > 1, then there is a unique solution to this IVP that is defined over (c,∞) for some

constant c. Find the smallest such c in terms of y0.

(c) Show that if y0 < 0, then there is a unique solution to this IVP that is defined over (−∞, c) for some

constant c. Find the largest such c in terms of y0.

Hint: Use Example 5.17.

Exercise 5.22. Consider the initial value problem

y′ = (y − 1)2, y(0) = 0.

Show that both of the following functions are solutions to this IVP.

(1) y =
t

1 + t
if t 6= −1, and (2) y =

t/(1 + t) if t > −1

(1 + t)/(2 + t) if t < −1

How do you reconcile this with the Existence and Uniqueness Theorem for first order equations?

Exercise 5.23. Show that for every real numbers t0, t1, y0, y1 the following has a unique solution defined

over R:

y′′ = sin(t+ y′) + t2, y(t0) = y0, y
′(t1) = y1.

Exercise 5.24. Consider the differential equation
dy

dt
= sin2 y − 2y.

(a) Find all stationary solutions of this differential equation.

(b) Suppose y is a nonstationary solution to this differential equation with y(0) = y0, for some y0 ∈ R.

Determine whether y is concave up or concave down. Your answer may depend on y0.

Exercise 5.25. Suppose y = y1 is a solution to the IVP

y′ = f(t, y), y(t0) = y0, t ∈ (a, b) (∗)

Assume f(t, y) and fy(t, y) are continuous over an open subset containing the graph of y1(t) in the ty-plane.

Prove that y1 is the unique solution to (∗).
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Hint: Assume y1 and z are two distinct solutions to this IVP, and assume y(t1) 6= z(t1), where t0 < t1.

From now on, restrict the domain of both y and z to [t0, t1]. Note that (y − z)(t0) = 0, and since y − z is

continuous, (y− z)−1(0) is a closed nonempty subset of [t0, t1]. For simplicity let K = (y− z)−1(0). Show K

is compact. Then, use the Extreme Value Theorem to show K has a maximum element c. Now, use the fact

that y(c) = z(c) and the Existence and Uniqueness Theorem to show y = z on an open interval containing

c. Use this to obtain a contradiction.

5.5 Challenge Problems

Exercise 5.26. Prove that the following initial value problem has a unique solution defined over [0,∞):

dy

dt
= y + e−y + e−t, y(0) = 0.

Exercise 5.27. Suppose y is a solution to the IVP below defined over [0, α]:

y′ = yf(t, y), y(0) = 1,

where f(t, y) is a bounded, and f, fy are both continuous on R2. Prove that there is a constant C for which

|y(t)| ≤ eCt for all t ∈ [0, α].

Exercise 5.28. Find all solutions to the initial value problem

y′ = 3y2/3, y(0) = 0.

Exercise 5.29. Are there any solutions to the differential equation y′ = t2 + y2 that is defined over R?

5.6 Summary

• In order to make sure a linear IVP has a unique solution:

– Write down the linear equation in normal form.

– Find all points of discontinuity for all coefficients and forcing and place them on a number line.

– Find the largest interval that contains t0 and does not contain any of the points of discontinuity.

• Picard iterates can be found using yn+1 = y0 +

∫ t

t0

f(s, yn(s))ds.

• To find an interval in which the Existence and Uniqueness Theorem for y′ = f(t, y) is valid:

– Start with two positive constants a, b and assume t0 ≤ t ≤ t0 + a and |y − y0| ≤ b.

– Find M , the maximum of |f(t, y)| for t and y given above. If the exact value of M is difficult to

find, find some upper bound for |f(t, y)| and call that M .

– Evaluate α = min(a, b/M).

– Find a and b for which α is the number given in the problem.
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– If that seems difficult, in terms of a, find b that maximized b/M . Then find out when a ≤ b/M

and when a > b/M .

– A unique solution exists over [t0, t0 + α].

– For intervals of the form [t0 − α, t0] or [t0 − α, t0 + α] use the same process.
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Chapter 6

Numerical Methods

6.1 Numerical Approximations; Euler’s Method

Throughout this chapter, we assume a unique solution to the initial value problem
dy

dt
= f(t, y), y(t0) = y0

exists over [t0, t0 + a], the function f(t, y) and its partials ft and fy are all continuous over a rectangle R

given by t0 ≤ t ≤ t0 + a, |y − y0| ≤ b. The objective is to approximate y(t0 + a). We divide [t0, t0 + a] into

N subintervals of equal width. Each subinterval has width h = a/N . We let tn = t0 + nh, and note that the

solution has slope f(t0, y0) at point (t0, y0). This means y(t1) can be approximated by y1 = y0 + hf(t0, y0).

Repeating this, we get the following sequence of approximations:

y0 = y(t0)

y1 = y0 + hf(t0, y0)

y2 = y1 + hf(t1, y1)
...

yN = yN−1 + hf(tN−1, yN−1)

Example 6.1. Approximate y(0.2) using the Euler’s method once with 1 and once with 2 steps:

y′ = y2 + t2, y(0) = 1.

Compare these with the value y(0.2) ≈ 1.25302

As usual, after any approximation we need to understand the error. We will do so by the so called Lagrange

Remainder Theorem stated below:

Theorem 6.1 (Lagrange Remainder Theorem). Suppose f : [a, a + h] → R is continuous and f has n

derivatives over the open interval (a, a+ h). Then, there exists c ∈ (a, a+ h) for which

f(a+ h) = f(a) +
h

1!
f ′(a) +

h2

2!
f ′′(a) + · · ·+ hn−1

(n− 1)!
f (n−1)(a) +

hn

n!
f (n)(c).

Applying the above theorem to y(t) with n = 2 we will estimate the error. Note that the second derivative

of y(t) is the first derivative of f(t, y(t)) which is ft + fy
dy

dt
= ft + fyf .

97
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y(tn+1) = y(tn + h) = y(tn) + hy′(tn) +
h2

2
y′′(cn)

for some cn. Using the fact that y′ = f and that y′′ = ft + fyf we obtain:

y(tn+1) = y(tn) + hf(tn, y(tn)) +
h2

2
(ft + fyf) (cn, y(cn))

Subtracting the recursion yn+1 = yn + hf(tn, yn) we obtain the following:

y(tn+1)− yn+1 = y(tn)− yn + h[f(tn, y(tn))− f(tn, yn)] +
h2

2
(ft + fyf) (cn, y(cn)).

Denote by En the error |y(tn)−yn|, by L the maximum of |fy|, and by D the maximum of |ft+fyf |. By the

Mean Value Theorem we can see that f(tn, y(tn))−f(tn, yn) = (y(tn)−yn)fy(tn, dn) for some dn. Therefore,

|f(tn, y(tn))− f(tn, yn)| ≤ LEn.

Using the triangle inequality we obtain the following:

En+1 ≤ En + hLEn +
h2D

2
= (1 + hL)︸ ︷︷ ︸

A

En +
h2D

2︸ ︷︷ ︸
B

.

Combining these we get:

EN ≤ AEN−1 +B ≤ A2EN−2 +AB +B ≤ · · · ≤ ANE0 +AN−1B + · · ·AB +B =
(AN − 1)B

A− 1
.

Substituting back, we obtain EN ≤
((1 + hL)N − 1)Dh

2L
. Note that 1+x ≤ ex for every positive real number

x and thus, EN ≤
(ehLN − 1)Dh

2L
. Since hN = a we obtain the following error bound:

EN ≤
(eaL − 1)Dh

2L
.

We say this error is of order h, and denote it by O(h).

Example 6.2. Suppose the error in approximating the value of a solution to a first-order IVP using Euler’s

method is apprximated to be no more than 0.1. What changes should we make in order to guarantee the

error does not exceed 0.01?

6.2 Other Numerical Methods

Similar to above, we are trying to approximate y(t0+a), where y is the solution to the IVP y′ = f(t, y), y(t0) =

y0. For that we divide [t0, t0 + a] into N subintervals of equal width h = a/N . So, tn = t0 + nh. We know

y(t) = y0 +

∫ t

t0

f(s, y(s)) ds. The integral on the right can be approximated using any of the methods of

approximating integrals. As a result we obtain other numerical methods for approximation y(t0 + a).

Using the left-endpoint Riemann sum we have y(t + h) = y(t) +

∫ t+h

t

f(s, y(s)) ds ≈ y(t) + hf(t, y(t)). So

we can approximate y(tn) by a sequence yn defined by yn+1 = yn + hf(tn, yn). This is clearly the same as
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the Euler’s method.

Similar to above we use the fact that y(tn + h) = y(tn) +

∫ tn+h

tn

f(s, y(s)) ds. Then we approximate this

integral using different methods of approximating integrals. We will get the following:

Runge-Midpoint:

∫ t+h

t

f(s, y(s)) ds ≈ hf(t + h
2 , y(t + h

2 )). We then apply the Euler’s approximation to

estimate y(t+ h
2 ) ≈ y(t)+ h

2 f(t, y(t))). Thus we obtain that

∫ t+h

t

f(s, y(s)) ds ≈ hf(t+ h
2 , y(t)+ h

2 f(t, y(t))).

This yields the recurrence: yn+1 = yn + hf(tn + h
2 , yn + h

2 f(tn, yn)). This can be memorized more easily if

we write it as follows:

fn = f(tn, yn), tn+ 1
2

= tn + h
2

yn+ 1
2

= yn + h
2 fn, fn+ 1

2
= f(tn+ 1

2
, yn+ 1

2
)

yn+1 = yn + hfn+ 1
2

Essentially the idea is to use the “slope at the midpoint” instead of the left endpoint slope.

Runge-Trapezoidal:

∫ t+h

t

f(s, y(s)) ds ≈ h
2 [f(t, y(t)) + f(t + h, y(t + h))]. Similar to above, using the

Euler’s approximation we can substitute y(t+h) by y(t)+hf(t, y(t)). Thus, we obtain the following recursion:

fn = f(tn, yn), ỹn+1 = yn + hfn

f̃n+1 = f(tn+1, ỹn+1), yn+1 = yn + h
2 (fn + f̃n+1)

Runge-Kutta: In this method we approximate the integral

∫ t+h

t

f(s, y(s)) ds using Simpson’s rule. The

computations for this method are too complicated to do manually.

Example 6.3. Approximate y(0.2) using Midpoint, and Trapezoidal methods, where y is the solution to
dy

dt
= t+ y2, y(0) = 1. Use 1 step for each.

It turns out that the above methods are all better than the Euler’s method. The error for each of these

methods is listed in the following table.

Method Error

Euler O(h)

Midpoint O(h2)

Trapezoidal O(h2)

Runge-Kutta O(h4)

Example 6.4. In estimating the value of a solution to a first order differential equation, the error is estimated

to be less than 0.1. Given that we have used 10 steps, how many steps do we need in order to guarantee the

error does not exceed 10−5 if each of the following methods is used?
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(a) Euler’s.

(b) Runge-Midpoint.

(c) Runge-Trapezoidal.

(d) Runge-Kutta.

6.3 More Examples

Example 6.5. Given the initial value problem

y′ = t+ y, y(0) = 2,

approximate y(1) using the Runge-Trapezoidal method with 1 step.

Solution. The given information yields:

h =
1− 0

1
= 1, t0 = 0, t1 = 1, y0 = 2

f0 = f(0, 2) = 0 + 2 = 2, ỹ1 = y0 + hf0 = 2 + 1 · 2 = 4,

f̃1 = f(t1, ỹ1) = 1 + 4 = 5, y1 = y0 +
f0 + f̃1

2
h = 2 +

2 + 5

2
= 5.5

6.4 Exercises

Exercise 6.1. Consider the IVP

y′ = y + t, y(0) = −1.

(a) Approximate y(1) using Euler’s method once with step size h = 1 and once with h = 0.1.

(b) Solve the IVP.

(c) What is the error in each case? Explain your observation.

Exercise 6.2. For each IVP approximate y(0.5) in six different ways:

1. Euler’s method with 1 step,

2. Euler’s method with 10 steps,

3. Runge-Midpoint with 1 step,

4. Runge-Midpoint with 10 steps,

5. Runge-Trapezoidal with 1 step, and
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6. Runge-Trapezoidal with 10 steps.

Solve the equation using MATLAB or some other software, and compare the errors.

(a) y′ = y2 + t2, y(0) = 0.

(b) y′ = sin t+ ty2, y(0) = 1.

Exercise 6.3. Consider the IVP

y′ = t2 + tan2 y, y(0) = 0.

(a) Prove that there is a unique solution to this IVP with |t| ≤ 0.5 and the solution satisfies |y| ≤ π/4.

(b) We would like to approximate y(0.5) using Euler’s method. Find a reasonable number of steps that we

need use in order to guarantee the value of y(0.5) is accurate to 2 decimal places.

Exercise 6.4. The value of the solution at a specific point to a first-order differential equation has been

approximated using the Runge-Kutta method with 10 steps. We would like to decrease the error by a factor

of 1
16 (i.e. multiply the error by 1

16). What change should we make in the number of steps? What if we use

the Midpoint or Trapezoidal methods?

The following exercise shows that when using Euler’s method, the points (tn, yn) will remain inside the

original rectangle.

Exercise 6.5. Suppose h, a, and b are positive real numbers, t0, y0 are real numbers, and f(t, y) is a function.

Let tn, yn satisfy the recursions

tn+1 = tn + h, and yn+1 = yn + hf(tn, yn).

Let R be the rectangle given by t0 ≤ t ≤ t0 + a, y0 − b ≤ y ≤ y0 + b, and assume that |f(t, y)| ≤ M for all

(t, y) in R. Finally, let α = min(a, b/M).

(a) Prove that |yj − y0| ≤ jhM , as long as jh ≤ α. Hint: Use induction.

(b) Conclude from (a) that the points (tj , yj) all lie in R as long as j ≤ α/h.

Exercise 6.6. For each IVP approximate y(1) in three different ways: Using Euler’s Method, Runge Trape-

zoidal, and Runge Midpoint Methods, once with 1 step, and once with 5 steps. Evaluate the error in each

case, by finding the solution, and determine if the change in error matches the expected error estimates.

(a) y′ = ty, y(0) = 1.

(b) y′ = y2 + 1, y(0) = −1.

(c) y′ + y = 0, y(0) = 2.

(d) y′ = y cos t, y(0) = 1.
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Exercise 6.7. Suppose y(t) is the solution to the IVP

dy

dt
= f(t, y), y(0) = 0.

Suppose f, ft, and fy are continuous and |f |, |ft|, |fy| ≤ 1, in rectangle [0, 1]× [−1, 1]. When the Euler method

with 10 steps is used to approximate y(1), we obtain the following values

y5 = −0.15[(1.1)5 − 1], and y6 = 0.12[(1.1)6 − 1].

Prove that y(t) = 0 for some t ∈ (0.5, 0.6).

6.5 Summary

• Euler’s method approximates the value of a solution to a first-order equation using the recursion:

yn+1 = yn + hf(tn, yn).

• Runge-Midpoint formulas are

fn = f(tn, yn), tn+ 1
2

= tn + h
2

yn+ 1
2

= yn + h
2 fn, fn+ 1

2
= f(tn+ 1

2
, yn+ 1

2
)

yn+1 = yn + hfn+ 1
2

• Runge-Trapezoidal formulas are

fn = f(tn, yn), ỹn+1 = yn + hfn

f̃n+1 = f(tn+1, ỹn+1), yn+1 = yn + h
2 (fn + f̃n+1)

• Errors for different numerical methods are listed below:

Method Error

Euler O(h)

Midpoint O(h2)

Trapezoidal O(h2)

Runge-Kutta O(h4)



Chapter 7

Higher Order Linear Equations

So far, most of our discussion has been around equations of first order. We will now focus on equations of

order 2 or more, i.e. higher order equations.

7.1 General Strategy

A linear differential equation is one of the form

dny

dtn
+ an(t)

dn−1y

dtn−1
+ · · ·+ a2(t)

dy

dt
+ a1(t)y = f(t).

For simplicity we write this equation as

Dn(y) + an(t)Dn−1(y) + · · ·+ a2(t)D(y) + a1(t)y = f(t),

where D =
d

dt
is the differentiation operator. Note that D is linear. In other words, for every two scalars

c1, c2 and every two differentiable functions y1, y2 we have D(c1y1 + c2y2) = c1D(y1) + c2D(y2). Similarly

Dn is also linear for every n. We often write the above equation in a more compact form L[y] = f(t), where

L indicates the differential operator Dn + an(t)Dn−1 + · · · + a2(t)D + a1(t). Note that since D is linear, L

is also linear. In other words, L[c1y1 + c2y2] = c1L[y1] + c2L[y2].

Recall that by the Existence and Uniqueness Theorem for Linear Equations, any initial value problem of the

form

L[y] = f(t), y(t0) = y0, . . . , y
(n−1)(t0) = yn−1

has a unique solution provided all coefficients, and the forcing are continuous over an interval (a, b) containing

t0.

Definition 7.1. The general solution to a differential equation is a solution depending on some constants,

where changing the constants gives us all solutions of the differential equation. A particular solution to a

differential equation is some solution to that equation.

103
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Example 7.1. Show that y = c1e
t+ c2e

−t with c1, c2 ∈ R is the general solution to the equation y′′− y = 0.

Theorem 7.1. Let YH(t) be the general solution to a homogeneous linear equation L[y] = 0, and let f(t) be

a function. Suppose YP (t) is a particular solution to L[y] = f(t), then the general solution to the differential

equation L[y] = f(t) is given by y(t) = YH(t) + YP (t).

The above theorem shows in order to solve a linear equation L[y] = f(t) we need to

• Find the general solution YH(t) to the associated homogeneous equation L[y] = 0, and

• Find a particular solution YP (t) to the equation L[y] = f(t).

• The result must be added up in order to find the general solution y(t) = YH(t) + YP (t) to L[y] = f(t).

7.2 Homogeneous Linear Equations

Example 7.2. Find the general solution of the equation y′′ − 5y′ + 4y = 0.

It appears that since the order of the above equation is 2, every solution can be written in terms of two

solutions. This can be seen in the following theorem.

Theorem 7.2. Suppose L[y] = 0 is an n-th order linear equation whose coefficients are continuous over an

interval (a, b). Then, the set of all solutions to this equation is an n-dimensional vector space.

Definition 7.2. Let L[y] = 0 be an n-th order linear equation whose coefficients are continuous over an open

interval I. Solutions Y1, . . . , Yn are said to form a Fundamental Set of Solutions (FSoS) if Y1, . . . , Yn is

a basis for the solution set of L[y] = 0 over I.

Definition 7.3. The set {N0(t), N1(t), . . . , Nn−1(t)} consisting of solutions to L[y] = 0 for which each Nk(t)

satisfies the initial conditions:

y(t0) = y′(t0) = · · · = y(k−1)(t0) = y(k+1)(t0) = · · · = y(n−1)(t0) = 0, and y(k)(t0) = 1,

is called the Natural Fundamental Set of Solutions (or NFSoS) of L[y] = 0 at t0.

It is now natural to ask: How do we know solutions Y1, . . . , Yn form a basis for the set of solutions of L[y] = 0?

This means given t0 ∈ (a, b) the following system must have a solution for c1, . . . , cn, for all y0, y1, . . . , yn−1.

c1Y1(t0) + · · ·+ cnYn(t0) = y0

c1Y
′
1(t0) + · · ·+ cnY

′
n(t0) = y1

...

c1Y
(n−1)
1 (t0) + · · ·+ cnY

(n−1)
n (t0) = yn−1
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For this to have a solution for every y0, y1, . . . , yn−1 we need

det



Y1(t0) Y2(t0) · · · Yn−1(t0) Yn(t0)

Y ′1(t0) Y ′2(t0) · · · Y ′n−1(t0) Y ′n(t0)
...

...
...

...
...

Y
(n−2)
1 (t0) Y

(n−2)
2 (t0) · · · Y

(n−2)
n−1 (t0) Y

(n−2)
n (t0)

Y
(n−1)
1 (t0) Y

(n−1)
2 (t0) · · · Y

(n−1)
n−1 (t0) Y

(n−1)
n (t0)


6= 0

The above determinant is denoted by W [Y1, . . . , Yn](t0) and is called the Wronskian of Y1, . . . , Yn at t0.

Similarly W [Y1, . . . , Yn](t) is defined. So, Wronskian is a function of t defined over the entire open interval

I, where all coefficients of L[y] = 0 are continuous. Similarly we can define the Wronskian of any n functions

over an open interval for which they have n− 1 derivatives.

The following theorem shows that it cannot be the case that W [Y1, . . . , Yn](t) is zero for some values of t,

but not for all values of t.

Theorem 7.3 (Abel’s Theorem). Suppose W is the Wronskian of n solutions to an n-th order linear homoge-

neous equation L[y] = 0 whose coefficients are continuous over an open interval I. Then W ′(t)+an(t)W (t) =

0, where an(t) is the coefficient of y(n−1) in L. Furthermore, if W (t) is zero at one point inside I, then it is

zero everywhere on I.

What we proved above can be stated in the following theorem:

Theorem 7.4. If Y1, . . . , Yn is a FSoS to an n-th order linear equation L[y] = 0, then its general solution is

given by y = c1Y1 + · · ·+ cnYn.

Example 7.3. Suppose the Wronskian W of 3 solutions to the equation y′′′+2ty′′−y = 0 satisfies W (0) = 1.

Find W (t).

Theorem 7.5. Assuming N0, . . . , Nn−1 form a NFSoS at t0 for L[y] = 0, the solution to the initial value

problem

L[y] = 0, y(t0) = y0, . . . , y
(n−1)(t0) = yn−1

is given by y = y0N0 + · · · yn−1Nn−1.

Example 7.4. Given that et, e2t are solutions to y′′ − 3y′ + 2y = 0, find the NFSoS to this equation at 0.

Example 7.5. We know t2 − 1 and t are solutions to the equation (1 + t2)y′′ − 2ty′ + 2y = 0. Find the

general solution to this equation. Use that to find a solution that satisfies y(0) = 2, y′(0) = 3.

Example 7.6. Prove that if the Wronskian of one FSoS to L[y] = 0 is constant, then the Wronskian of every

FSoS is constant.

The next theorem shows that for solutions to linear homogeneous equations, linear independence and Wron-

skian being nonzero are equivalent.
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Theorem 7.6. Suppose Y1, . . . , Yn are solutions to an n-th order linear homogeneous equation. Then,

W [Y1, . . . , Yn] 6= 0 if and only if Y1, . . . , Yn are linearly independent.

For functions that are not solutions of linear differential equations one direction of the above theorem is valid.

Theorem 7.7. Suppose f1, . . . , fn : (a, b) → R are (n − 1) times differentiable and linearly dependent over

an open interval I. Then, W [f1, . . . , fn](t) = 0 for all t ∈ I.

7.3 More Examples

Example 7.7. Suppose the Wronskian of two solutions Y1, Y2 of a second order equation is zero everywhere.

Prove that one of the two solutions must be scalar multiple of the other.

Solution. Since W [Y1, Y2] = 0, by Theorem 7.6, the functions Y1 and Y2 are linearly dependent. Therefore,

one must be a multiple of the other.

Example 7.8. Suppose Y1, Y2, Y3 are three solutions to a third order linear equation

y′′′ + a3(t)y′′ + a2(t)y′ + a1(t)y = 0.

Assume c is a constant in such a way that all coefficients a1(t), a2(t), a3(t) are continuous over (c,∞). Assume

further that W [Y1, Y2, Y3](t) = t for all t > c. Prove that c ≥ 0.

Solution. We will prove this by contradiction. Assume c < 0. This implies 0 ∈ (c,∞). By assumption

W [Y1, Y2, Y3](0) = 0. By Theorem 7.3 the Wronskian must be identically zero over (c,∞), which is a

contradiction.

Example 7.9. Prove that W [sin2 t, 7, cos(2t)] = 0 without evaluating the Wronskian.

Solution. Note that cos(2t) = 1−2 sin2 t, which implies cos(2t)− 1

7
7 + 2 sin2 t = 0, and thus cos(2t), 7, sin2 t

are linearly dependent. Therefore, W [sin2 t, 7, cos(2t)] = 0, as desired.

Example 7.10. Suppose Y1, Y2 are two solutions to a linear n-th order homogeneous differential equation

L[y] = 0, where all coefficients are continuous over an open interval (a, b). Suppose

Y1(c) = Y ′1(c) = · · · = Y
(n−2)
1 (c) = 0, and Y2(c) = Y ′2(c) = · · · = Y

(n−2)
2 (c) = 0,

for some c ∈ (a, b). Prove that Y1 and Y2 are linearly dependent over (a, b).

Sketch. We need to show c1Y1 +c2Y2 = 0. In order to do that we will find an IVP that both y = c1Y1 +c2Y2

and 0 satisfy. By linearity, y satisfies L[y] = 0. By assumption y(c) = · · · = y(n−2)(c) = 0, so we need to

select c1, c2 so that c1Y
(n−1)
1 (c) + c2Y

(n−1)
2 (c) = 0. This is possible, because Y

(n−1)
1 (c), and Y

(n−1)
2 (c) are

two real numbers.
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Solution. Since Y
(n−1)
1 (c), and Y

(n−1)
2 (c) are two real numbers, they are linearly dependent. Thus,

c1Y
(n−1)
1 (c) + c2Y

(n−1)
2 (c) = 0 (∗)

for some constants c1, c2, not both zero. Now, consider the function y = c1Y1 + c2Y2. By assumption

y(c) = y′(c) = · · · = y(n−2)(c) = 0.

By (∗) we know y(n−1)(c) = 0, and thus by the Existence and Uniqueness Theorem for Linear Equations,

y = 0, which implies c1Y1 + c2Y2 = 0, as desired.

Example 7.11. Consider the equation

L[y] = (t2 − 2t)y′′ + 2(1− t)y′ + 2y = 0.

(a) Prove that t2, t− 1 form a FSoS for this equation.

(b) Find a NFSoS at t = 1.

(c) Solve the initial value problem L[y] = 0, y(1) = 2, y′(1) = −1.

(d) Show that y = 0 and y = t2 are both solutions to the IVP L[y] = 0, y(0) = y′(0) = 0. How do you

reconcile this with the Existence and Uniqueness Theorem for Linear Equations.

(e) Find all constants a for which

L[y] = 0, y(−1) = α, y(a) = β

has a solution for all α, β ∈ R.

Solution. (a) First, note that both t2 and t− 1 are solutions to this equation. Next,

W [t2, t− 1] = det

 t2 t− 1

2t 1

 = t2 − 2t2 + 2t = −t2 + 2t,

which is not identically zero. Therefore, t2, t− 1 form a FSoS.

(b) We will have to solve the IVP y(1) = y0

y′(1) = y1

After substituting y = c1t
2 + c2(t− 1) we obtain the following system:c1 = y0

2c1 + c2 = y1

.

Therefore, c2 = y1 − 2y0. Therefore, the general solution is

y = y0t
2 + (y1 − 2y0)(t− 1) = y0(t2 − 2t+ 2) + y1(t− 1).
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This yields t2 − 2t+ 2, t− 1 are a NFSoS.

(c) Using what we found above, the solution is y = 2(t2 − 2t+ 2)− (t− 1) = 2t2 − 5t+ 5.

(d) The fact that both y = 0 and y = t2 are solutions can be manually verified. When the equation is

written in normal form, the coefficient 2(1− t)/(t2− 2t) is not continuous at t = 0. Therefore, the Existence

Uniqueness Theorem does not apply for the initial value t0 = 0.

(e) We know y = c1t
2 + c2(t− 1). We would like the following system to have a solution for all α, β ∈ R:c1 − 2c2 = α

c1a
2 + c2(a− 1) = β

This is equivalent to  1 −2

a2 a− 1

 c1

c2

 =

 α

β

 .

For this to have a solution for every α, β, we need the rank of the above 2 × 2 matrix to be 2 and thus its

determinant must be nonzero. Therefore, a− 1 + 2a2 6= 0, or a 6= −1, 1/2.

Example 7.12. Create a second order linear homogeneous differential equation, where t, t2 form a FSoS.

Solution. The functions t, t2 are linearly independent over any interval. So, if they are solutions of a second

order linear homogeneous equation, they must form a FSoS. The equation y′′ + p(t)y′ + q(t)y = 0 is such a

differential equation if and only if y = t and y = t2 satisfy this equation. This yields the following system:p(t) + q(t)t = 0

2 + p(t)2t+ q(t)t2 = 0

This can be written as  1 t

2t t2

 p(t)

q(t)

 =

 0

−2

 .

This yields  p(t)

q(t)

 =

 1 t

2t t2

−1 0

−2

 =
−1

t2

 t2 −t

−2t 1

 0

−2

 .

Therefore, p(t) = −2/t and q(t) = 2/t2 yields the only such differential equation.

Example 7.13. Suppose W is the Wronskian of a FSoS to a n-th order linear homogeneous equation L[y] = 0

whose coefficients are continuous over R, and whose coefficient of y(n−1) is an(t). Suppose an(t) > 0 over R.

Prove that W (t) is a strictly decreasing function if and only if W (0) > 0.
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Solution. By Abel’s Theorem W ′ + an(t)W = 0. Suppose W (0) > 0. Since W is not zero, and W (0)

is positive, W is always positive. On the other hand, we know an(t)W is always positive, which means

W ′ = −an(t)W is always negative. Therefore, W is strictly decreasing. The converse can be similarly done

by assuming W (0) < 0.

Example 7.14. Prove that the equation y′′ + (t4 + 3t2 + 1)y = 0 has a nontrivial even solution and a

nontrivial odd solution.

Sketch. In order to find an even solution, we need a solution y satisfying y(−t) = y(t). We will find an IVP

for which both y(t) and y(−t) satisfy. y(−0) = y(0) is immediate. −y′(−0) = y′(0) yields y′(0) = 0. Thus,

we will take y to be a solution satisfying y(0) = 1 and y′(0) = 0.

In order to find an odd solution, we need a solution y satisfying −y(−t) = y(t). We will find an IVP for

which both y(t) and −y(−t) satisfy. −y(−0) = y(0) yields y(0) = 0. By taking the derivative we have

y′(−0) = y′(0), which is trivial. Thus, we will take y to be a solution satisfying y(0) = 0 and y′(0) = 1.

Solution. Let N0, N1 be the NFSoS at t0 = 0 to this equation, and let y(t) = N0(−t), and z(t) = −N1(−t).

We have y(0) = N0(0) = 1, and y′(0) = −N ′0(0) = 0. Furthermore, z(0) = −N1(0) = 0 and z′(0) = N ′1(0) =

1. We have the following:

y′′(t) + (t4 + 3t2 + 1)y(t) = N ′′0 (−t) + (t4 + 3t2 + 1)N0(−t) = N ′′0 (−t) + ((−t)4 + 3(−t)2 + 1)N0(−t) = 0.

The last equality is obtained by substituting t by −t and using the fact that N0 is a solution to the given

differential equation. Therefore, by uniqueness we have y(t) = N0(t), i.e. N0(−t) = N0(t), and hence N0 is

even. Similarly we can prove N1 is odd.

7.4 Exercises

Exercise 7.1. Given L = D3 + t2D2 − sin(t). Evaluate L[y] for each of the following functions.

(a) y = sin t.

(b) y = et.

(c) y = t2 − t.

Exercise 7.2. Compute the Wronskian of each set of functions.

(a) sin(at), cos(bt), where a, b are constants.

(b) eat, ebt, where a, b are constants.

(c) sin(2t), sin t, cos t, sin t cos t.
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Exercise 7.3. For each equation, some information about the Wronskian W (t) of a FSoS is given. Find

W (t).

(a) y′′′ − 2t y′′ + 7 sin(t) y = 0, with W (0) = −2.

(b) ty(4) − t2y′′ + cos(t)y′ = 0, with W (1) = 5.

(c) sin(t)y′′′ − cos(t)y′′ + ty = 0, with W (π/2) = 1.

Exercise 7.4. Given that 1, sin t, cos t are solutions to y′′′ + y′ = 0:

(a) Find a NFSoS at t0 = 0.

(b) Solve the initial value problem y′′′ + y′ = 0, y(0) = 1, y′(0) = 2, y′′(0) = −1.

Exercise 7.5. Consider the differential equation

y′′ − 4y′ + 4y = 0.

(a) Find a solution of the form ect.

(b) Find a solution of the form tect.

(c) Find a NFSoS at t0 = 1.

(d) Solve the IVP y′′ − 2y′ + y = 0, y(0) = 2, y′(0) = 1.

Exercise 7.6. Given that sin t and cos t are solutions of y′′ + y = 0 prove that there are no solutions to

y′′ + y = 0, y(0) = 0, y(π) = 1.

How do you reconcile this with the Existence and Uniqueness Theorem for Linear Equations?

Exercise 7.7. Suppose the coefficients of the linear equation L[y] = 0 are continuous over (a, b). Prove that

for every t0 ∈ (a, b) and every nonzero real number r, there is a FSoS, Y1, . . . , Yn for which

W [Y1, . . . , Yn](t0) = r.

Exercise 7.8. Suppose Y1, . . . , Yn are Cn−1 functions over an open interval I. Let A ∈ Mn(R) be an

invertible matrix, and assume Z1, . . . , Zn satisfy

(Z1 · · ·Zn) = (Y1 · · ·Yn)A.

Prove that W [Z1, . . . , Zn] = (detA)W [Y1, . . . , Yn].

Exercise 7.9. Suppose Y1, . . . , Yn are Cn over an open interval I, and that W [Y1, . . . , Yn](t) 6= 0 for all

t ∈ I. Prove that there is a linear homogeneous equation L[y] = 0 for which {Y1, . . . , Yn} is a FSoS over I.
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Exercise 7.10. Let y1 and y2 form a fundamental set of solutions for a standard homogeneous linear equation

y′′ + p(t)y′ + q(t)y = 0,

whose coefficients are continuous over R. Prove that if there is some t0 ∈ R for which y′′1 (t0) = y′′2 (t0) = 0,

then p(t0) = q(t0) = 0.

Exercise 7.11. Let

y′′ + p(t)y′ + q(t)y = 0 (∗)

be a second order linear equation, where p(t) and q(t) are continuous over (a, b). Suppose y1, y2 form a FSoS

for (∗) over (a, b).

(a) Prove that y1 and y2 cannot have a common root inside (a, b).

(b) Prove that y1 and y2 cannot achieve a local maximum or a local minimum at the same point inside (a, b).

(c) Prove that between every two consecutive roots of y1 there is precisely one root of y2. Hint: Use contra-

diction and apply the Mean Value Theorem to y1/y2.

(d) Suppose y1, y2 have an inflection point at some t0 ∈ (a, b). Prove that p(t0) = q(t0) = 0. Hint: Write

down what it means for y1 and y2 to be solutions and substitute t = t0.

Exercise 7.12. Let I be an open interval, f1, . . . , fn+1 : I → R be n− 1 times differentiable, and a, b be two

constants. Prove the following:

(a) W [f1, . . . , fn−1, afn + bfn+1] = aW [f1, . . . , fn−1, fn] + bW [f1, . . . , fn−1, fn+1].

(b) W [af1, f2, . . . , fn] = aW [f1, . . . , fn].

Exercise 7.13. Let p(t) and q(t) be continuous functions on an interval (−c, c). Assume q is an even

function and the equation y′′ + p(t)y′ + q(t)y = 0 has an even solution Y over (−c, c). Suppose Y has no

roots in (−c, c). Prove that p(t) = 0 for all t ∈ (−c, c).

Hint: See part (b) of Example 5.15.

Exercise 7.14. Consider the functions t2 and t|t| on R.

(a) Prove that W [t2, t|t|] = 0 for every t ∈ R.

(b) Prove t2 and t|t| are linearly independent.

Exercise 7.15. Consider the differential equation y′′′ + y = 0. Suppose y1, y2, y3 form the NFSoS of this

equation at t0 = 0. Without finding yi’s prove that y′1 = −y3 and y′′1 = −y2.

Hint: Create IVP’s and use uniqueness.

Exercise 7.16. Suppose Y1, . . . , Yn are n times differentiable over an open interval I for which their Wron-

skian W [Y1, . . . , Yn] is never zero over I. Prove that there is a unique n-th order linear homogeneous differ-

ential equation L[y] = 0 for which Y1, . . . , Yn is a FSoS.
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Hint: See Example 7.12

Exercise 7.17. Suppose L[y] = f(t) is a linear differential equation all of whose coefficients and forcing are

C∞ over an open interval I. Prove that every solution to this equation is C∞ over I.

Exercise 7.18. Prove that it is not possible for all solutions of a linear homogeneous differential equation

defined over (−1, 1) to be odd.

Exercise 7.19. Prove that if all solutions of a linear homogeneous differential equation defined over (−1, 1)

are even, then the equation is first order.

7.5 Challenge Problems

Exercise 7.20. Suppose p(t), q(t) are continuous functions over R, and q(t) < 0 for all t ∈ R. Let y be a

solution to the differential equation

y′′ + p(t)y′ + q(t)y = 0

that has at least two distinct roots. Prove that y is the zero function.

Exercise 7.21. Let p(t) and q(t) be continuous functions on an interval (−c, c). Suppose p(t) is odd and

q(t) is even. Prove that there is a FSoS Y1, Y2 for which Y1 is odd and Y2 is even.

Exercise 7.22. Suppose Y1(t), . . . , Yn(t), v(t) are n−1 times differentiable functions over the interval (a, b).

Prove that

W [vY1, vY2, . . . , vYn](t) = (v(t))nW [Y1, Y2, . . . , Yn](t), for all t ∈ (a, b).

Exercise 7.23. Prove that every n-th order linear differential equation with constant coefficients L[y] = 0

has a FSoS of the form

Y, Y ′, . . . , Y (n−1).

By an example show this result does not hold if the coefficients are not constant.

Exercise 7.24. Suppose y1, . . . , yn : (a, b)→ R are all n−1 times differentiable. Assume W [y1, . . . , yn](t) = 0

for every t ∈ (a, b) and W [y1, . . . , yn−1](t) 6= 0 for every t ∈ (a, b). Prove that y1, . . . , yn are linearly

dependent.

7.6 Summary

• In order to find the general solution to a linear equation L[y] = f(t):

– Find the general solution YH to L[y] = 0.

– Find a particular solution YP to L[y] = f(t).

– y = YH + YP is the general solution to L[y] = f(t).
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• Y1, . . . , Yn form a fundamental set of solutions for L[y] = 0 if W [Y1, . . . , Yn] 6= 0, in which case a general

solution is given by y = c1Y1 + · · ·+ cnYn.

• N0, . . . , Nn−1 form a natural fundamental set of solutions at a point t0 if the matrix of Wronskian

evaluated at t0 is the identity matrix.

• To find a NFSoS we need to solve the initial value problem L[y] = 0, y(t0) = y0, . . . , y
(n−1)(t0) = yn−1.

The solution is y = y0N0 + · · ·+ yn−1Nn−1.

• If N0, . . . , Nn−1 form a NFSoS at point t0, then y = y0N0 + · · ·+ yn−1Nn−1 is the solution to the IVP

L[y] = 0, y(t0) = y0, y
′(t0) = y1, . . . , y

(n−1)(t0) = yn−1.
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Chapter 8

Linear Equations with Constant

Coefficients

In this chapter, we will consider linear equations of the form L[y] = f(t), where

L = Dn + anD
n−1 + · · ·+ a2D + a1

is a linear differential operator, with constant coefficients a1, . . . , an, and forcing f(t) that is continuous over

an open interval I.

We have seen in the previous chapter that solving these equations requires:

• Finding the general solution to the corresponding homogeneous equation, and

• Finding a particular solution to the nonhomogeneous equation.

We will explore these separately.

8.1 Homogeneous Linear Equations with Constant Coefficients

Example 8.1. Find the general solution to y′′ + 7y′ + 12y = 0.

The polynomial p(z) = zn+anz
n−1+· · ·+a2z+a1 is called the characteristic polynomial corresponding to

L. We know D[ezt] = zezt. Repeatedly applying D we obtain Dm[ezt] = zmezt. This implies L[ezt] = p(z)ezt,

which means L[ezt] = 0 if p(z) = 0. This is the main idea that we used in solving the previous problem.

Example 8.2. Find the general solution to y′′′ + 2y′′ − y′ − 2y = 0.

Theorem 8.1. Suppose z1, . . . , zn are distinct complex numbers. Then ez1t, . . . , eznt are linearly independent

over C.

Example 8.3. Solve the equation y′′ + 2y′ + 2y = 0.

115
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When the characteristic polynomial has a nonreal root a + ib, since L[e(a+ib)t] = p(a + ib)e(a+ib)t = 0, we

obtain L[eat cos(bt) + ieat sin(bt)] = 0. Using linearity we conclude L[eat cos(bt)] + iL[eat sin(bt)] = 0. Taking

the real and imaginary parts we get

L[eat cos(bt)] = L[eat sin(bt)] = 0,

and thus eat cos(bt), eat sin(bt) are solutions of the linear homogeneous equation L[y] = 0.

Example 8.4. Solve the equation y′′′ + 2y′′ + y′ = 0.

When the characteristic polynomial has repeated roots, we need a different strategy. We repeatedly differ-

entiate L[ezt] = p(z)ezt with respect to z. Note that
∂2

∂z∂t
=

∂2

∂t∂z
and thus we can move the differentiation

with respect to z inside L to obtain L
[
∂k

∂zk
(ezt)

]
= ∂k

∂zk
(p(z)ezt). This gives us the following equalities called

the Key Identities:

L[ezt] = p(z)ezt

L[tezt] = p′(z)ezt + p(z)tezt

L[t2ezt] = p′′(z)ezt + 2p′(z)tezt + p(z)t2ezt

L[t3ezt] = p′′′(z)ezt + 3p′′(z)tezt + 3p′(z)t2ezt + p(z)t3ezt

...

.

The coefficients above are those in the Pascal’s triangle. In other words, the general form of a key identity

is as follows:

L[tnezt] =

n∑
j=0

(
n

j

)
p(n−j)(z) tjezt.

Theorem 8.2. The multiplicity of a complex root c of a polynomial p(z) is m if and only if

p(c) = p′(c) = · · · = p(m−1)(c) = 0, and p(m)(c) 6= 0.

Theorem 8.3. Let L be a linear differential operator with constant coefficients, and p(z) be its characteristic

polynomial. Suppose c is a root of p(z) with multiplicity m. Then

L[ect] = L[tect] = · · · = L[tm−1ect] = 0.

Furthermore, if c = a+ ib, with a, b real, then L[tj eat cos(bt)] = L[tj eat sin(bt)] = 0 for j = 0, 1, . . . ,m− 1.

Recall that since p(z) has real coefficients, its nonreal roots come in complex conjugate pairs. Therefore, for

every pair of nonreal roots a±ib (a, b ∈ R) with multiplicitym we obtain 2m solutions tj eat cos(bt), tj eat sin(bt).

This means the above method yields n solutions for L[y] = 0, where n is the order of this differential equation.

We now need to prove these solutions do in fact form a FSoS. This is the subject of the next theorem.

Theorem 8.4. Let L be a linear differential operator with constant coefficients, and p(z) be its characteristic

polynomial. For each real root r of p(z) with multiplicity m consider m functions listed below:

ert, tert . . . , tm−1ert.
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For each pair of nonreal root a± ib of p(z), each with multiplicity k, consider 2k functions listed below:

eat cos(bt), eat sin(bt), teat cos(bt), teat sin(bt), . . . , tk−1eat cos(bt), tk−1eat sin(bt).

These functions form a FSoS for L[y] = 0.

Note that we have already shown that the above functions are solutions to L[y] = 0, and there are n of them,

where n is the degree of p(z) and thus the order of L[y] = 0. Therefore, to prove the above theorem we need

to show they are linearly independent. This is done in Exercise 8.5.

Example 8.5. Solve each of the following equations:

(a) y(4) + 6y′′ + 9y = 0.

(b) (D2 + 1)2(D − 1)3Dy = 0.

8.2 Reduction of Order

When we have repeated roots for the characteristic polynomial, we can also employ the method of Reduction

of Order to find another solution. For example, to solve y′′−2y′+y = 0, we see p(z) = z2−2z+1 = (z−1)2,

which means y = et is a solution. We know cet is also a solution for every constant c. This motivates us to

assume a second solution of the form y = vet for a function v. We then substitute this into the equation and

solve for v.

y′ = v′et + vet, y′′ = v′′et + 2v′et + vet ⇒ y′′ − 2y′ + y = et(v′′ + 2v′ + v − 2v′ − 2v + v) = etv′′

For this to be zero we need v′′ = 0. Thus, v = t is one such solution. Therefore, tet is a second solution to

the above equation, which is what we obtained by the Key Identities as well.

In general, suppose a nonzero solution y1 to a homogeneous linear differential equation is known. We are

often able to find another solution by writing y = v(t)y1, substituting into L[y] = 0 and solving for v. This

is especially useful when the equation is of second order. This strategy works for linear equations, regardless

of whether or not the coefficients are constant.

Example 8.6. Given y = t is a solution to t2y′′ − t(t + 2)y′ + (t + 2)y = 0 with t > 0. Find the general

solution to this equation.

8.3 Nonhomogeneous Linear Equations with Constant Coefficients

Note that by Theorem 7.1, in order to solve L[y] = f(t) we need to find YH , the general homogeneous

solution, and YP , a particular nonhomogeneous solution. In the previous section we discussed how to find

YH . Now, we will discuss several methods for finding YP .
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8.3.1 Key Identities

Example 8.7. Find a particular solution to the equation y′′ + 2y = e5t.

The idea is to write down the Key Identities, substitute appropriate z values and use them to obtain the

desired forcing. Recall the Key Identities are the ones listed below:

L[ezt] = p(z)ezt

L[tezt] = p′(z)ezt + p(z)tezt

L[t2ezt] = p′′(z)ezt + 2p′(z)tezt + p(z)t2ezt

L[t3ezt] = p′′′(z)ezt + 3p′′(z)tezt + 3p′(z)t2ezt + p(z)t3ezt

...

.

Example 8.8. Find a particular solution for y′′ − 6y′ + 9y = 4e3t.

Example 8.9. Find a particular solution for y′′ + 2y′ + 10y = cos(2t).

In general, this method works well if the forcing has the following form:

f(t) = (polynomial) · eat cos(bt) + (polynomial) · eat sin(bt).

In which case, we write down the Key Identities and substitute z = a+ ib. Then we take appropriate linear

combinations to obtain the forcing.

Example 8.10. Find a particular solution for y′′ + 2y′ + 10y = 4te2t.

Example 8.11. Find a particular solution for y′′ + y = sin t+ t.

8.3.2 Undetermined Coefficients

Theorem 8.5. Suppose L is a linear differential operator with constant coefficients with p(z) as its character-

istic polynomial. Suppose the multiplicity of a+ ib (with a, b ∈ R) as a root of p(z) is m (So, if p(a+ ib) 6= 0,

then m = 0). Assume f(t) = g(t)eat cos(bt) + h(t)eat sin(bt), where g(t), h(t) are polynomials and d is the

maximum degree of g and h. Then, the equation L[y] = f(t) has a particular solution of the form

YP = tm(A0 +A1t+ · · ·+Adt
d)eat cos(bt) + tm(B0 +B1t+ · · ·+Bdt

d)eat sin(bt),

where Aj , Bj are constants.

Example 8.12. Using the method of undetermined coefficients, find a particular solution for each of the

following:

(a) y′′ + 4y = t cos(2t).

(b) y′′ − 6y′ + 9y = 4e3t.

(c) y′′ + 2y′ + 10y = 5e−t sin(3t).

(d) y′′ + 3y′ − 4y = 2 sin t cos(3t).
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8.3.3 Variation of Parameters

This method is used to find particular solutions to nonhomogeneous equations. It can be applied regardless

of whether or not the coefficients are constant.

We assume Y1, . . . , Yn form a FSoS for L[y] = 0. We are looking for a particular solution to L[y] = f(t). We

find functions u1(t), . . . , un(t) for which y = u1(t)Y1(t) + · · · + un(t)Yn(t) is a solution to L[y] = f(t). This

gives us only one equation for u1, . . . , un. We will choose other equations to make evaluation of derivatives

of y simpler. We start from

y = u1Y1 + · · ·+ unYn

Differentiating we obtain

y′ = (u1Y
′
1 + · · ·+ unY

′
n) + (u′1Y1 + · · ·+ u′nYn).

Setting u′1Y1 + · · ·+ u′nYn = 0 simplifies the above equality to

y′ = u1Y
′
1 + · · ·+ unY

′
n.

Differentiating this again we obtain

y′′ = (u1Y
′′
1 + · · ·+ unY

′′
n ) + (u′1Y

′
1 + · · ·+ u′nY

′
n).

Again we simplify this by setting u′1Y
′
1 + · · ·+ u′nY

′
n = 0. Repeating this we get the following:

u′1Y
(k)
1 + · · ·+ u′nY

(k)
n = 0, for k = 0, . . . , n− 2.

y(k) = u1Y
(k)
1 + · · ·+ unY

(k)
n , for k = 0, . . . , n− 1.

y(n) = (u1Y
(n)
1 + · · ·+ unY

(n)
n ) + (u′1Y

(n−1)
1 + · · ·+ u′nY

(n−1)
n )

Substituting these into L[y] = f(t) we obtain the following:

u1L[Y1] + · · ·+ unL[Yn] + u′1Y
(n−1)
1 + · · ·+ u′nY

(n−1)
n = f(t).

Since Y1, . . . , Yn are solutions to the homogeneous equation L[y] = 0, we obtain the last equation that we

need: u′1Y
(n−1)
1 + · · ·+ u′nY

(n−1)
n = f(t). Therefore, we need to solve the followings system:

u′1Y1 + u′2Y2 + · · ·+ u′nYn = 0

u′1Y
′
1 + u′2Y

′
2 + · · ·+ u′nY

′
n = 0

...

u′1Y
(n−2)
1 + u′2Y

(n−2)
2 + · · ·+ u′nY

(n−2)
n = 0

u′1Y
(n−1)
1 + u′2Y

(n−1)
2 + · · ·+ u′nY

(n−1)
n = f(t)

This equation must be solved in terms of u′1, . . . , u
′
n. Note that the determinant of the ceofficient matrix is

W [Y1, . . . , Yn] 6= 0 and thus a solution always exists.

Example 8.13. Find a particular solution for y′′ + y = tan t.
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8.4 More Examples

Example 8.14. Find the general solution of each equation.

(a) D4[y] + 4D2[y] + 4y = 0.

(b) y′′′ + y′′ − 4y′ − 4y = 0.

(c) y(7) − 6y(5) + 9y′′′ = 0.

(d) y′′′ + 2y′′ + 2y′ = 0.

(e) y′′ + 3y′ + 2y =
1

et + 1
.

Solution. (a) p(z) = z4 + 4z2 + 4 = (z2 + 2)2. The roots are z = ±
√

2i. Therefore, the general solution is

y = c1 cos(
√

2t) + c2 sin(
√

2t) + c3t cos(
√

2t) + c4t sin(
√

2t).

(b) p(z) = z3 + z2 − 4z − 4. We can either factor this by grouping or guess a root. A root is z = −1 and

thus p(z) must have a factor z + 1. This yields p(z) = (z + 1)(z2 − 4) = (z + 1)(z − 2)(z + 2). The roots are

−1, 2,−2. Therefore, the general solution is

y = c1e
−t + c2e

2t + c3e
−2t.

(c) p(z) = z7 − 6z5 + 9z3 = z3(z4 − 6z2 + 9) = z3(z2 − 3)2 = z3(z −
√

3)2(z +
√

3)2. The general solution is

y = c1 + c2t+ c3t
2 + c4e

√
3t + c5te

√
3t + c6e

−
√

3t + c7te
−
√

3t.

(d) p(z) = z3 + 2z2 + 2z = z(z2 + 2z+ 2) = z((z+ 1)2 + 1). The roots are z = 0,−1± i. The general solution

is

y = c1 + c2e
−t cos t+ c3e

−t sin t.

(e) p(z) = z2 + 3z + 2 = (z + 1)(z + 2). The general homogeneous solution is

YH = c1e
−t + c2e

−2t.

To find a particular solution we will use Variation of Parameters. Note that because of the format of the

forcing, Key Identities and Undetermined Coefficients would not work. Set Yp = u1e
−t + u2e

−2t. We need

to solve the following system: 
u′1e
−t + u′2e

−2t = 0

−u′1e−t − 2u′2e
−2t =

1

et + 1

Adding the two equations we obtain

−u′2e−2t =
1

et + 1
⇒ u′2 =

−e2t

et + 1
⇒ u2 = −

∫
e2t

et + 1
dt = −

∫
x dx

x+ 1
, where x = et.

∫
x

x+ 1
dx =

∫
1− 1

x+ 1
dx = x− ln |x+ 1|+ C.
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Therefore, one such u2 is −et + ln(et + 1).

Substituting u′2 into the first equation we obtain

u′1 = −u′2e−t =
et

et + 1
⇒ u1 =

∫
et

et + 1
dt =

∫
1

x+ 1
dx, where x = et.

One such u1 is ln(et + 1). Therefore,

YP = ln(et + 1)e−t + (−et + ln(et + 1))e−2t = ln(et + 1)(e−t + e−2t)− e−t.

−e−t can be absorbed by YH . Thus, the general solution to the given equation is

y = c1e
−t + c2e

−2t + ln(et + 1)(e−t + e−2t).

Example 8.15. Find a particular solution to the following equation using each of the following methods:

y′′ − y′ = tet

(a) Undetermined Coefficients.

(b) Key Identities.

(c) Variation of Parameters.

Solution. (a) p(z) = z2 − z. Roots are 0, 1, and d = m = 1. A particular solution is of the form

YP = t(A0 +A1t)e
t. We have the following:

Y ′P = (A0 + 2A1t)e
t + (A0t+A1t

2)et = (A0 + 2A1t+A0t+A1t
2)et

Y ′′P = (2A1 +A0 + 2A1t+A0 + 2A1t+A0t+A1t
2)et = (2A0 + 2A1 +A0t+ 4A1t+A1t

2)et.

Y ′′P − Y ′P = (2A1t+ 2A1 +A0)et

In order for YP to satisfy the equation we need to have

(2A1t+ 2A1 +A0)et = tet ⇒ 2A1 = 1, 2A1 +A0 = 0⇒ A0 = −1, A1 = 1/2.

Therefore, a particular solution is YP = −tet + t2et/2.

(b) Similar to the previous case d = m = 1. We need to write down the Key Identities for the 1st and 2nd

derivatives and substitute z = 1. We have p′(z) = 2z − 1, p′′(z) = 2. Therefore,

p(1) = 0, p′(1) = 1, p′′(1) = 2.
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The Key Identities yield:

L[tet] = p′(1)et + p(1)tet = et, and L[t2et] = p′′(1)et + 2p′(1)tet + p(1)t2et = 2et + 2tet.

Subtracting twice the first one from the second we obtain

L[t2et − 2tet] = 2et + 2tet − 2et = 2tet ⇒ L[t2et/2− tet] = tet ⇒ YP = t2et/2− tet.

(c) Roots of the characteristic polynomial are 0, 1. A particular solution is of the form YP = u1 +u2e
t, where

u1, u2 satisfy the following system:u
′
1 + u′2e

t = 0

u′10 + u′2e
t = tet ⇒ u′2 = t⇒ u2 = t2/2 works.

Substituting into the first equation we obtain u′1 = −tet. Integrating yields u1 = −tet + et. Therefore, a

particular solution is

YP = −tet + et + t2et/2.

This solution is different from the one we got in parts (a) and (b), however it differs by those by a homogeneous

solution et.

Example 8.16. Given the solution y1 to each equation, find the general solution.

(a) ty′′ − ty′ + y = 0, y1 = t.

(b) y′′ + ety′ + (et − 1)y = 0, y1 = e−t.

(c) ty′′ − (t+ 3)y′ + 2y = 0, y1 = at2 + bt+ c for some constants a, b, c.

Solution. We will use the method of Reduction of Order for all parts.

(a) Let y = vt. We have y′ = v′t + v, and y′′ = v′′t + 2v′. Substituting we obtain t2v′′ + 2tv′ − t2v′ = 0.

Note that when using Reduction of Order, the term involving v will vanish so we do not need to compute

that term. Setting w = v′ we obtain the following equation tw′ + (2 − t)w = 0. The integrating factor is

e2 ln t−t = t2e−t

d

dt

(
t2e−tw

)
= 0⇒ w = et/t2 is one solution.

Since w = v′ is nonzero, v is not constant and thus the solutions y2 = t

∫ t

0

es/s2 ds and y1 are not scalar

multiples and thus, they are linearly independent. The general solution is thus

y = c1t+ c2t

∫ t

0

es/s2 ds.

(b) Let y = ve−t. We have y′ = v′e−t − ve−t and y′′ = v′′e−t − 2v′e−t + ve−t. Substituting we obtain

v′′e−t − 2v′e−t + etv′e−t = 0⇒ v′′e−t + v′(−2e−t + 1) = 0⇒ v′′ + (−2 + et)v′ = 0.
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An integrating factor for this linear equation is e−2t+et . This yields

d

dt

(
e2t−etv′

)
= 0⇒ v′ = ee

t−2t works.

Integrating and using substituting u = et we obtain

v =

∫ et

1

euu−2 du

u
=

∫ et

1

euu−3 du.

The general solution is

y = c1e
−t + c2e

−t
∫ et

1

euu−3 du.

(c) First, we will find a, b, c by substituting at2 + bt+ c into the equation:

y′ = 2at+ b, y′′ = 2a⇒ ty′′ − (t+ 3)y′ + 2y = 2at− (t+ 3)(2at+ b) + 2(at2 + bt+ c) = 0.

Simplifying we obtain:

(2a− b− 6a+ 2b)t− 3b+ 2c = 0⇒ b− 4a = −3b+ 2c = 0⇒ b = 4a, c = 6a.

Setting a = 1 we obtain a solution y1 = t2 + 4t+ 6.

We will now use Reduction of Order to find a second solution.

y = v(t2 + 4t+ 6), y′ = v′(t2 + 4t+ 6) + v(2t+ 4)⇒ y′′ = v′′(t2 + 4t+ 6) + 2v′(2t+ 4) + 2v.

Substituting into the equation we obtain

v′′(t3 + 4t2 + 6t) + 2v′(2t2 + 4t)− (t+ 3)v′(t2 + 4t+ 6) = 0⇒ v′′

v′
=
t3 + 3t2 + 10t+ 18

t3 + 4t2 + 6t
.

The right hand side can be written as

1 +
−t2 + 4t+ 18

t3 + 4t2 + 6t
= 1 +

3

t
− 4t+ 8

t2 + 4t+ 6
,

where the latter equality is obtained using partial fractions method. We will now integrate the last fraction:∫
4t+ 8

t2 + 4t+ 6
dt =

∫
4(t+ 2)

(t+ 2)2 + 2
dt =

∫
4u

u2 + 2
du = 2 ln(u2 + 2) + C, where u = t+ 2.

Therefore,

ln(v′) = t+ 3 ln t− 2 ln(u2 + 2)⇒ v′ =
ett3

(t2 + 4t+ 6)2
.

This yields v =
et(t− 3)

t2 + 4t+ 6
. (It is not immediately clear to me how to do this integral manually!) The

general solution is

y = c1(t2 + 4t+ 6) + c2e
t(t− 3).
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Example 8.17. Prove that if y = t3 is a solution to a linear homogeneous equation with constant coefficients

L[y] = 0, then so are 1, t, and t2.

Solution. Let p(z) be the characteristic polynomial of L. By the third Key Identity with z = 0 we have

L[t3] = p′′′(0) + 3p′′(0)t+ 3p′(0)t2 + p(0)t3.

Since L[t3] = 0 we must have p′′′(0) + 3p′′(0)t + 3p′(0)t2 + p(0)t3 = 0 for all t ∈ R, which implies p(0) =

p′(0) = p′′(0) = p′′′(0) = 0. Therefore, by Theorem 8.2, zero as a root of p(z) has multiplicity at least 4.

Combining this with Theorem 8.4 we conclude that functions 1, t, t2 are all solutions of L[y] = 0.

Example 8.18. Find a linear differential equation with constant coefficients in normal form L[y] = f(t)

whose general solution is given by

y = c1 + c2t+ c3 cos t+ c4 sin t.

How many such equations are there?

Solution. We need to make sure 1, t, sin t, cos t form a FSoS. So, the characteristic polynomial should have

roots 0, 0,±i, and thus it should be p(z) = z2(z2 + 1) = z4 + z2. So, one such equation is y(4) + y′′ = 0.

Now, we will see if there are other such equations. Note that by setting cj = 0 for all j we conclude that y = 0

must be a solution, and hence L[0] = f(t). This means f(t) = 0. On the other hand we know 1, t, sin t, cos t

are linearly independent by proof of Theorem 8.4. Thus, the solution set to L[y] = 0 must be of dimension

4. Furthermore, we know L[1] = 0, which by the first Key Identity we conclude p(1) = 0. We also know

L[t] = p′(1) + p(1)t, which means p′(1) = 0. In addition to that L[eit] = p(i)eit. On the other hand

L[e±it] = L[cos t± i sin t] = L[cos t]± iL[sin t] = 0± i0 = 0.

Therefore, p(±i) = 0. So far we have shown p(z) has four roots 0, 0,±i, and has degree 4. Since we are

assuming the equation is in normal form p(z) = z2(z + i)(z − i) and thus, L = D4 + D2 is the only such

linear operator with constant coefficients.

Example 8.19. Find all values of constant α where all solutions of the equation y′′ − 5αy′ + 4α2y = 0 tend

to zero as t→∞. Also, find all values of α for which all solutions are bounded for t > 0.

Solution. The roots of the characteristic polynomial are r1, r2 = α, 4α. We will take three cases:

Case I. α < 0. In this case, since the roots are distinct and real, the general solution is y = c1e
αt + c2e

4αt,

which tends to zero as t→∞. Furthermore, for t > 0 we have |y| ≤ |c1|+ |c2|, which means all solutions are

bounded.
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Case II. α = 0. In this case the roots are both 0 and thus the general solution is c1 + c2t which does not

always approach zero as t→∞, e.g. when c2 = 1, and at least some solutions, e.g. y = t, are unbounded.

Case III. α > 0. In this case the roots are both real and distinct. Thus, the general solution c1e
αt + c2e

4αt

does not always tends to zero as t→∞., e.g. when c1 = c2 = 1. The same solution is unbounded.

To summarize: All solutions approach zero as t → ∞ if and only if α < 0 if and only if all solutions are

bounded.

Example 8.20. Suppose y = sin t + t cos t is a solution to a homogeneous linear equation with constant

coefficients L[y] = 0. Prove that for every c1, c2, c3, c4 ∈ R, the function

y = c1 sin t+ c2 cos t+ c3t sin t+ c4t cos t

is also a solution to L[y] = 0.

Solution. Let z1, . . . , zm be all distinct roots of the characteristic polynomial p(z) of L. By Theorem 8.4

every solution to L[y] = 0 is a linear combination of tkezjt’s with complex coefficients. On the other hand

sin t+ t cos t =
eit − e−it

2i
+ t

eit + e−it

2
.

Since tkeat’s are linearly independent, i,−i must be roots of p(z). Therefore, sin t is a solution to L[y] = 0.

By linearity t cos t is also a solution to L[y] = 0. By an argument similar to Example 8.17 we conclude that

p(z) has i as a root with multiplicity at least 2. Thus, sin t, cos t, t sin t, t cos t are all solutions to L[y] = 0.

By linearity we obtain the result.

Example 8.21. Find an analytic function that is not a solution to any linear equation with constant

coefficients.

Sketch. We need to find a function that is not a linear combination of functions of the form

tjeat cos(bt), tjeat sin(bt)

Note that these functions grow at most exponentially, so we will choose a function that grows faster.

Solution. One such function is et
2

. First, note that since et =
∞∑
n=0

tn/n! we have et
2

=
∞∑
n=0

t2n/n! and thus

et
2

is analytic.

Suppose on the contrary et
2

is a solution to a homogeneous linear equation with constant coefficients. By

Theorem 8.4 it can be written as a linear combination of functions of the following form

tjeat cos(bt), tjeat sin(bt) (∗).
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Note that
tjeat cos(bt)

et2
= tje(a−t)t cos(bt).

When t > a+ 1 we have a− t < −1 and thus tje(a−t)t < tje−t, which approaches zero as t→∞. Thus the

entire ratio above approaches zero. Similarly the ratio of tjeat sin(bt) by et
2

approaches zero. Therefore , et
2

approaches infinity faster than any solution to a homogeneous linear equation with constant coefficients.

Example 8.22. Evaluate ∫ ∫
· · ·
∫ ∫

︸ ︷︷ ︸
8 times

tetdt · · · dt

Solution. We are looking for every function whose 8-th derivative is tet. In other words we are trying to

solve y(8) = tet. The characteristic polynomial is p(z) = z8. This yields the characteristic equation z8 = 0,

and thus the homogeneous solution is

YH = c0 + c1t+ · · ·+ c7t
7.

Using the usual notations, we know d = 1 and m = 0. Therefore, we get the following identities:

L[et] = p(1)et = et, and L[tet] = p′(1)et + p(1)tet = 8et + tet.

This implies L[tet − 8et] = tet, and hence YP = tet − 8et. Thus, the answer is

c0 + c1t+ · · ·+ c7t
7 + tet − 8et.

Example 8.23. Given that y = t is a solution to the following equation, find the general solution to this

equation:

t3y′′′ − 3t2y′′ + (6t− 4t3)y′ + (−6 + 4t2)y = 0, t > 0.

Solution. We will use Reduction of Order to reduce the order of the equation. Set y = vt. We will then

obtain:

y = vt, y′ = v + v′t, y′′ = 2v′ + v′′t, and y′′′ = 3v′′ + v′′′t.

Substituting this into the equation we obtain the following:

t4v′′′ + (3t3 − 3t3)v′′ + (−6t2 + 6t2 − 4t4)v′ + (6t− 4t3 − 6t+ 4t3)v = 0.

This simplifies to v′′′−4v′ = 0. This is an equation with constant coefficients whose characteristic polynomial

is z3 − 4z that has roots 0,±2. Thus, v = 1, e±2t are three solutions. This means t, tet and te−t are

three solutions. By Exercise 8.5 these functions are linearly independent. Since the given equation is of

order 3, its solution set must have dimension 3. Thus, the general solution to the given equation is y =

c1t+ c2te
t + c3te

−t.
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Example 8.24. Prove that all periodic solutions of the following equation form a two dimensional vector

space.

y(4) − y = 0.

Solution. The characteristic polynomial is p(z) = z4 − 1. Its roots are z = ±1,±i. Therefore, the general

solution is of the form

y = c1 cos t+ c2 sin t+ c3e
t + c4e

−t.

Note that if y is periodic, since it is continuous, by the Extreme Value Theorem, it must be bounded. If

c3 > 0, then as t→∞, c3e
t →∞. Since e−t → 0 and c1 cos t+ c2 sin t are bounded, y would be unbounded.

Therefore, y would not be periodic. Similarly if c3 < 0, the solution y would not be periodic. Therefore, if y

is periodic c3 = 0. Similarly, we must have c4 = 0. Thus, the only solutions that may be periodic are of the

form c1 cos t + c2 sin t. These solutions are all periodic with period 2π. These solutions form a vector space

of dimension 2 with basis {cos t, sin t}.

Example 8.25. Given a positive integer n, solve the following differential equation.

y(n) + y(n−1) + · · ·+ y′ + y = 0.

Solution. The characteristic polynomial is p(z) = zn + · · · + z + 1 =
zn+1 − 1

z − 1
. Its roots satisfy zn+1 = 1.

Taking the absolute value of both sides we conclude that |z|n+1 = 1, i.e. |z| = 1. Using the polar form of z

we have z = eiθ for some angle θ ∈ [0, 2π). Since zn+1 = 1, we have cos((n+ 1)θ) = 1 and sin((n+ 1)θ) = 0.

Therefore, θ =
2πk

n+ 1
, with k = 0, 1, . . . , n. Note that z = 1 is not a root of p(z), thus, we need to eliminate

θ = 0. Therefore, roots of the characteristic polynomial of this equation are

cos(2kπ/(n+ 1)) + i sin(2kπ/(n+ 1)), k = 1, . . . , n.

If n + 1 is odd, then sin(2kπ/(n + 1)) is not zero and thus all of these roots are nonreal. If n + 1 is even,

there is one root of −1 corresponding to k = (n+ 1)/2 and the rest of the roots are nonreal.

The conjugate of cos(2kπ/(n+ 1)) + i sin(2kπ/(n+ 1)) is

cos(2kπ/(n+ 1))− i sin(2kπ/(n+ 1)) = cos(2(n+ 1− k)π/(n+ 1)) + sin(2(n+ 1− k)π/(n+ 1)).

If n+ 1 is odd, then the general solution to this equation is

y =

n
2∑

k=1

cke
t cos(2kπ/(n+1)) cos(sin(2kπ/(n+ 1))) +

n
2∑

k=1

dke
t cos(2kπ/(n+1)) sin(sin(2kπ/(n+ 1))).

If n+ 1 is even, then the general solution to this equation is

y =

n+1
2∑

k=1

cke
t cos(2kπ/(n+1)) cos(sin(2kπ/(n+ 1))) +

n−1
2∑

k=1

dke
t cos(2kπ/(n+1)) sin(sin(2kπ/(n+ 1))).
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8.5 Exercises

Exercise 8.1. Find the general solution for each equation

(a) y′′′ − 4y′′ + 4y′ − y = 0.

(b) 4y′′ − 12y′ + 9y = t.

(c) y(4) + y = 0.

(d) y′′ + 4y = sin(3t) cos t+ et.

(e) y′′ − 6y′ + 9y = t3/2e3t, t > 0.

Exercise 8.2. Given the solution y1 to each equation, find the general solution.

(a) (1− t2)y′′ − 2ty′ + 2y = 0, y1 = t.

(b) ty′′ − y′ − 4t3y = 0, y1 = et
2

.

(c) (et + 1)y′′ − 2y′ − ety = 0, y1 = et − 1.

Exercise 8.3. Find a particular solution for y′′ + 4y′ + 4y = te−2t + t using

(a) Key Identities.

(b) Undetermined Coefficients.

(c) Variation of Parameters.

Exercise 8.4. Find a particular solution to each equation:

(a) y(4) + 4y′′′ + 6y′′ + 4y′ + y = e−t.

(b) y(4) + y′′ = t.

In the following exercise you will prove Theorem 8.4.

Exercise 8.5. Let z1, . . . , zn be distinct complex numbers, z = a + ib with a, b ∈ R, be a nonreal complex

number, and m be a nonnegative integer.

(a) Prove that the span of {tm ezt, tm ezt} over C is the same as the span of {tm eat cos(bt), tm eat sin(bt)}

over C.

(b) Prove that if polynomials p1(t), . . . , pn(t) with complex coefficients satisfy p1(t)ez1t + · · ·+ pn(t)eznt = 0

for all t ∈ R, then all of the polynomials p1(t), . . . , pn(t) must be identically zero.

(c) Use the previous part to prove that the set of functions

{tkezjt | k = 0, 1, . . . ,m, and j = 1, 2, . . . , n}

is linearly independent over C.
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(d) Use part (a) to show if in the set in part (c) we replace each tke(a±ib)t by tkeat cos(bt) and tkeat sin(bt)

we obtain another set of functions that are also linearly independent over C. (Here a, b ∈ R and b 6= 0.)

Hint: To prove part (b), use induction on n. To prove the inductive step, start with
n∑
j=1

pj(t)e
zjt = 0 and

assume pj(t) 6= 0 for all j. Divide both sides by ez1t. Prove that all derivatives of pj(t)e
(zj−z1)t, with j > 1,

are of the form q(t)e(zj−z1)t, where the degree of q(t) is the same as the degree of pj(t). To prove this,

you need to use yet another induction. This means by differentiating enough times you would be able to

eliminate p1(t) altogether, without changing the degrees of p2, . . . , pn. Then apply inductive hypothesis to

yield a contradiction,

Exercise 8.6. Suppose two different linear homogeneous differential equations with constant coefficients

L1[y] = 0 and L2[y] = 0 have a common nonzero solution y = y(t), defined over R. Prove that the charac-

teristic polynomials p1(z) and p2(z) of L1 and L2 have at least one common root.

Exercise 8.7. Using induction on n, prove the Key Identity L[tnezt] =
n∑
j=0

(
n
j

)
p(n−j)(z) tjezt.

Exercise 8.8. Find a general solution for the equation y′′ − 2y′ + y = t2et.

Exercise 8.9. Suppose y = sin t is a solution to a homogeneous linear equation with constant coefficients.

Prove that y = cos t must also be a solution to this equation.

Hint: See Example 8.17.

Exercise 8.10. For each equation do all of the following:

1. Determine all values of α for which all solutions tend to zero as t→∞.

2. Determine all values of α for which all solutions are periodic.

3. Determine all values of α for which all nonzero solutions are unbounded over [0,∞).

(a) y′′ − 2αy′ + (α2 − 1)y = 0.

(b) y′′ + αy = 0.

Exercise 8.11. Let a, b, c be three positive constants. Prove that all solutions of ay′′+ by′+ cy = 0 approach

zero as t→∞.

Exercise 8.12. Let α and β be two constants. Show that if y′′+ 4y = 0, y(α) = y0, y
′(β) = y1 has more than

one solution for some y0, y1, then 4α− 4β = (2k + 1)π for some integer k.

Exercise 8.13. Suppose φ1(t) = et + et
2

, φ2(t) = 2et + et
2

, and φ3(t) = e−t + et
2

are solutions to the

differential equation y′′ + p(t)y′ + q(t)y = f(t). Solve the initial value problem:

y′′ + p(t)y′ + q(t)y = f(t), y(0) = 0, y′(0) = 2.
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Exercise 8.14. Let L be a linear differential operator with constant coefficients. Suppose all roots of the

characteristic polynomial associated to L[y] = 0 have negative real parts. Prove that every solution to L[y] = 0

tends to zero at t→∞.

Exercise 8.15. Let n be a positive integer. Consider the differential equation

ty′′ − (t+ n)y′ + ny = 0, t > 0.

(a) Prove that y = et is a solution to this equation.

(b) Find the general solution. Can you find a simple form for the general solution?

Exercise 8.16. Find the general solution of each equation, where one solution is given:

(a) ty′′ − y′ + 4t3y = 0, t > 0, y1 = sin(t2).

(b) (t− 1)y′′ − ty′ + y = 0, t > 1, y1 = et.

Exercise 8.17. Suppose p(t) is a continuous over R. Find the general solution of

y′′ + p(t)y′ − (p(t) + 1)y = 0.

Hint: y = et is a solution.

Exercise 8.18. Suppose the equation y′′ + p(t)y′ + q(t)y = 0 has two solutions defined over (0,∞) whose

Wronskian is t. Assume also that this differential equation has y = t2, with t > 0, as a solution. Find a

general solution for the differential equation y′′ + p(t)y′ + q(t)y = t2 sin t with t > 0. As usual show your

work completely.

Exercise 8.19. Find a particular solution for y′′ + y = 2 sin t cos(2t).

Exercise 8.20. Create a second order linear differential equation L[y] = f(t) whose general solution is

y = sin(t2) + c1 cos(t) + c2 sin(t). How many such equations are there?

Exercise 8.21. Prove that the equation y′′ + y = 2 sin t has no periodic solutions.

Exercise 8.22. Consider the differential equation y′′ + y = 0, and two given constants α, c. Determine how

many solutions y of this equation satisfy y(0) = 0 and y′(α) = c. Your answer could depend on α and c.

Exercise 8.23. Suppose y is a solution to an n-th order linear homogeneous equation with constant coeffi-

cients, and T is a positive real number for which

y(0) = y(T ), y′(0) = y′(T ), . . . , y(n−1)(0) = y(n−1)(T ).

Prove that y is periodic. By an example show that this result does not hold if the coefficients are not constant.

Exercise 8.24. Given that y = t2 is a solution to

t3y′′′ + (t3 − 6t2)y′′ + (t3 − 4t2 + 18t)y′ − (2t2 − 6t+ 24)y = 0, t > 0

find the general solution to this equation.
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Exercise 8.25. Suppose L = Dn+anD
n−1+· · ·+a2D+a1 is a differential operator with constant coefficients

a1, . . . , an for which a1 6= 0. Prove that for every t0 ∈ R and every y1, . . . , yn ∈ R the following problem has

a unique solution.

L[y] = 0, y′(t0) = y1, y
′′(t0) = y2, . . . , y

(n)(t0) = yn.

(Note that this is NOT an IVP.)

Exercise 8.26. Prove that the equation y′′ cos t + y′ sin t + y cos t = t3 has an odd solution defined over

(−π2 ,
π
2 ).

Exercise 8.27. Assume L[y] = 0 is an n-th order linear homogeneous equation with constant coefficients all

of whose solutions are bounded.

(a) Prove that if n is odd, then L[1] = 0.

(b) Prove that if n = 3, then all solution of this equation are periodic.

(c) Prove that the characteristic polynomial of L is of the form p(z) = zk(z2 +a2
1) · · · (z2 +a2

m), where k = 0

or 1, and a1, . . . , am are distinct positive real numbers.

Exercise 8.28. For every two n times differentiable functions u(t), v(t), and any linear differential operator

with constant coefficients

p(D) = Dn + anD
n−1 + · · ·+ a1,

prove that

p(D)[uv] =
1

n!

n∑
k=0

p(k)(D)[u]p(n−k)(D)[v].

8.6 Challenge Problems

Exercise 8.29. Suppose L is a linear differential operator with constant coefficients. Assume the order of

the equation L[y] = 0 is odd and it has no nonzero constant solutions. Prove that L[y] = 0 has a solution

that is strictly increasing over R.

Exercise 8.30. Suppose p : R → R is a periodic continuous function with period T . Assume {N0, N1} is a

NFSoS of y′′ + p(t)y = 0 (∗) at time t0 = 0. Prove that (∗) has a nontrivial solution with period T if and

only if N0(T ) +N ′1(T ) = 2.

Exercise 8.31. Prove that the method of Reduction of Order always reduces the order of the equation. In

other words, assume y1 is a solution to an n-th order linear equation L[y] = 0, and let y = vy1. Prove that

L[vy1] is an (n− 1)-th order equation in terms of w = v′.

8.7 Summary

• To solve a homogeneous linear differential equation with constant coefficients:
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– Write down the characteristic polynomial p(z) of the linear operator.

– Find all roots of p(z).

– For every real root r with multiplicity m, include ert, . . . , tm−1ert in a fundamental set of solutions.

– For a nonreal root a+ bi include eat cos(bt) and eat sin(bt) in the fundamental set of solutions.

– If a nonreal root has multiplicity, similar to above multiply eat cos(bt) and eat sin(bt) by powers of

t to get the appropriate number of solutions.

– Steps above create a fundamental set of solutions. Take a linear combination to get the general

solution.

• To find a particular solution to L[y] = f(t) using the method of Key Identities:

– Find p(z), the characteristic polynomial of L.

– Break f(t) into functions of the form

(polynomial) · eat cos(bt) + (polynomial) · eat sin(bt).

Follow the steps below for each one of them separately.

– Find d, the larger degree of the polynomials in the forcing.

– Find m, the multiplicity of a+ ib as a root of p(z). If a+ ib is not a root of p(z), then m = 0.

– Write down the Key Identities from the m-th to the (m+ d)-the derivatives.

– Take a linear combination to obtain the desired forcing.

– If needed, add up the particular solutions obtained.

• To find a particular solution to L[y] = f(t) using the method of Undetermined Coefficients:

– Break f(t) into functions of the form

(polynomial)eat cos(bt) + (polynomial)eat sin(bt).

Follow the steps below for each one of them separately.

– Find d and m as above.

– A particular solution has the form

YP = tm(A0 + · · ·+Adt
d)eat cos(bt) + tm(B0 + · · ·+Bdt

d)eat sin(bt).

– Substitute YP into the equation and find all constants Aj , Bj .

• To find YP using Variation of Parameters:

– We need a FSoS {Y1, . . . , Yn} for the homogeneous equation.

– Make sure the equation is in normal form, and let f(t) be the forcing.
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– Solve the system: 

u′1Y1 + u′2Y2 + · · ·+ u′nYn = 0

u′1Y
′
1 + u′2Y

′
2 + · · ·+ u′nY

′
n = 0

...

u′1Y
(n−2)
1 + u′2Y

(n−2)
2 + · · ·+ u′nY

(n−2)
n = 0

u′1Y
(n−1)
1 + u′2Y

(n−1)
2 + · · ·+ u′nY

(n−1)
n = f(t)

– This gives YP = u1Y1 + · · · + unYn. Remember that you only need one u1, . . . , un and not all of

them.

– Variation of Parameters can be used for constant or nonconstant linear equations.

• Reudction of order allows us to find a second solution to y′′ + p(t)y′ + q(t)y = 0 given one solution

y1. To use Reduction of Order we let y = vy1, substitute into the equation and obtain a first order

equation in terms of w = v′.

• Reduction of order can be used for equations of higher order as well. Though, solving the resulting

equation for w = v′ may prove to be difficult.
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Chapter 9

Power Series Solutions

9.1 Series Solutions Near an Ordinary Point

In this section we will focus on finding solutions to second order linear equations of the form

y′′ + p(t)y′ + q(t)y = 0.

Example 9.1. Solve y′′ + y = 0.

The general strategy is to replace y by a power series, and find a relation between the coefficients of both

sides. This yields a recurrence relation for the coefficients which in turns gives us a solution. This all works

out, if either we know analytic solutions exist or if the resulting power series converges.

Definition 9.1. A function f(t) is said to be analytic at t0 if both of the following hold:

• The radius of convergence R of the Taylor series of f(t) at t0 is positive, and

• f(t) equals its Taylor series centered at t0 for all t ∈ (t0 −R, t0 +R).

Theorem 9.1. Suppose f(t), and g(t) are analytic at t = t0. Then, the functions f(t) + g(t), and f(t)g(t)

are also analytic at t = t0. Furthermore, if g(t0) 6= 0, then f(t)/g(t) is analytic at t = t0.

The following theorem which guarantees the existence of an analytic solution allows us to find solutions using

the above method.

Definition 9.2. A point t0 is said to be an ordinary point for the equation

y′′ + p(t)y′ + q(t)y = 0,

if p(t) and q(t) are analytic functions at t0. In other words,

p(t) =

∞∑
n=0

pn(t− t0)n, and q(t) =

∞∑
n=0

qn(t− t0)n for all t with 0 < |t− t0| < ε.

If the equation is not in normal form, but it can be written in normal form in such a way that the coefficients

are analytic at t = t0 we still call t0 an ordinary point of the equation.

135
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Theorem 9.2. Suppose p(t) and q(t) are analytic at t0. Then, every solution to the equation

y′′ + p(t)y′ + q(t)y = 0

is analytic at t0. Furthermore, the radius of convergence of the Taylor series of each solution centered at t0

is at least the minimum of the radii of convergence of Taylor series of p(t) and q(t) centered at t0.

The above theorem allows us to find solutions using their Taylor series expansions, and by finding a recursion

for the coefficients.

Example 9.2. Solve y′′ − ty = 0.

Remark. If the coefficients an for y =
∞∑
n=0

an(t − t0)n (∗) are determined in a such a way that the power

series for y satisfies y′′ + p(t)y′ + q(t)y = 0, then y is a solution over the interval of convergence of (∗).

Example 9.3. Solve the initial value problem: y′′ + t2y′ + 2ty = 0, y(0) = 1, y′(0) = 0.

Example 9.4. Solve the initial value problem: y′′ + (t2 + 2t+ 1)y′ − (4t+ 4)y = 0, y(−1) = 0, y′(−1) = 1.

Often times, solutions obtained using the Power Series Method cannot be written in terms of common

functions: polynomials, rational functions, radicals, trigonometric functions and their inverses, exponential

functions, logarithms, etc. If a function can be written in terms of one of these common functions we say it

is in closed form.

9.2 Series Solutions Near a Regular Singular Point

Definition 9.3. We say the differential equation y′′ + p(t)y′ + q(t)y = 0 is singular (or has a singularity)

at t0 if p(t) or q(t) are unbounded near t = t0, and p(t), q(t) are both continuous over 0 < |t − t0| < ε, for

some positive ε.

Solutions near singularities may not even be continuous, which means we will not be able to find them using

the Power Series Method. We will start by looking at a particular type of singularity.

Definition 9.4. Any differential equation of the form t2y′′+αt y′+βy = 0, where α, β ∈ R are real constants,

is said to be an Euler’s equation.

Note that the above Euler’s equation is singular at zero, which means we may not be able to find a solution

by the Power Series Method. We do notice that if y = tr, then both t2y′′ and ty′ will be multiples of tr. This

suggests y = tr may be a good candidate for a solution.

Example 9.5. Solve each of the following equations given t > 0.

(a) t2 y′′ + 6t y′ + 4 y = 0.

(b) t2 y′′ + 3t y′ + y = 0.

(c) 4t2 y′′ + 20t y′ + 25y = 0.
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Theorem 9.3. Let α, β be constants. Consider the differential equation

t2 y′′ + αt y′ + βy = 0, t > 0 (∗)

Let r1, r2 be the roots of equation r(r − 1) + αr + β = 0.

• If r1, r2 are distinct and real, then tr1 , tr2 form a FSoS for (∗).

• If r1 = r2, then tr1 , tr1 ln t form a FSoS for (∗).

• If r1, r2 = a± ib are not real, with a, b ∈ R, then ta cos(b ln t), ta sin(b ln t) form a FSoS for (∗).

When t < 0 the result remains the same when all t’s are replaced by −t.

Remark. Equations of the form (t− t0)2y′′+α(t− t0)y′+βy = 0 can also be solved using a similar method

to what we did above by letting y = (t − t0)r. In which case the previous theorem is still valid when all t’s

are replaced by t− t0.

The above equation can be written as

y′′ +
α

t− t0
y′ +

β

(t− t0)2
y = 0.

In this example, even though there is a singularity at t0, the singularity is still “managable”. This motivates

the following definition:

Definition 9.5. Suppose the equation y′′ + p(t)y′ + q(t)y = 0 is singular at t0. We say t0 is a regular

singular point for this equation if (t − t0)p(t) and (t − t0)2q(t) are analytic near t = t0. In other words,

there is ε > 0 and two sequences pn, qn of real numbers for which, for all t with 0 < |t− t0| < ε, we have

(t− t0)p(t) = p0 + p1(t− t0) + p2(t− t0)2 + · · · , and (t− t0)2q(t) = q0 + q1(t− t0) + q2(t− t0)2 + · · · .

Otherwise, we say t0 is an irregular singular point.

Example 9.6. Find all regular and irregular singular points of the equation

(t4 − 2t2 + 1)y′′ + (t− 1)y′ + 3y = 0.

It is often easier to do a change of variables t = s+ t0, z(s) = y(s+ t0), to move the singularity to the origin

and work with power series centered at s = 0. In which case the equation becomes

z′′(s) + p(s+ t0)z′(s) + q(s+ t0)z(s) = 0.

So, we will only look at equations with zero as a regular singular point.

From Euler’s equation we know a solution may not be analytic near zero. The idea of solving such equations

is to write y(t) = tr
∞∑
n=0

ant
n, and find a recurrence relation for an.



138 CHAPTER 9. POWER SERIES SOLUTIONS

Example 9.7. Find a FSoS for

t2y′′ + ty′ + (t2 − 1/4)y = 0, t > 0.

Theorem 9.4. Suppose t = 0 is a regular singular point for the equation

y′′ + p(t)y′ + q(t)y = 0 (∗)

Suppose

tp(t) = p0 + p1t+ p2t
2 + · · · , and t2q(t) = q0 + q1t+ q2t

2 + · · · for all t ∈ (0, R).

Let r1, r2 be roots of the equation r(r − 1) + p0r + q0 = 0 with r1 ≥ r2 if r1, r2 are both real. Then, the

equation (∗) has a FSoS over (0, R) of the following form:

y1(t) = tr1
∞∑
n=0

ant
n, and y2(t) = c y1(t) ln t+ tr2

∞∑
n=0

bnt
n,

where c is a real constant. Furthermore,

• If r1 − r2 is not an integer, then c = 0.

• If r1 = r2, then c = 1.

• If r1 − r2 is a positive integer, then c could be any real constant.

When r1, r2 = a± bi are nonreal, we replace tr1 by its real and imaginary parts: ta cos(b ln t) and ta sin(b ln t)

to obtain the solutions:

y1(t) = ta cos(b ln t)

∞∑
n=0

ant
n, and y2(t) = ta sin(b ln t)

∞∑
n=0

ant
n.

Furthermore, a similar result holds for when t ∈ (−R, 0), if we replace each tr by (−t)r, and ln t is replaced

by ln(−t).

Remark. The equation r(r − 1) + p0r + q0 = 0 is called the indicial equation and the solutions r1, r2 are

called exponents at the singularity for the given second order equation.

Example 9.8. Write down the form of a FSoS to each equation near t0 = 0.

(a) t2y′′ + (sin t+ t)y′ + y = 0, t > 0.

(b) t2y′′ + (et − 1)y′ − (t+ 1)y = 0, t > 0.

(c) t2y′′ + (3t+ t4)y′ + y = 0, t > 0.

9.3 More Examples

Example 9.9. Find the general solution to each equation.

(a) t2y′′ + 3ty′ + 2y = 0, t < 0.
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(b) t2y′′ − 5ty′ + 9y = 0, t > 0.

(c) (t− 1)2y′′ − 5(t− 1)y′ + 8y = 0, t < 1.

Solution. These are all Euler’s equations.

(a) The indicial equation is r(r − 1) + 3r + 2 = 0. This yields r = −1± i. The general solution is thus

y = c1t
−1 cos(ln(−t)) + c2t

−1 sin(ln(−t)).

(b) The indicial equation is r(r − 1)− 5r + 9 = 0. Its roots are r = 3, 3. Thus, the general solution is

y = c1t
3 + c2t

3 ln t.

(c) The indicial equation is r(r − 1)− 5r + 8 = 0. The roots are r = 2, 4. The general solution is thus

y = c1(1− t)2 + c2(1− t)4.

Example 9.10. Solve the equation: t2y′′ − 2y = t3, with t > 0.

Solution. First we will solve the corresponding homogeneous equation, which is an Euler’s equation. Letting

y = tr, we obtain the equation r(r − 1) − 2 = 0. This gives r = −1, 2, which means t−1, t2 form a FSoS,

and thus YH = c1/t + c2t
2 is the general homogeneous solution. To find a particular solution we will use

Variation of Parameters. Let YP = u1/t+ u2t
2. We have the following system:u
′
1/t+ u′2t

2 = 0

−u′1/t2 + 2u′2t = t

Note that the forcing is t3/t2 = t. Solving, we obtain u′2 = 1/3 and u′1 = −t3/3. Integrating we will find

u1 = −t4/12 and u2 = t/3 are two such solutions. Thus, YP = −t3/12 + t3/3 = t3/4. Therefore, the general

solution is

y =
c1
t

+ c2t
2 +

t3

4
.

Example 9.11. Find all constants α for which all solutions to the equation t2y′′ + ty′ + αy = 0, t > 0 are

bounded near t = 0.

Solution. This is an Euler’s equation. The indicial equation is r(r − 1) + r + α = 0. The roots are ±
√
α.

We will take three cases.

Case I. If α = 0, then the general solution is y = c1 + c2 ln t. Thus, in that case y = ln t is a solution which

is not bounded near t = 0.

Case II. If α > 0, then the general solution is y = c1t
√
α + c1t

−
√
α. The solution t−

√
α is unbounded near
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t = 0.

Case III. If α < 0, then the general solution is y = c1 cos(
√
−α ln t) + c2 sin(

√
−α ln t), which is bounded

since sinx and cosx are both bounded functions.

The answer is α < 0.

Example 9.12. For each of the following find an Euler’s equation whose general solution is given.

(a) c1t
4 + c2t

5.

(b) c1t
2 + c2t

2 ln t.

(c) c1t
5 cos(3 ln t) + c2t

5 sin(3 ln t).

Solution. (a) We will make sure that the indicial equation in Theorem 9.3 has roots r = 4, 5. Thus, we need

r(r − 1) + αr + β = (r − 4)(r − 5)⇒ r2 + (α− 1)r + β = r2 − 9r + 20⇒ α− 1 = −9, β = 20.

This yields the equation t2y′′ − 8ty′ + 20y = 0.

(b) Similar to above, but there must be a repeated root of 2. This means r(r − 1) + αr + β = (r − 2)2, i.e.

α− 1 = −4 and β = 4. Thus, we obtain the equation t2y′′ − 3ty′ + 4y = 0.

(c) The roots must be 5±3i, and thus r(r−1) +αr+β = (r−5)2 + 9. This implies α−1 = −10 and β = 34.

This yields the equation t2y′′ − 9ty′ + 34y = 0.

Example 9.13. Find all singularities of the following equations. For each singularity, determine if it is

regular or irregular.

(a) (t2 sin t)y′′ + t y′ − (cos t)y = 0.

(b) (t2 − 1)3y′′ + (1− t)2y′ + sin(1− t) y = 0.

Solution. (a) The equation, written in normal form, is

y′′ +
y′

t sin t
− cos t

t2 sin t
y = 0.

We see that p(t) =
1

t sin t
and q(t) =

− cos t

t2 sin t
are continuous everywhere, except when t2 sin t = 0. At these

points p(t) is unbounded. Thus, the singularities are when t = kπ with k ∈ Z.

First, we will look at t = 0. The function tp(t) =
1

sin t
is not analytic at zero, since it is unbounded near

zero. Therefore, zero is an irregular singularity. Assume t0 = kπ with 0 6= k ∈ Z. Let s = t − kπ. We have

t = s+ kπ. This yields:
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(t− kπ)p(t) =
s

(s+ kπ) sin(s+ kπ)
=

s

±(s+ kπ) sin s
.

The function
sin s

s
=

∞∑
n=0

(−1)n
s2n

(2n+ 1)!

is analytic at zero, and is not zero at zero. Therefore,
s

±(s+ kπ) sin s
is analytic at zero. Similarly,

(t− kπ)2 cos t

t2 sin t
is also analytic at kπ. Therefore, points of the form kπ with k a nonzero integer are all

regular singular points.

(b) The coefficients are all analytic and the roots of (t2 − 1)3 are t = ±1. The equation can be written as

y′′ +
(1− t)2

(t2 − 1)3
y′ +

sin(1− t)
(t2 − 1)3

y = 0.

The coefficients are then
1

(t− 1)(t+ 1)3
, and

sin(1− t)/(t− 1)

(t− 1)2(1 + t)3
.

Note that 1/(t + 1)3 is analytic near t = 1, and
sin(1− t)/(t− 1)

(1 + t)3
is analytic near t = 1, since similar to

above sin(1− t)/(t− 1) is analytic. Therefore, t = 1 is a regular singularity.

Near t = −1, the function
1

(t− 1)(t+ 1)2
is not analytic, as it is unbounded. Thus t = −1 is an irregular

singularity.

Example 9.14. Find the first six coefficients of the Taylor series of the solution centered at t0 = 0 to each

IVP.

(a) y′′ + (sin t)y′ + y = 0, y(0) = 1, y′(0) = 0.

(b) y′′ + (t3 − 1)y′ + ety = 0, y(0) = 0, y′(0) = 2.

Solution. First note that since all coefficients are analytic the solutions to both equations are analytic.

(a) Let y =
∞∑
n=0

ant
n. We have

y′ =

∞∑
n=1

nant
n−1, y′′ =

∞∑
n=2

n(n− 1)ant
n−2.

Substituting y, y′, y′′ and sin t by their power series we obtain:

∞∑
n=2

n(n− 1)ant
n−2 +

( ∞∑
n=0

(−1)n
t2n+1

(2n+ 1)!

) ∞∑
n=1

nant
n−1 +

∞∑
n=0

ant
n = 0.

Comparing the coefficients we obtain the following:

2a2 + a0 = 6a3 + a1 + a1 = 12a4 + 2a2 + a2 = 20a5 + 3a3 +
−1

3!
a1 + a3 = 0.
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Note that y(0) = 1 implies a0 = 1, and y′(0) = 0 implies a1 = 0. Substituting and solving the above system

we obtain a2 = −1/2, a3 = 0, a4 = 1/8, a5 = 0.

(b) Similar to above we obtain

∞∑
n=2

n(n− 1)ant
n−2 + (t3 − 1)

∞∑
n=1

nant
n−1 +

( ∞∑
n=0

tn

n!

) ∞∑
n=0

ant
n = 0.

Comparing the coefficients we obtain:

2a2− a1 + a0 = 6a3− 2a2 + a1 +
a0

1!
= 12a4− 3a3 + a2 +

a1

1!
+
a0

2!
= 20a5 + a1− 4a4 + a3 +

a2

1!
+
a1

2!
+
a0

3!
= 0.

The given assumption yileds a0 = 0, a1 = 2. Substituting and solving the system we obtain a2 = 1, a3 =

0, a4 = −1/4, a5 = −1/4.

Example 9.15. Solve each equation. Write down each solution in closed form.

(a) (1 + t2)y′′ − 6ty′ + 6y = 0 with t ∈ R.

(b) (1− t2)y′′ − 8ty′ − 12y = 0 near t = 0.

Solution. (a) Note that the cofficients −6t/(1 + t2) and 6/(1 + t2) are analytic near t = 0. Thus, any

solution near t0 = 0 is analytic. Let y =
∞∑
n=0

ant
n. This yields y′ =

∞∑
n=1

nant
n−1, y′′ =

∞∑
n=2

n(n − 1)ant
n−2.

Substituting into the equation and distributing 1 + t2 we obtain the following:

∞∑
n=2

n(n− 1)ant
n−2 +

∞∑
n=2

n(n− 1)ant
n − 6

∞∑
n=1

nant
n + 6

∞∑
n=0

ant
n

= 2a2 + 6a3t− 6a1t+ 6a0 + 6a1t+
∞∑
n=2

((n+ 2)(n+ 1)an+2 + n(n− 1)an − 6nan + 6an)tn = 0

This yields the following system:


2a2 + 6a0 = 0⇒ a2 = −3a0

a3 = 0

(n+ 2)(n+ 1)an+2 + (n2 − 7n+ 6)an = 0⇒ an+2 = − (n− 6)(n− 1)

(n+ 2)(n+ 1)
an, if n ≥ 2

Substituting n = 2, 4, 6 in the last equality we obtain

a4 =
4

12
a2 = −a0, a6 =

6

30
a4 = −a0

5
, a8 = 0.

Since an+2 is a multiple of an we obtain a2n = 0 for all n ≥ 4. Similarly, since a3 = 0 we have a2n+1 = 0 for

all n ≥ 1. Therefore, the general solution is given by

y = a0 + a1t− 3a0t
2 − a0t

4 − a0

5
t6 = a0(1− 3t2 − t4 − 1

5
t6) + a1t.

Note that since the above solution is a polynomial, substituting into the equation we get a solution that is

valid over R. On the other hand, since the coefficients −6t/(1 + t2) and 6/(1 + t2) are continuous over R,
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by the Existence and Uniqueness Theorem for Linear Equations, the above solution is the unique solution

satisfying y(0) = a0, y
′(0) = a1. Thus, the general solution over R is given by y = a0(1−3t2− t4− 1

5
t6)+a1t.

(b) Similar to above, both coefficients −8t/(1 − t2) and −12/(1 − t2) are analytic near t0 = 0. Thus, all

solutions of the equation are analytic near t0 = 0. Substituting y =
∞∑
n=0

ant
n we obtain:

∞∑
n=2

n(n− 1)ant
n−2 −

∞∑
n=2

n(n− 1)ant
n − 8

∞∑
n=1

nant
n − 12

∞∑
n=0

ant
n

= 2a2 + 6a3t− 8a1t− 12a0 − 12a1t+
∞∑
n=2

((n+ 2)(n+ 1)an+2 − n(n− 1)an − 8nan − 12an)tn = 0

This yields the following system:
−12a0 + 2a2 = 0⇒ a2 = 6a0

6a3 − 20a1 = 0⇒ a3 =
20

6
a1

(n+ 2)(n+ 1)an+2 − (n2 + 7n+ 12)an = 0⇒ an+2 =
(n+ 3)(n+ 4)

(n+ 1)(n+ 2)
an, for all n ≥ 2 (∗)

Substituting n = 2, 4, 6 in the last equation we obtain

a4 =
5 · 6
3 · 4

a2 =
5 · 6

2
a0, a6 =

7 · 8
5 · 6

a4 =
7 · 8

2
a0, a8 =

9 · 10

7 · 8
a6 =

9 · 10

2
a0.

Similar equalities hold for when n is odd.

a5 =
6 · 7
4 · 5

a3 =
6 · 7
4 · 5

20

6
a1 =

6 · 7
6
a1, a7 =

8 · 9
6 · 7

a5 =
8 · 9
6 · 7

6 · 7
6
a1 =

8 · 9
6
a1.

We will now prove by induction that for every n ≥ 0 we have
a2n =

(2n+ 1)(2n+ 2)

2
a0

a2n+1 =
(2n+ 2)(2n+ 3)

6
a1

(∗∗)

The base case is a0 =
1 · 2

2
a0 and a1 =

2 · 3
6
a1, which are both clear.

For the inductive step, assume the statement (∗∗) is true for n. Using (∗) and the indutive hypotheses we

obtain:
a2n+2 =

(2n+ 3)(2n+ 4)

(2n+ 1)(2n+ 2)
a2n =

(2n+ 3)(2n+ 4)

(2n+ 1)(2n+ 2)

(2n+ 1)(2n+ 2)

2
a0

a2n+3 =
(2n+ 4)(2n+ 5)

(2n+ 2)(2n+ 3)
a2n+1 =

(2n+ 4)(2n+ 5)

(2n+ 2)(2n+ 3)

(2n+ 2)(2n+ 3)

6
a1 =

(2n+ 4)(2n+ 5)

6
a1

This completes the proof of (∗∗). Therefore, the general solution is given by

y = a0

∞∑
n=0

(2n+ 1)(2n+ 2)

2
t2n + a1

∞∑
n=0

(2n+ 2)(2n+ 3)

6
t2n+1.
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The first sums can be written in closed form, by differentiating the following power series twice:

1

1− t2
=

∞∑
n=0

t2n ⇒ 2t

(1− t2)2
=

∞∑
n=1

2nt2n−1 ⇒ 2 + 6t2

(1− t2)3
=

∞∑
n=1

2n(2n− 1)t2n−2.

Therefore,
∞∑
n=0

(2n+ 2)(2n+ 1)

2
t2n =

1 + 3t2

(1− t2)3
.

Similarly by differentiating the power series for t/(1− t2) twice we obtain

∞∑
n=0

(2n+ 2)(2n+ 3)

6
t2n+1 =

3t+ t3

3(1− t2)3
.

Therefore, the general solution to this equation is

y =
3a0(1 + 3t2) + a1(3t+ t3)

3(1− t2)3
.

Example 9.16. Find the general solution to y′′ + t5y′ + 6t4y = 0 with t ∈ R as a power series. Use that to

solve the IVP.

y′′ + t5y′ + 6t4y = 0, y(0) = 0, y′(0) = 1.

Your solution to this IVP must be in closed form.

Solution. Since coefficients t5 and 6t4 are analytic over R, all solutions are analytic over R. Substituting

y =
∞∑
n=0

ant
n we obtain

∞∑
n=2

n(n− 1)ant
n−2 + t5

∞∑
n=1

nant
n−1 + 6t4

∞∑
n=0

ant
n = 0

∞∑
n=0

(n+ 2)(n+ 1)an+2t
n +

∞∑
n=5

(n− 4)an−4t
n +

∞∑
n=4

6an−4t
n = 0

2a2 + 6a3t+ 12a4t
2 + 20a5t

3 + 30a6t
4 + 6a0t

4 +
∞∑
n=5

[(n+ 2)(n+ 1)an+2 + (n− 4)an−4 + 6an−4]tn = 0

Therefore, we obtain the following:


30a6 + 6a0 = 0⇒ a6 =

−a0

5

a2 = a3 = a4 = a5 = 0.

an+2 = − an−4

n+ 1
, for all n ≥ 5 (∗)

Since an+4 is a multiple of an−4, and a2 = a3 = a4 = a5 = 0, we have a8 = a9 = a10 = a11 = 0, and similarly

a14 = a15 = a16 = a17 = 0. Therefore, the only coefficients that may be nonzero are those of the form a6n

and a6n+1. We evaluate a few terms using (∗).

a6 = −1

5
a0, a12 = −a6

11
=

a0

5 · 11
, a18 = −a12

17
= − a0

5 · 11 · 17
.

Similarly we have

a7 = −a1

6
, a13 =

a1

6 · 12
, a19 =

a1

6 · 12 · 18
.
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We will prove by induction on n that
a6n = (−1)n

a0

5 · 11 · · · (6n− 1)

a6n+1 = (−1)n
a1

6 · 12 · · · (6n)
= (−1)n

a1

6nn!

The base case is clear. The inductive step follows from (∗). Therefore, the general solution is given by

y = a0

∞∑
n=0

(−1)nt6n

5 · 11 · · · (6n− 1)
+ a1

∞∑
n=0

(−1)nt6n+1

6nn!
.

When y(0) = 0 and y′(0) = 1 we have a0 = 0 and a1 = 1. Thus, we obtain the following

y =

∞∑
n=0

(−1)nt6n+1

6nn!
= t

∞∑
n=0

(−t6)n

6nn!
= te−t

6/6.

Example 9.17. Using power series, find the general solution of the equation

2ty′′ + y′ + 2ty = 0, t > 0.

Solution. (a) We see p(t) = 1
2t , and q(t) = 1. This gives tp(t) = 1/2 and t2q(t) = t2, which means t0 = 0

is a regular singularity. The indicial equation is r(r − 1) + 1
2r = r(r − 1/2). The roots are r = 0, 1/2. By

Theorem 9.4, this equation has two solutions of the form

y1 =

∞∑
n=0

ant
n, and y2 =

√
t

∞∑
n=0

ant
n =

∞∑
n=0

ant
n+1/2.

The first one yields:

2ty′′ + y′ + 2ty

=
∞∑
n=2

2n(n− 1)ant
n−1 +

∞∑
n=1

nant
n−1 +

∞∑
n=0

2ant
n+1

=
∞∑
n=1

2(n+ 1)nan+1t
n +

∞∑
n=0

(n+ 1)an+1t
n +

∞∑
n=1

2an−1t
n

= a1 +
∞∑
n=1

[2(n+ 1)nan+1 + (n+ 1)an+1 + 2an−1]tn

.

Setting this equal to zero we obtain the following system:
a1 = 0

(n+ 1)(2n+ 1)an+1 + 2an−1 = 0⇒ an+1 = − 2

(n+ 1)(2n+ 1)
an−1 for all n ≥ 1 (∗)

Since an+1 is a multiple of an−1 and a1 = 0 we obtain a2n−1 = 0 for all n ≥ 1.

Setting n = 1, 3, 5 into (∗) we obtain the following:

a2 = − 2

2 · 3
a0, a4 = − 2

4 · 7
a2 =

22

2 · 3 · 4 · 7
a0, a6 = − 2

6 · 11
a4 =

23

2 · 3 · 4 · 7 · 6 · 11
a0.

By induction we can prove

a2n = (−1)n
2n

2 · 4 · 6 · · · (2n) · 3 · 7 · · · (4n− 1)
a0.
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(Prove this!) We can write 2 · 4 · 6 · · · (2n) = 2nn!, so this can be written as

a2n = (−1)n
a0

n! · 3 · 7 · · · (4n− 1)
.

Setting a0 = 1 we obtain the solution:

y1 = 1 +

∞∑
n=1

(−1)nt2n

n! · 3 · 7 · · · (4n− 1)
.

Substituting y2 into the equation we obtain

2ty′′ + y′ + 2ty

= 2
∞∑
n=0

(n+ 1/2)(n− 1/2)ant
n−1/2 +

∞∑
n=0

(n+ 1/2)ant
n−1/2 +

∞∑
n=0

2ant
n+3/2

= − 1
2a0t

−1/2 + 3
2a1t

1/2 + 1
2a0t

−1/2 + 3
2a1t

1/2 +
∞∑
n=2

[ (2n+1)(2n−1)
2 an + 2n+1

2 an + 2an−2]tn−1/2

Setting this equal to zero, we obtain the following


3a1 = 0⇒ a1 = 0

(2n+ 1)nan + 2an−2 = 0⇒ an = − 2

n(2n+ 1)
an−2 for all n ≥ 2 (∗)

Since an is a multiple of an−2 and a1 = 0 we obtain a2n−1 = 0 for all n ≥ 1.

Setting n = 2, 4, 6 into (∗) we obtain the following:

a2 = − 2

2 · 5
a0, a4 = − 2

4 · 9
a2 =

22

2 · 5 · 4 · 9
, a6 = − 2

6 · 13
a4 = − 23

2 · 5 · 4 · 9 · 6 · 13
a0.

By induction we will show

a2n =
(−1)n2na0

2 · 4 · · · (2n) · 5 · 9 · · · (4n+ 1)
.

(Prove this!) This simplifies to

a2n =
(−1)n2na0

2nn! · 5 · 9 · · · (4n+ 1)
=

(−1)na0

n! · 5 · 9 · · · (4n+ 1)
.

Setting a0 = 1 we obtain the following solution:

y2 = t1/2 +

∞∑
n=1

(−1)nt2n+1/2

n! · 5 · 9 · · · (4n+ 1)
.

The general solution is thus

y = c1

(
1 +

∞∑
n=1

(−1)nt2n

n! · 3 · 7 · · · (4n− 1)

)
+ c2
√
t

(
1 +

∞∑
n=1

(−1)nt2n

n! · 5 · 9 · · · (4n+ 1)

)
.

Example 9.18. Find one nontrivial power series solution to the equation:

t2y′′ − 2ty′ + (t2 + 2)y = 0, t > 0.

Your answer must be in closed form.
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Solution. We see that p(t) = −2/t, q(t) = (t2 + 2)/t2 are continuous everywhere except at t0 = 0, and

they are both unbounded near zero. Thus there is a singularity at zero. This singularity is regular, since

tp(t) = −2, t2q(t) = t2 + 2 are both analytic.

The indicial equation is r(r − 1) − 2r + 2 = 0. The roots are r = 1, 2. By Theorem 9.4 the solution

corresponding to r = 2 is of the form y = t2
∞∑
n=0

ant
n =

∞∑
n=0

ant
n+2. Substituting we obtain

t2
∞∑
n=0

(n+ 2)(n+ 1)ant
n − 2t

∞∑
n=0

(n+ 2)ant
n+1 + t2

∞∑
n=0

ant
n+2 + 2

∞∑
n=0

ant
n+2 = 0.

This yields the following:

2a0t
2 + 6a1t

3 − 4a0t
2 − 6a1t

3 + 2a0t
2 + 2a1t

3 +

∞∑
n=4

[n(n− 1)an−2 − 2nan−2 + an−4 + 2an−2]tn = 0.

Therefore, we obtain the following system:
a1 = 0

(n2 − 3n+ 2)an−2 + an−4 = 0⇒ an−2 = − an−4

(n− 1)(n− 2)
for all n ≥ 4

Since an−2 is a multiple of an−4 for every n ≥ 4, and a1 = 0 we conclude that a2n+1 = 0 for all n ≥ 1.

Substituting n = 4, 6, 8 we obtain

a2 = − a0

3 · 2
=
−a0

3!
, a4 = − a2

5 · 4
=
a0

5!
, a6 = − a4

7 · 6
= −a0

7!
.

By induction we can show a2n = (−1)n
a0

(2n+ 1)!
. (Show this!) Setting a0 = 1 we obtain one nontrivial

solution as
∞∑
n=0

(−1)nt2n+2

(2n+ 1)!
= t sin t.

Example 9.19. Solve the initial value problem

2y′′ − (5t+ 2)y′ + (t+ 9)y = t3 + 2, y(0) = 0, y′(0) = 1.

Your solution must be in closed form.

Solution. First, note that since this equation is not homogeneous, we may not use any of the theorems in

this section, however we know that the Existence and Uniqueness Theorem for Linear Equations guarantees

the existence of a unique solution. We will see if we can find an analytic solution. Substituting y =
∞∑
n=0

ant
n

we obtain

2y′′ − (5t+ 2)y′ + (t+ 9)y

= 2
∞∑
n=2

n(n− 1)ant
n−2 − 5

∞∑
n=1

nant
n − 2

∞∑
n=1

nant
n−1 +

∞∑
n=0

ant
n+1 + 9

∞∑
n=0

ant
n

= 2
∞∑
n=0

(n+ 2)(n+ 1)an+2t
n − 5

∞∑
n=1

nant
n − 2

∞∑
n=0

(n+ 1)an+1t
n +

∞∑
n=1

an−1t
n + 9

∞∑
n=0

ant
n

= 4a2 − 2a1 + 9a0 +
∞∑
n=1

[2(n+ 2)(n+ 1)an+2 − 5nan − 2(n+ 1)an+1 + an−1 + 9an]tn

(∗)
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Setting this equal to t3 + 2 we obtain the following system:
4a2 − 2a1 + 9a0 = 2

2(n+ 2)(n+ 1)an+2 − (5n− 9)an − 2(n+ 1)an+1 + an−1 = 0 if n 6= 0, 3

2(5)(4)a5 − 5(3)a3 − 2(4)a4 + a2 + 9a3 = 1.

By assumption, a0 = 0, a1 = 1. Substituting into the first equation we obtain a2 = 1. Letting n = 1 into the

second equation we obtain

12a3 + 4a1 − 4a2 + a0 = 0⇒ a3 = 0.

Substituting n = 2 into the second equation we obtain

24a4 − a2 − 6a3 + a1 = 0⇒ a4 = 0.

The last equation in (∗) yields:

40a5 − 6 · 0− 8 · 0 + 1 = 1⇒ a5 = 0.

So far we have shown a3 = a4 = a5 = 0. The second equation in (∗) yields

an+2 =
(5n− 9)an + 2(n+ 1)an+1 − an−1

2(n+ 2)(n+ 1)
.

A simple induction shows an = 0 for all n ≥ 3. (Show this!) Therefore, y = t + t2 is the unique solution to

this IVP.

9.4 Exercises

Exercise 9.1. Find the general solution to each equation:

(a) t2y′′ − 6y = 0, with t > 0.

(b) t2y′′ + 3ty′ + 2y = 0, with t > 0.

(c) t2y′′ + 5ty′ + 4y = 0, with t < 0.

(d) t2y′′ + αty′ + y = 0, with t < 0.

Exercise 9.2. Find a linear equation whose general solution is each of the following:

(a) y =
c1
t

+ c2t
7.

(b) y = c1t cos(2 ln t) + c2t sin(2 ln t).

(c) y = c1t
3 + c2t

3 ln t.

Exercise 9.3. Find the general solution of the equation 4t2y′′ − 4ty′ + 3y =
√
t, where t > 0.
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Hint: First find the general solution to the homogeneous equation. Then use Variation of Parameters.

Exercise 9.4. Find the general solution to the differential equation 12t3y′′′ + 32t2y′′ + 5ty′ + y = 0, given

t > 0.

Hint: This is a higher order Euler’s equation.

Exercise 9.5. For each equation, find the largest interval for which all solutions are guaranteed to be equal

to their Taylor series centered at t0.

(a) t2y′′ + t(sin t)y′ + (et
2 − 1)y = 0, t0 = 0.

(b) (1 + t2)y′ + ty′′ + y = 0, t0 = 0.

(c) ty′′ + y′ + y = 0, t0 = 1.

Exercise 9.6. Solve the initial value problem

y′′ + ty′ + y = 0, y(0) = 1, y′(0) = 0.

Exercise 9.7. Consider the differential equation

t3y′′ + (t− t2)y′ − 2y = 0.

Prove that even though t = 0 is an irregular singularity for this equation, this equation has a nontrivial

solution that is analytic on R.

Exercise 9.8. Find all singularities of each equation. Determine if each singularity is regular or irregular.

(a) (t sin t)y′′ + t3y′ + y = 0.

(b) (t2 − t)3y′′ + (t− 1)2y′ + (t3 − 1)y = 0.

(c) y′′ + (t− 1)y′ + (cos t)y = 0.

(d) (cos t)y′′ + ty′ + (sin t)y = 0

Exercise 9.9. Solve each equation. Your solutions may be written as power series.

(a) (1 + t2)y′′ + 3ty′ + y = 0.

(b) 2ty′′ + y′ + ty = 0, t > 0.

(c) 4ty′′ + 3y′ + 3y = 0, t > 0.

(d) (t2 − 4)y′′ + 3ty′ + y = 0, t ∈ (−2, 2).

Exercise 9.10. Solve each initial value problem. Your solution must be in closed form.

(a) y′′ − 2ty′ − 2y = 0, y(0) = 1, y′(0) = 0.
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(b) y′′ + (t− 4)y′ + (3− 2t)y = 0, y(0) = 0, y′(0) = 1.

(c) y′′ + (t− 3)y′ − 3ty = 0, y(0) = 1, y′(0) = 3.

(d) y′′ + t2y′ + 2ty = 0, y(0) = 1, y′(0) = 0.

Exercise 9.11. For a positive real number α, consider the Bessel equation of order α given by:

t2y′′ + ty′ + (t2 − α2)y = 0, t > 0.

(a) Find a nontrivial solution for this equation.

(b) Find a second linearly independent solution if 2α is not an integer.

Exercise 9.12. Let α be a real constant. Consider the Legendre’s equation given by

(1− t2)y′′ − 2ty′ + (α2 + α)y = 0.

(a) Find a FSoS for this equation.

(b) Show that if α is a positive integer, then this equation has a polynomial solution.

Exercise 9.13. Find one solution to the equation:

ty′′ + y′ + y = 0, t > 0.

Exercise 9.14. For each equation find a FSoS.

(a) ty′′ + ty′ + 2y = 0, t > 0.

(b) ty′′ + (1− t2)y′ + 4ty = 0, t > 0.

(c) t2y′′ + (t2 − 3t)y′ + 3y = 0, t > 0.

Hint: Find the exponents at singularity t0 = 0. Then find the solution corresponding to the larger exponent.

Then apply the method of Reduction of order to find a second solution.

9.5 Challenge Problems

Exercise 9.15. Solve the initial value problem

cos(t)y′′ − sin(t)y′ + 2 cos(t)y = −2 sin(3t), y(0) = 0, y′(0) = 2.

Hint: First, prove that the solution is odd. This simplifies the form of y. Then use a power series centered

at zero. Find the first few coefficients, and prove the pattern by induction.
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Exercise 9.16. Consider the differential equation

t4y′′ − 2ty′ + y = 0, t ∈ R.

Prove that this equation has a solution that is C∞, but is not analytic.

Do the same for the equation

t6y′′ + t6y′ + (−4 + 6t2 − 2t3)y = 0, t ∈ R.

Exercise 9.17. Suppose p(t), q(t), r(t) are C∞ functions satisfying p(0) = p′(0) = 0, and q(0) 6= 0. Prove

that the only solution to the following problem that is analytic over R is the trivial solution y = 0:

p(t)y′′ + q(t)y′ + r(t)y = 0, y(0) = 0, t ∈ R.

Exercise 9.18. Solve the initial value problem. (1− 2t3)y′′ − 10t2y′ − 8ty = 0, y(0) = 1, y′(0) = 0.

9.6 Summary

• To solve the Euler’s equation t2y′′ + αty′ + βy = 0 we set y = tr and solve for r. Let r1, r2 be roots of

the indicial equation r(r − 1) + αr + β = 0. (You do not need to memorize this. You can obtain it by

substituting y = tr.)

– If r1 6= r2 are real, then the general solution is y = c1t
r1 + c2t

r2 .

– If r1 = r2 = r, then the general solution is y = c1t
r + c2t

r ln t.

– If r1, r2 = a± ib are nonreal, then the general solution is y = c1t
a cos(b ln t) + c2t

a sin(b ln t)).

• If p(t) and q(t) are analytic near t0, then we can solve y′′+p(t)y′+q(t)y = 0 by setting y =
∞∑
n=0

an(t−t0)n,

and finding a recursion for an. Note that by the Existence and Uniqueness Theorem, we must be able

to find every an in terms of a0 and a1.

• When p(t) or q(t) are continuous but unbounded near t0, we say t0 is a singularity for the equation

y′′ + p(t)y′ + q(t)y = 0.

• A singular point t0 is called regular if (t− t0)p(t) and (t− t0)2q(t) are analytic at t0.

• To solve an equation near a regular singularity we will use Theorem 9.4 to find r1, r2 and the format

of each solution. Then find a recursion for an.

• If needed, we can always center everything at zero by using: s = t− t0, z(s) = y(s+ t0). This changes

the initial values to z(0) = y(t0) and z′(0) = y′(t0).

• When solving recursions, find the first few terms of the sequence, guess the general term, and prove it

by induction.
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Chapter 10

Laplace Transform

Definition 10.1. Laplace transform, denoted by L, assigns to any function f(t) defined for all t ≥ 0 the

function

L{f(t)}(s) =

∫ ∞
0

e−stf(t) dt,

for every s that the improper integral on the right converges. The Laplace of f(t) at s is usually denoted by

F (s).

Note that by properties of integrals, L is linear.

Example 10.1. Find the Laplace transform of each of the following:

(a) eat, where a is a real constant.

(b) eat cos(bt), where a, b are real constants.

(c) eat sin(bt), where a, b are real constants.

The improper integral in the definition of Laplace transform may not always converge. This typically happens

in two instances:

• when f(t) is discontinuous at too many points for e−stf(t) to be integrable, or

• when e−stf(t) is too large for the area underneath its graph to be finite. This typically (but not always,

see Example 10.18) means f(t) grows faster than est.

Definition 10.2. We say a function f : [0,∞)→ R is piecewise continuous if for every r > 0 the function

f is continuous over [0, r] except possibly at finitely many points.

Definition 10.3. A function f : [0,∞)→ R is said to be of exponential order if there are constants c,M

for which |f(t)| ≤Mect for all t ≥ 0. In that case we say f is of exponential order not exceeding c.

Example 10.2. The following are some examples of functions that are of exponential order:

(a) sin t is of exponential order not exceeding 0.

153
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(b) The function t is of exponential order not exceeding c for every positive real number c.

Theorem 10.1. Suppose f : [0,∞) → R is piecewise continuous, and of exponential order. Then, its

Laplace transform L{f(t)}(s) exists for sufficiently large s. Specifically, if f is piecewise continuous, and

|f(t)| ≤Mect, for constants c,M , and for all t ≥ 0, then L{f(t)}(s) exists for all s > c.

It turns out that we are able to recover a function from its Laplace transform. The following theorem indicates

that fact.

Theorem 10.2. Suppose f(t) and g(t) are two functions continuous over [0,∞), both of which are of ex-

ponential order. Assume there is a real number A for which L{f(t)}(s) = L{g(t)}(s) for all s > A. Then

f(t) = g(t) for all t ∈ [0,∞).

The above theorem shows that Laplace transform has an inverse. We denote this inverse by L−1.

Theorem 10.3. Suppose f : [0,∞) → R is of exponential order. Let L[y] = f(t) be a linear equation with

constant coefficients. Then, every solution to this equation is of exponential order.

Example 10.3. Solve y′ − 2y = e5t, y(0) = 3.

Theorem 10.4. Suppose f : [0,∞) → R is n times differentiable, f (n)(t) is piecewise continuous, and of

exponential order not exceeding c. Let F (s) = L{f(t)}(s). Then,

L{f (n)(t)}(s) = snF (s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0),

for every s > c.

Theorem 10.5. Suppose f : [0,∞) → R is piecewise continuous and of exponential order not exceeding c.

Then, its Laplace transform F (s) is infinitely differentiable and for every positive integer n and every real

number a we have:

(a) L{tnf(t)} = (−1)nF (n)(s), for all s > c.

(b) L{eatf(t)}(s) = F (s− a), for all s > a+ c.

Example 10.4. Find the inverse Laplace of
1

(s+ 1)2
.

Example 10.5. Using the method of Laplace Transform solve the initial value problem:

y′′′ + 2y′′ + y′ = 0, y(0) = 1, y′(0) = y′′(0) = 0.

Example 10.6. Find the inverse Laplace of
5

s4 + 13s2 + 36
.

We often find Laplace of piecewise defined functions using the so-called Heaviside function defined below:

Definition 10.4. The Heaviside step function H is defined as

H(t) =

1 if t ≥ 0

0 otherwise
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Note that for every constant c we have

H(t− c) =

1 if t ≥ c

0 otherwise

Example 10.7. Find L{H(t− c)f(t− c)} in terms of F (s), the Laplace of f.

Example 10.8. Find the Laplace of f(t), where f(t) =


t2 if 0 ≤ t < 2

1− t if 2 ≤ t < 3

1 if t ≥ 3

Definition 10.5. The convolution of two functions f, g : [0,∞)→ R is defined by

(f ? g)(t) =

∫ t

0

f(x)g(t− x) dx.

Theorem 10.6. Suppose f, g : [0,∞) → R are piecewise continuous and of exponential order not exceeding

c. Then,

L{f ? g}(s) = L{f}(s) · L{g}(s), for all s > c.

Example 10.9. Find the inverse Laplace of
1

s4 + 2s2 + 1

Table of Laplace Transform

j(t) = L−1[J(s)] J(s) = L[j(t)]

eat, a is real
1

s− a
tn, n is a nonnegative integer

n!

sn+1

eattn, a is real and n is a nonnegative integer
n!

(s− a)n+1

eat sin(bt), a, b are real
b

(s− a)2 + b2

eat cos(bt), a, b are real
s− a

(s− a)2 + b2

j(n)(t) snJ(s)− sn−1j(0)− sn−2j′(0)− · · · − j(n−1)(0)

H(t− c)j(t− c), c ≥ 0 e−csJ(s)

eatj(t), a is real J(s− a)

j(t) ? k(t) J(s)K(s)

tnj(t), n is a nonnegative integer (−1)nJ (n)(s)

10.1 More Examples

Example 10.10. Find the Laplace of each function using the Table of Laplace Transform:

(a) f(t) =

t
2 + t if 0 ≤ t < 1

2t2 + 2t− 1 if 1 ≤ t
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(b) sin(2t) + et cos(5t).

Solution. (a) f(t) = (t2 + t)(H(t)−H(t− 1)) + (2t2 + 2t− 1)H(t− 1) = H(t)(t2 + t) +H(t− 1)(t2 + t− 1).

From the table of Laplace Transform, we know L{H(t− c)j(t− c)}(s) = e−scJ(s). So, L{H(t)(t2 + t)}(s) =

L{t2 + t} =
2!

s3
+

1!

s2
. For the second part of f(t) we need to first find j(t) for which j(t − 1) = t2 + t − 1.

Substituting t + 1 for t we obtain j(t) = (t + 1)2 + (t + 1) − 1 = t2 + 3t + 1. Laplace of this function is
2!

s3
+

3

s2
+

0!

s
. Putting these together we obtain

L{f(t)}(s) =
2!

s3
+

1!

s2
+ e−s

(
2!

s3
+

3

s2
+

0!

s

)
.

(b) By linearity of Laplace and using the table we obtain L{sin(2t)+et cos(5t)} =
2

s2 + 4
+

s− 1

(s− 1)2 + 25
.

Example 10.11. Find the inverse Laplace of each of the following:

(a)
s

s2 + 2s+ 2
.

(b)
s

(s2 + 1)2
.

(c)
e−2s

s2 + s
.

Solution. (a) By completing the square we can write

s

s2 + 2s+ 2
=

s+ 1

(s+ 1)2 + 1
− 1

(s+ 1)2 + 1
.

From the table, the inverse Laplace of this function is e−t cos t− e−t sin t.

(b) We notice that the derivative of
1

s2 + 1
is

−2s

(s2 + 1)2
. Note that L−1{1/(s2 + 1)} = cos t. Therefore, from

the table

L−1{ s

(s2 + 1)2
} =
−1

2
L−1{

(
1

s2 + 1

)′
} = −1

2
t sin t.

(c) From the table L−1{ e
−2s

s2 + s
} = H(t − 2)L−1{ 1

s2 + s
}(t − 2). We need to find the inverse Laplace of

1

s2 + s
=

1

s
− 1

s+ 1
. From the table the Laplace inverse of the latter is 1 − e−t. Thus, the answer is

H(t− 2)(1− e−t+2).

Example 10.12. For every positive integer n evaluate L{tn cos t}.

Solution. From the table we know L{tn cos t} = (−1)nF (n)(s), where F (s) = L{cos t} =
s

s2 + 1
. So, we
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need to find the n-th derivative of s/(s2 + 1). The first few derivatives of F (s) = s/(s2 + 1) are listed below:

F (s) =
s

s2 + 1

F ′(s) =
1− s2

(s2 + 1)2

F ′′(s) =
2s(s2 − 3)

(s2 + 1)3

F ′′′(s) =
−6(s4 − 6s2 + 1)

(s2 + 1)4

As you can see it is difficult to see a pattern. Instead what we can do is to use partial fractions, but for that

we need to use complex numbers:

F (s) =
s

s2 + 1
=

1/2

s+ i
+

1/2

s− i

We will then prove by induction that for every constant c we have:
dn

dsn

(
1

s+ c

)
=

(−1)nn!

(s+ c)n+1
. (Prove this!)

Thus, the answer is

L{tn cos t} =
1

2

(
n!

(s+ i)n+1
+

n!

(s− i)n+1

)
.

Example 10.13. Let c be a positive constant and f : [0,∞)→ R be piecewise continuous and of exponential

order. Find a relation between L{f(t)} and L{f(ct)}.

Solution. By definition of Laplace transform and substitution x = ct we obtain the following:

L{f(ct)}(s) =

∫ ∞
0

e−stf(ct)dt =

∫ ∞
0

e−sx/cf(x)
dx

c
=

1

c
L{f(t)}(s/c).

Example 10.14. Solve the initial value problem:

y′(t) +

∫ t

0

(t− x)y(x)dx = t, y(0) = 0.

Solution. This equation can be written as y′(t) + (t ? y)(t) = t. Let Y (s) be the Laplace of y. Taking

Laplace of both sides we obtain:

sY (s)− y(0) + L{t ? y}(s) =
1

s2
.

This yields sY (s) +
1

s2
Y (s) =

1

s2
. Therefore, Y (s) =

1

s3 + 1
. Then we will take the inverse Laplace using

the method of partial fractions.

Example 10.15. Prove that if f : [0,∞) → R is a differentiable function and f ′(t) is piecewise continuous

and of exponential order not exceeding c, where c is a positive constant, then f(t) is also of exponential order

not exceeding c.
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Solution. Suppose |f ′(t)| ≤Mect for all t ≥ 0 and for some constant M ≥ 0. Thus,

−Mect ≤ f ′(t) ≤Mect.

By Theorem 5.3 we can integrate the above inequalities from 0 to t for every t > 0 to obtain the following:

−M
c

(ect − 1) ≤ f(t)− f(0) ≤ M

c
(ect − 1).

This implies

−M
c

(ect − 1) + f(0) ≤ f(t) ≤ M

c
(ect − 1) + f(0).

Note that |f(0)| ≤ |f(0)|ect since c, t ≥ 0. Therefore,

M

c
(ect − 1) + f(0) ≤ M

c
ect + |f(0)| ≤ (M/c+ |f(0)|)ect.

Furthermore,

−M
c

(ect − 1) + f(0) ≥ −M
c
ect − |f(0)| ≥ −(M/c+ |f(0)|)ect.

Therefore, f is of exponential order not exceeding c.

Example 10.16. Consider the function f : [0,∞) → R defined by f(t) = (−1)n if n ≤ t < n + 1 for a

nonnegative integer n.

(a) Prove that F (s) = L{f}(s) converges for all s > 0.

(b) Find F (s).

Hint: Find f(t) + f(t− 1).

Solution. (a) Note that since f(t) = (−1)n is constant over (n, n+ 1), it is continuous there. Therefore, the

only points of discontinuity of f are integers. Thus, f is piecewise continuous. Furthermore, |f(t)| = 1 ≤ e0t

for all t ≥ 0. Thus, f is of exponential order not exceeding zero. Therefore, by Theorem 10.1, F (s) exists

for all s > 0.

(b) Note that if t ∈ [n, n + 1), then t − 1 ∈ [n − 1, n), and thus f(t) + f(t − 1) = (−1)n + (−1)n−1 = 0.

Therefore, for all t ≥ 1 we have f(t) + f(t− 1) = 0. If 0 ≤ t < 1, then f(t) = (−1)0 = 1. These two can be

combined as f(t) = 1(1−H(t− 1))− f(t− 1)H(t− 1) = 1− (f(t− 1) + 1)H(t− 1). Taking the Laplace of

both sides we obtain

F (s) =
1

s
− e−sF (s)− e−s

s
.

Therefore, F (s) =
1− e−s

s(1 + e−s)

Example 10.17. Consider the function
sin t

t
. Show this function is piecewise defined and of exponential

order. Find its Laplace.
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Solution. Note that the limit of this function as t→ 0 is 1. Thus, if we define this function to be 1 at t = 0,

it becomes continuous over [0,∞). Thus, it attains a maximum value over [0, 1]. Let M be this maximum

value. For all t ≥ 1 we have ∣∣∣∣ sin tt
∣∣∣∣ ≤ 1

|t|
≤ 1.

Thus, for every t ≥ 0 we have ∣∣∣∣ sin tt
∣∣∣∣ ≤M + 1.

Therefore, the function is of exponential order not exceeding 0. The only point of discontinuity of this func-

tion is t = 0. Thus, it is piecewise continuous. Therefore, F (s) = L{f(t)}(s) is defined for all s > 0.

Let F (s) = L{ sin t

t
}(s). We have L{sin t} = −F ′(s). From the table we obtain

F ′(s) = − 1

s2 + 1
⇒ F (s) = − tan−1(s) + C

for all s > 0. By Exercise 10.10, we know F (s)→ 0 as s→∞. Therefore, 0 = −π/2 +C, and thus C = π/2.

Therefore, L{(sin t)/t)} = π/2− tan−1(s).

Example 10.18. Show that the Laplace transform F (s) of the function f(t) = 1/t does not converge for

any s ∈ R.

Scratch. Near zero, e−st/t ≈ 1/t, and thus

∫
e−stf(t) dt ≈ ln t, which diverges near zero. We will now

make this rigorous.

Solution. Let s ∈ R. Note that e−st → 1 as t → 0. By the definition of limit, there is some δ > 0 that if

t ∈ (0, δ) we have ∣∣e−st − 1
∣∣ ≤ 1

2
⇒ 1

2
≤ e−st ⇒ 1

2t
≤ e−st

t
.

We see

∫ δ

0

1

2t
dt = lim

c→0+

1

2
(ln δ − ln c) = ∞. Therefore, by the Comparison Theorem,

∫ δ

0

e−st

t
dt diverges.

Thus, L{1/t}(s) diverges for every s ∈ R.

Example 10.19. Show that the Laplace transform F (s) of the function f(t) =
sin t

t2
does not converge for

any s ∈ R.

Scratch. Near zero, we have
sin t

t2
≈ 1

t
and e−st ≈ 1. Thus, the integral

∫
e−stf(t) dt near zero is approxi-

mately

∫
dt/t, which is ln t which diverges near zero. We will now make this rigorous.

Solution. Let s ∈ R. Note that
sin t

t
e−st → 1 as t→ 0. By the definition of limit, there is some δ > 0 that

if t ∈ (0, δ) we have ∣∣∣∣ sin tt e−st − 1

∣∣∣∣ ≤ 1

2
⇒ 1

2
≤ sin t

t
e−st ⇒ 1

2t
≤ sin t

t2
e−st.
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We see

∫ δ

0

1

2t
dt = lim

c→0+

1

2
(ln δ−ln c) =∞. Therefore, by the Comparison Theorem,

∫ δ

0

sin t

t2
e−st dt diverges.

Thus, L{ sin t

t2
}(s) diverges for every s ∈ R.

10.2 Exercises

Exercise 10.1. Find the Laplace of each function using the definition.

(a) sin2 t.

(b) t2.

Exercise 10.2. Find the Laplace of each function using the table of Laplace transform.

(a) sin(4t) + cos t.

(b) t sin t cos(3t).

(c) at, where a > 0 is a constant.

(d) (t+ sin t)H(t− π).

(e) f(t) =

1 if 2n ≤ t < 2n+ 1 for some n ∈ Z

0 if 2n+ 1 ≤ t < 2n+ 2 for some n ∈ Z

Exercise 10.3. Let c be a positive real number and p(t) be a non-constant polynomial.

(a) Prove that p(t) is of exponential order not exceeding c.

(b) Prove that p(t) is not of exponential order not exceeding zero.

Hint: Show
p(t)

ect
is bounded for large t, by using the fact that is tends to zero as t→∞. For small values of

t invoke the Extreme Value Theorem.

Exercise 10.4. Prove that the function
et − 1

t
is of exponential order and find its Laplace transform.

Hint: See Example 10.17.

Exercise 10.5. Show that the Laplace L{f(t)}(s) of the following function does not converge for any s ∈ R.

f(t) =


et − 1

t2
if t 6= 0

1 if t = 0

Exercise 10.6. Find the inverse Laplace of each function:

(a)
1

s4 − 1
.

(b)
2s+ 4

s3 − s
.
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(c)
s+ 2

s2 + 4s+ 5
.

(d) ln

(
s+ 1

s− 1

)
.

Exercise 10.7. Solve each equation using the Laplace transform method.

(a) y′ + 2y = sin t, y(0) = 0.

(b) y′′ − 4y = 2 cos t cos(3t), y(0) = y′(0) = 0.

(c) y(t) = sin t+ 2

∫ t

0

cos(t− u)y(u) du.

(d) y′′ − y′ = f(t), y(0) = 0, y′(0) = 1, and f(t) =

 t2 − 1 if t ∈ [0, 1)

1 if t ≥ 1

Exercise 10.8. Find the Laplace of | sin t|.

Hint: Write | sin t| as a piecewise defined function. Then, use the Heaviside function.

Exercise 10.9. Prove that L{et2}(s) diverges for all s ∈ R.

Hint: Use the fact that t2 ≥ st for large values of t.

Exercise 10.10. Suppose f : [0,∞) → R is of exponential order and let F (s) = L{f}(s). Prove that

lim
s→∞

F (s) = 0.

Exercise 10.11. Prove Theorem 10.4 by induction.

Exercise 10.12. Let c be a real number, and suppose f1(t), f2(t), . . . is a sequence of piecewise continuous

functions of exponential order not exceeding c. Let F1(s), F2(s), . . . be the sequence consisting of Laplace

transforms of f1, f2, . . ., respectively, for all s > c. Assume f(t) =
∞∑
n=1

fn(t) is a piecewise continuous

function. Prove that f(t) is of exponential order and that L{f(t)}(s) =
∞∑
n=1

Fn(s) for all s > c.

10.3 Challenge Problems

Exercise 10.13. Prove Theorem 10.3.

10.4 Summary

• L{f}(s) =

∞∫
0

e−stf(t) dt.

• If f is of exponential order and is piecewise continuous, then its Laplace converges for all large values

of s.

• L has an inverse.
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• Make sure you get yourself familiar with the Table of Laplace. You should be able to use it in evaluating

Laplace and inverse Laplace.

• To solve initial value problems using the method of Laplace Transform:

– If the initial value is at a point other than zero, by a change of variables move the initial condition

to zero.

– Take Laplace of both sides.

– Use L{y(n)} = snY (s)− sn−1y(0)− · · · − sy(n−2)(0)− y(n−1)(0).

– Solve for Y (s), the Laplace of the solution.

– Take inverse Laplace to find the solution y(t).

• To find the Laplace of a piecewise defined function, we need to write it using Heaviside function as

follows:

– For each condition a ≤ t < b consider the function H(t− a)−H(t− b). This function is 1 when

a ≤ t < b and zero otherwise.

– Multiply each H(t− a)−H(t− b) by its corresponding function, and add up all of these.

– Rearrange the terms so each term is of the form H(t− c)(some function).

– The goal is to write this in the form H(t− c)j(t− c).

– Set “some function=j(t− c)”, and find j(t) by substituting t+ c for t.

– Take the Laplace of j(t), and use L{H(t− c)j(t− c)} = e−scJ(s).

• L{f ? g}(s) = F (s)G(s).



Chapter 11

Systems of Differential Equations

A first-order system is a system of equations with unknown functions x1, . . . , xn of the form:

dx1

dt
= f1(t, x1, . . . , xn)

...

dxn
dt

= fn(t, x1, . . . , xn)

We typically write the above system in a more compact form:
dx

dt
= f(t,x), where x = (x1, . . . , xn) and

f = (f1, . . . , fn). The vector function f is called “forcing”.

We can write down any differential equation or system as a first-order system.

Example 11.1. Convert the system into a first-order system:x
′′ = x2 + x′ + tx

y′′ = y′y + yt3

11.1 First-Order Linear Systems

A first-order n-dimensional linear system is a system of the following form:

dx1

dt
= a11(t)x1(t) + · · ·+ a1n(t)xn(t) + f1(t)

dx2

dt
= a21(t)x1(t) + · · ·+ a2n(t)xn(t) + f2(t)

...
dxn
dt

= an1(t)x1(t) + · · ·+ ann(t)xn(t) + fn(t)

This system can be written in matrix form as follows:

163
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d

dt


x1

x2

...

xn


︸ ︷︷ ︸

x′

=


a11(t) a12(t) · · · a1n(t)

a21(t) a22(t) · · · a2n(t)
...

... · · ·
...

an1(t) an2(t) · · · ann(t)


︸ ︷︷ ︸

coefficient matrix A(t)


x1

x2

...

xn


︸ ︷︷ ︸

x

+


f1(t)

f2(t)
...

fn(t)


︸ ︷︷ ︸

forcing f(t)

.

This is often written in a more compact form
dx

dt
= A(t)x + f(t). The sqaure matrix A(t) is called the

coefficient matrix and f(t) is called the forcing.

Example 11.2. Find the forcing and coefficient matrix of the system x′1 = 2x1 − tx2 + sin t

x′2 = t2x1 + (cos t) x2

We can write equations or systems of higher order as first-order systems.

Example 11.3. Convert the equation y′′′ − y′′ + ty′ + (tan t)y = et
2

into a first-order linear system.

Example 11.4. Convert the linear equation below into a first-order system:

y(n) + a1(t)y(n−1) + · · ·+ an−1(t)y′ + an(t)y = f(t).

Similar to what we have seen before, the general solution to
dx

dt
= A(t)x+ f(t) can be obtained by finding the

general solution xH(t) to the equation
dx

dt
= A(t)x, and a particular solution xP (t) to the nonhomogeneous

equation
dx

dt
= A(t)x + f(t) and then adding them up.

Theorem 11.1 (Existence and Uniqueness Theorem). Consider the first-order n-dimensional equation

dx

dt
= A(t)x + f(t).

Suppose all entries of A(t) and f(t) are continuous over an open interval (a, b). Let t0 ∈ (a, b), and x0 ∈ Rn.

Then, there is a unique solution defined over (a, b) to the following initial value problem:

dx

dt
= A(t)x + f(t), x(t0) = x0

Example 11.5. Find the largest interval for which a unique solution to the following initial value problem

is guaranteed to exist: 
t2x′ = 2x− (cos t)y + tan t

(sin t)y′ = tx+ y + cos t

x(1) = y(1) = 0
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11.2 Homogeneous Linear Systems

In this section we will consider first-order n-dimensional homogeneous systems of the form

dx

dt
= A(t)x,

where all entries of A(t) are continuous over an open interval (a, b).

Theorem 11.2. Consider a first-order n-dimensional homogeneous system

dx

dt
= A(t)x.

Assume all entries of A(t) are continuous over an open interval (a, b). Then, the set of all solutions to this

equation defined over (a, b) is an n-dimensional vector space.

Suppose Φ1(t), . . . ,Φn(t) are solutions to the homogeneous system given above. For these to form a basis

for the solution set of
dx

dt
= A(t)x we need to make sure all solutions of this system are of the form

c1Φ1(t) + · · · + cnΦn(t). Since each solution Φ(t) is uniquely determined by an initial value Φ(t0) = c0, in

order for c1Φ1(t) + · · · + cnΦn(t) to produce all solutions we need c1Φ1(t0) + · · · + cnΦn(t0) = c to have a

solution for c1, . . . , cn for every c ∈ Rn. This can be written as

(Φ1(t0) · · ·Φn(t0))


c1
...

cn

 = c.

For this equation to have a solution for every c ∈ Rn we need to have

det (Φ1(t0) · · ·Φn(t0)) 6= 0.

This brings us to the definition of Wronskian of Φ1(t), . . . ,Φn(t) as follows:

W [Φ1(t), . . . ,Φn(t)] = det (Φ1(t) · · ·Φn(t)) .

Theorem 11.3. Suppose all entries of the coefficient matrix of a first-order n-dimensional homogeneous

linear system are continuous over (a, b). Suppose the Wronskian of n solutions to this system is zero at one

point t0 ∈ (a, b). Then the Wronskian must be zero everywhere on (a, b).

Definition 11.1. Suppose all entries of the coefficient matrix of a first-order n-dimensional homogeneous lin-

ear system are continuous over (a, b). Solutions Φ1(t), . . . ,Φn(t) to a homogeneous first-order n-dimensional

system are said to form a Fundamental Set of Solutions (FSoS) if they are a basis for this solution set.

The matrix (Φ1(t) · · ·Φn(t)) is called a Fundamental Matrix for this equation.

Example 11.6. Suppose x1(t) =

(
1 + t2

t

)
,x2(t) =

(
t

1

)
are two solutions to a first-order 2-dimensional

linear equation
dx

dt
= A(t)x.

(a) Find the general solution of this system.

(b) Find a fundamental matrix for this system.

(c) Find the coefficient matrix A(t).
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11.3 More Examples

Example 11.7. Suppose x1(t) =

(
t+ 1

t

)
,x2(t) =

(
1

t

)
are two solutions to a first-order 2-dimensional

linear system
dx

dt
= A(t)x, t ∈ (a, b).

Assume all entries of A(t) are continuous over (a, b).

(a) Prove that 0 6∈ (a, b).

(b) Find the general solution of this system.

(c) Find a fundamental matrix for this system.

(d) Find the coefficient matrix A(t).

Solution. (a) Note that W [x1,x2] = (t + 1)t − t = t2. This is equal to 0 at t = 0. Therefore, if 0 were

in (a, b), by Theorem 11.3 the Wronskian must be zero everywhere, which is a contradiction. Therefore,

0 6∈ (a, b).

(b) Since W [x1,x2] 6= 0, the genereal solution is c1

(
t+ 1

t

)
+ c2

(
1

t

)
.

(c) A fundamental matrix is

 t+ 1 1

t t

 .

(d) Since x1,x2 are solutions to this system, we have

(x′1x
′
2) = A(t) (x1x2)⇒

 1 0

1 1

 = A(t)

 t+ 1 1

t t

⇒ A(t) =

 1 0

1 1

 t+ 1 1

t t

−1

Therefore, A(t) =
1

t2

 t −1

0 t



Example 11.8. Prove that x(t) =

(
t2 + t

sin t

)
cannot be a solution to a homogeneous, first-order, 2-dimensional

linear system, all of whose coefficient matrix entries are continuous over (−1, 1).

Solution. Suppose on the contrary x is a solution to x′ = A(t)x, where all entries of A(t) are continuous

over (−1, 1). Note that x(0) = 0. Thus,

(
t2 + t

sin t

)
is a solution to the IVP

x′ = A(t)x,x(0) = 0.

On the other hand 0 is a different solution to the same IVP. This is a contradiction!

Example 11.9. Consider a linear system x′ = A(t)x, where all entries of A(t) are continuous over R. Prove

that if x is an odd solution to this system, then x is the trivial solution 0.
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Solution. Note that since x is odd, we have x(−0) = −x(0), and thus x(0) = 0. Therefore, x satisfies

the IVP x′ = A(t)x,x(0) = 0. Since 0 also satisfies the same IVP, by uniqueness we must have x = 0, as

desired.

Example 11.10. Consider the IVP 
x′ = (sin t)x+ sin t

y′ = t3y + sin t

x(0) = 0, y(0) = 1.

(a) Prove that there is a unique solution to this IVP defined over R.

(b) Prove that this solution is even.

Solution. (a) The entries of the coefficient matrix and forcing are all continuous over R. Therefore, by the

Existence and Uniqueness Theorem, a unique solution exists.

(b) Let x(t) =

(
x(t)

y(t)

)
. We need to show x(−t) = x(t). Let z(t) = x(−t). Note that

z′(t) = −x′(−t) = −

 sin(−t) 0

0 (−t)3

x(−t)−
(

sin(−t)
sin(−t)

)
=

 sin t 0

0 t3

 z(t) +

(
sin t

sin t

)
.

We also have z(0) = x(−0) = x(0). Therefore, by the uniqueness of the solution, we have z(t) = x(t). Thus,

x(−t) = x(t), which means x is even.

Example 11.11. Suppose x1(t) =

(
t+ et

1

)
,x2(t) =

(
1 + et

1

)
, and x3(t) =

(
et

t

)
are solutions to a non-

homogeneous system with continuous coefficient matrix and forcing over an open interval (a, b) given by

x′ = A(t)x + f(t).

Solve the initial value problem

x′ = A(t)x + f(t),x(0) =

(
1

2

)
.

Solution. By linearity, we note that x1(t)− x2(t) =

(
t− 1

0

)
, and x2(t)− x3(t) =

(
1

1− t

)
are solutions of

the corresponding homogeneous system x′ = A(t)x. We also note that

W [x1 − x2,x2 − x3] = det

 t− 1 1

0 1− t

 = −(1− t)2 6= 0.

Therefore, x1 − x2,x2 − x3 form a FSoS for the homogeneous system. Therefore, the general solution to the

non-homogeneous system is x = c1

(
t− 1

0

)
+ c2

(
1

1− t

)
+

(
et

t

)
. To solve the initial value problem we need

to solve

x = c1

(
−1

0

)
+ c2

(
1

1

)
+

(
1

0

)
=

(
1

2

)
⇒
(
−c1 + c2 + 1

c2

)
=

(
1

2

)
⇒ c1 = c2 = 2.
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The solution to the given IVP is thus,

(
2t+ et

2− t

)
.

Example 11.12. Prove the Existence and Uniqueness Theorem for Linear Differential Equations follows

from the Existence and Uniqueness Theorem for First-Order Systems.

Solution. Given a linear differential equation, we can turn it into a system, and then apply the Existence

and Uniqueness Theorem for systems.

11.4 Exercises

Exercise 11.1. Find the largest interval for which the IVP is guaranteed to have a solution.

(a) 
tx′ = x+ y + tan t

(
√
t2 − 3)y′ = (cos t)x+ |t|y + sin t

x(2) = y(2) = 3.

(b) 
x′ = x+ y + 3

√
t2 − 1

|t2 − 3|y′ = (t2 + t)x+ y + csc t

x(−1) = y(−1) = 2.

Exercise 11.2. Convert each equation into a first-order system. Find its coefficient matrix and forcing.

(a) y′′ + ty′ − 7y = sin t.

(b) t2y′′ + (sin t)y′ + cos t = 0.

Exercise 11.3. Consider the system of differential equations:y
′′ + ty′ − t3y = 1

z′′ − z = sin t

(a) Convert the system above into a first order linear system.

(b) What are coefficient matrix and forcing of this system?

Exercise 11.4. Suppose

(
et

e2t

)
,

(
1

t

)
are solutions to a first-order 2-dimensional homogeneous linear system.

(a) Find the coefficient matrix of this system.

(b) Find the general solution of this system.
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Exercise 11.5. Suppose

(
1 + et

et

)
,

(
1 + et

t+ et

)
,

(
et

et

)
are solutions to a 2-dimensional linear system

dx

dt
= A(t)x + f(t).

(a) Find A(t) and f(t).

(b) Find the largest open interval containing t = 1 for which all entries of the coefficient matrix and the

forcing are continuous.

(c) Find the general solution of this system.

(d) Solve the IVP: x′ = A(t)x + f(t),x(1) =

(
2

3

)
.

Exercise 11.6. Suppose the n-dimensional linear system x′ = A(t)x has n linearly independent constant

solutions. Prove that A(t) = 0.

Exercise 11.7. Suppose X(t) is a fundamental matrix for the system
dx

dt
= A(t)x. Show that:

(a) If Y (t) is another fundamental matrix for the same system, then Y (t) = X(t)C for some invertible

constant matrix C.

(b) X(t)[X(t0)]−1x0 is the solution to the initial value problem:
dx

dt
= A(t)x, x(t0) = x0.

Exercise 11.8. Consider the initial value problem
x′ = tx+ t3y − sin t

y′ = tx+ (t3 + t)y + tan−1 t

x(0) = 1, y(0) = 2

(a) Show that this IVP has a unique solution defined over R.

(b) Show this solution is even.

Exercise 11.9. Prove that there is no first-order 2-dimensional homogeneous linear system with coefficients

that are continuous over (−1, 1), where one of its solutions is

(
t+ sin t

t3 − t cos t

)
.

Exercise 11.10. Prove that there is no first-order 2-dimensional homogeneous linear system with coefficients

that are continuous over R, where one of its solutions is

(
t3 − 1

sin(tπ)

)
.

Exercise 11.11. Consider a first-order n-dimensional homogeneous linear system. Assume W is the Wron-

skian of some FSoS. Prove that for every nonzero c ∈ R there is a FSoS for this system whose Wronskian is

cW .

The goal of the following exercise is to prove the Abel’s Theorem for systems.
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Exercise 11.12 (Abel’s Theorem for Systems). Consider the first-order n-dimensional homogeneous linear

system

x′ = A(t)x.

Suppose all entries of A(t) are continuous over an open interval (a, b), and let Φ1, . . . ,Φn be n solutions of

this system. Let W (t) = W [Φ1(t), . . . ,Φn(t)]. Prove W ′(t) = (tr A(t))W (t).

Hint: Use Exercise 2.6.

Exercise 11.13. Suppose x1(t), . . . ,xn(t) are solutions to an n-dimensional homogeneous linear system

x′ = A(t)x. Assume (a, b) is an open interval for which W [x1, . . . ,xn](t) 6= 0 for all t ∈ (a, b). Prove that

all entries of A(t) are continuous over (a, b).

11.5 Summary

• To convert a system into a first-order system, for every instance of y(n) introduce new variables:

x1 = y, x2 = y′, . . . , xn = y(n−1).

• If all coefficients and forcing of a first-order linear system are continuous, then the system has a unique

solution for each initial value.

• W [Φ1(t), . . . ,Φn(t)] = det (Φ1(t) . . .Φn(t)).

• When the Wronskian is nonzero we have a FSoS, and all solutions are given by (Φ1(t) · · · Φn(t)) c.

• The fundamental matrix is the matrix (Φ1(t) · · · Φn(t)), where the columns form a FSoS.

• The coefficient matrix A(t) of a homogeneous system can be found by solving Φ′(t) = A(t)Φ(t), i.e.

A(t) = Φ′(t)[Φ(t)]−1.



Chapter 12

Linear Systems with Constant

Coefficients

12.1 Homogeneous Linear Systems with Constant Coefficients

In this section we will focus on systems of the form

dx

dt
= Ax,

where A is a constant square matrix.

Recall that for any scalar a, one solution to the differential equation y′ = ay is y = eat. Recall also that

etA = 1 +
tA

1!
+
t2A2

2!
+ · · ·+ tnAn

n!
+ · · · .

Differentiating we obtain:

d

dt
(etA) =

A

1!
+

2tA2

2!
+ · · ·+ ntn−1An

n!
+ · · ·

=
A

0!
+
tA2

1!
+ · · ·+ tn−1An

(n− 1)!
+ · · ·

= A

(
I +

tA

1!
+ · · ·+ tn−1An−1

(n− 1)!
+ · · ·

)

= AetA.

To summarize, we showed
d

dt
(etA) = AetA, which means each column of etA is a solution to x′ = Ax. Since

e0A = I is invertible, the matrix etA is a fundamental matrix.

171
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We have already seen one way of finding etA by looking at the Jordan form of the matrix tA. This method

is often too computational. We will find another methods of finding the matrix exponential etA.

As usual, we will use D =
d

dt
. We note that

D[etA] = AetA, D2[etA] = A2etA, . . . , Dn[etA] = AnetA, . . . .

Therefore, if p(z) is a polynomial, then

p(D)[etA] = p(A)etA.

Assume p(A) = 0, then p(D)[etA] = 0. Thus, all entries of etA satisfy the differential equation p(D)[y] = 0.

We will now find these entries by finding initial conditions for the matrix etA. We will use the following:

etA|t=0 = I,
d

dt
(etA)|t=0 = A,

d2

dt2
(etA)|t=0 = A2, . . . .

Thus, in order to find etA we need to do the following:

• Find a polynomial p(z) for which p(A) = 0.

• Find a NFSoS N0(t), N1(t), . . . , Nm(t) for p(D)[y] = 0. (Here, the order of p(D)[y] = 0 is m+ 1.)

• etA = N0(t)I +N1(t)A+ · · ·+Nm(t)Am.

One such polynomial p(z) can be found using the Cayley-Hamilton Theorem that we saw in an earlier chap-

ter, but any such nonzero polynomial p(z) can be used.

Reminder: Cayley-Hamilton Theorem: If p(z) = det(A− zI), then p(A) = 0.

Example 12.1. Compute etA, where A =

 3 2

2 3

 . Use that to solve the initial value problem

x′ = Ax, x(0) =

(
1

2

)
.

We know etA is a fundamental matrix. Suppose Φ(t) is another fundamental matrix of
dx

dt
= Ax. Then, since

all columns of etA are solutions to this system, we must have etA = Φ(t)B for a constant square matrix B.

Substituting t = 0 we obtain I = Φ(0)B which gives us B = [Φ(0)]−1 and hence

etA = Φ(t)[Φ(0)]−1.

Example 12.2. Solve the initial value problem:x
′ = 2x+ y

y′ = x+ 2y

, x(0) = 1, y(0) = −1.
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Example 12.3. Evaluate etA, where

A =


1 2 0

0 1 1

0 0 2

 .

Example 12.4. Prove that the solution to the initial value problem

x′ = Ax,x(0) = x0

is x(t) = etAx0.

Example 12.5. Prove that if A and B are two square matrices of the same size and AB = BA, then

eA+B = eAeB .

12.1.1 Eigenpair Method

Looking back at differential eqautions of the form y′ = ay, we know a solution is of the form eat. We guess

that a solution to
dx

dt
= Ax might be of the form x = eλtv. Substituting this into the system we obtain

λeλtv = Aeλtv⇒ eλtλv = eλtAv⇒ λv = Av.

This means that (λ,v) is an eigenpair for A. So, in order to find solutions for the system we will need to

find eigenpairs.

Theorem 12.1. Let A ∈ Mn(R), λ ∈ C, and v ∈ Cn. Then, x(t) = eλtv is a solution to x′ = Ax if and

only if (λ,v) is an eigenpair for A.

Example 12.6. Solve by eigenpair method:

dx

dt
=

 1 2

4 3

x.

Example 12.7. Solve by eigenpair method:

dx

dt
=

 1 2

−1 3

x.

When A is diagonalizable, (e.g. when all eigenvalues are distinct) we can find a basis of Cn consisting

of eigenvectors of A. Suppose the corresponding eigenpairs are (λ1,v1), . . . , (λn,vn). For each real λj we

will see that eλjtvj is a solution to
dx

dt
= Ax. For each nonreal pair of eigenpairs (a ± ib,v ± iw), where

v,w ∈ Rn and a, b ∈ R, we will obtain two solutions by taking real part and imaginary part of e(a+ib)t(v+iw).

When A is not diagonalizable, this method would only yield a partial Fundamental Set of Solutions.

Example 12.8. For every 2×2 constant matrix A find etA. Use that to solve all 2-dimensional homogeneous

systems of the form x′ = Ax.
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Example 12.9. Suppose

(
et

et

)
,

(
e2t

2e2t

)
form a FSoS for the equation x′ = Ax.

(a) Find A.

(b) Find etA.

12.2 Nonhomogeneous Systems with Constant Coefficients

12.2.1 Variation of Parameters

Suppose Φ(t) is a fundamental matrix for
dx

dt
= Ax. Thus, every solution can be obtained from x(t) = Φ(t)c.

Similar to what we did before, we assume a particular solution to the nonhomogeneous system
dx

dt
= Ax+f(x)

is of the form xP (t) = Φ(t)u(t). Substituting into the nonhomogeneous system and using the fact that

Φ′ = AΦ we obtain:

Φ′u + Φu′ = AΦu + f ⇒ Φu′ = f ⇒ u′ = [Φ]−1f ⇒ u(t) = u(t0) +

∫ t

t0

[Φ(s)]−1f(s) ds.

Suppose we want to solve the initial value problem
dx

dt
= Ax + f(t), x(t0) = x0. Substituting x = Φu into

the initial value we obtain Φ(t0)u(t0) = x0. Therefore, the solution to this initial value problem is

x(t) = Φ(t)u(t) = Φ(t)u(t0) + Φ(t)

∫ t

t0

[Φ(s)]−1f(s) ds = Φ(t)[Φ(t0)]−1x0 + Φ(t)

∫ t

t0

[Φ(s)]−1f(s) ds

Substituting Φ(t) by etA and using the fact that etA(esA)−1 = e(t−s)A we obtain the following formula:

x(t) = e(t−t0)Ax0 +

∫ t

t0

e(t−s)Af(s) ds.

Example 12.10. Solve the initial value problem
dx

dt
=

 4 5

−2 −2

x +

 4et cos t

0

 , x(0) = 0.

12.2.2 Laplace Transforms

For a vector valued function x(t) =


x1(t)

x2(t)
...

xn(t)

 let its Laplace be defined as

L{x} =


L{x1}

L{x2}
...

L{xn}

 .

Suppose x is a solution to
dx

dt
= Ax + f(t). Using properties of Laplace transforms we obtain L{dx

dt
} =

AL{x}+L{f}. Similar to before we obtain sX(s)−x(0) = AX(s)+F (s), where X(s), F (s) are the Laplace of
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x(t) and f(t), respectively. This yields (sI−A)X(s) = F (s) + x(0). Multiplying by the inverse of sI−A and

then taking the Laplace inverse we can find the solution to the initial value problem
dx

dt
= Ax+ f ,x(0) = x0,

and thus a particular solution.

Example 12.11. Solve the initial value problem using Laplace method:

dx

dt
=

 1 4

1 1

x +

 et

0

 , x(0) =

 0

1

 .

12.3 More Examples

Example 12.12. Evaluate etA for each matrix once using the NFS method and once by the eigenpair

method.

(a) A =

 4 2

−1 1

 .

(b) A =


1 2 0

0 2 −1

0 0 −1


Solution. (a) The characteristic polynomial is p(z) = (4− z)(1− z) + 2 = z2 − 5z + 6 = (z − 2)(z − 3). The

general solution to p(D)[y] = 0 is y = c1e
2t + c2e

3t. We now solve the IVP p(D)[y] = 0, y(0) = y0, y
′(0) = y1

to find a NFSoS at zero. This yields the following system:c1 + c2 = y0

2c1 + 3c2 = y1

Subtracting twice the first equation from the second we obtain c2 = y1 − 2y0. Substituting into the first

equation we obtain c1 = 3y0 − y1. Therefore,

y = (3y0 − y1)e2t + (y1 − 2y0)e3t ⇒ y = y0(3e2t − 2e3t) + y1(e3t − e2t)⇒ N0 = 3e2t − 2e3t, N1 = e3t − e2t.

Therefore, etA = N0I +N1A =

 −e2t + 2e3t 2e3t − 2e2t

−e3t + e2t 2e2t − e3t

 .

Now, we will use the eigenpair method. The eigenpairs of A are (2,
(−1

1

)
) and (3,

(−2
1

)
). Therefore, e2t

(−1
1

)
)

and e3t
(−2

1

)
) for a FSoS. Thus, a fundamental matrix is given by −e2t −2e3t

e2t e3t

 .

Therefore,

etA =

 −e2t −2e3t

e2t e3t

 −1 −2

1 1

−1

=

 −e2t + 2e3t 2e3t − 2e2t

−e3t + e2t 2e2t − e3t

 .
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(b) The characteristic polynomial is p(z) = (1 − z)(2 − z)(−1 − z). The general solution to p(D)[y] = 0 is

y = c1e
t+c2e

2t+c3e
−t. We will now find a NFSoS for p(D)[y] = 0 at t0 = 0. The equalities y(0) = y0, y

′(0) =

y1, y
′′(0) = y2 turn into the following system which we solve for c1, c2, c3.


c1 + c2 + c3 = y0

c1 + 2c2 − c3 = y1

c1 + 4c2 + c3 = y2.

Solving this system we obtain c1 = y0 +
y1 − y2

2
, c2 =

y2 − y0

3
, c3 =

2y0 − 3y1 + y2

6
. Therefore,

y =
e−t + 3et − e2t

3
y0 +

et − e−t

2
y1 +

e−t − 3et + 2e2t

6
y2

This implies, the NFSoS at t0 = 0 is

N0(t) =
e−t + 3et − e2t

3
, N1(t) =

et − e−t

2
, N2(t) =

e−t − 3et + 2e2t

6
.

Thus,

etA = N0(t)I +N1(t)A+N2(t)A2.

This can be evaluated!

Three eigenpairs of A are (1, (1, 0, 0)), (2, (2, 1, 0)), and (−1, (−1, 1, 3)). Thus, a fundamental matrix is
et 2e2t −e−t

0 e2t e−t

0 0 3e−t

 .

Therefore,

etA =


et 2e2t −e−t

0 e2t e−t

0 0 3e−t




1 2 −1

0 1 1

0 0 3


−1

.

Example 12.13. Solve the IVP using the Laplace transform method.

x′ =

 0 1

1 0

x,x(0) =

(
1

2

)
.

Solution. Let X(s) = L{x(t)}(s). Taking the Laplace of both sides we obtain

sX(s)− x(0) =

 0 1

1 0

X(s)⇒

 s −1

−1 s

X(s) =

(
1

2

)
⇒ X(s) =

 s −1

−1 s

−1(
1

2

)
Therefore,

X(s) =


s+ 2

s2 − 1

2s+ 1

s2 − 1

 .
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Using the method of partial fractions we obtain the following:

s+ 2

s2 − 1
=
−1/2

s+ 1
+

3/2

s− 1
⇒ L−1{ s+ 2

s2 − 1
} =

3et − e−t

2
.

Similarly

2s+ 1

s2 − 1
=

1/2

s+ 1
+

3/2

s− 1
⇒ L−1{2s+ 1

s2 − 1
} =

e−t + 3et

2
.

Therefore,

x(t) =


3et − e−t

2

e−t + 3et

2



Example 12.14. Prove that if A is a constant square matrix for which etA = I + tA, then A2 = 0.

Solution. Taking the derivative of both sides we obtain AetA = A. Taking the derivative again we obtain

A2etA = 0. Substituting t = 0 yields A2 = 0.

Example 12.15. Suppose A(t) is a square matrix all of whose entries are functions of t that are differentiable

over R. Assume A(s+ t) = A(s)A(t) for all s, t ∈ R, and assume A(0) = I. Prove that A(t) = etB for some

constant matrix B.

Scratch. We can determine B by differentiating both sides and thus obtain A′(t) = BetB , which means

B = A′(0). We will show A(t) and etA
′(0) both satisfy the same IVP. Then we will apply the uniqueness.

Solution. Taking the derivative of both sides with respect to s we obtain A′(s+t) = A′(s)A(t). Substituting

s = 0 we obtain A′(t) = A′(0)A(t). Therefore, columns of A(t) satisfy the equation x′ = A′(0)x. On the

other hand all columns of etA
′(0) also satisfy the system x′ = A′(0)x. Since e0A′(0) = I = A(0), by uniqueness

we must have A(t) = etA
′(0), as desired.

Example 12.16. Is there a nonzero vector v ∈ Rn for which (cos t)v is a solution to an n-dimensional linear

homogeneous system with constant coefficients? How about et
2

v? How about e5tv?

Solution. We will substitute x = (cos t)v into x′ = Ax. This yields −(sin t)v = A(cos t)v, which can be

written as Av = −(tan t)v, if cos t 6= 0. Since v is a nonzero vector, the quantity − tan t is an eigenvalue of

A. However, A has at most n distinct eigenvalues. This is a contradiction. Similarly for et
2

there is no such

vector v.

Applying a similar strategy to e5tv, we obtain

5e5tv = Ae5tv⇒ Av = 5v.
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We can set A = 5I, and v = e1. So, there is a such a system for e5t.

12.4 Exercises

Exercise 12.1. Find etA for each matrix.

(a) A =

 2 4

0 2

 .

(b) A =

 2 −1

2 4



(c) A =

 0 1

−1 0

.

Exercise 12.2. Let n be a positive integer and let A be the n× n matrix whose entries are all 1.

(a) Find a polynomial p(z) for which p(A) = 0. Hint: Evaluate A2.

(b) Using the method of natural fundamental set of solutions find etA.

Exercise 12.3. Suppose (λ,v) is an eigenpair of a square real matrix A, where λ ∈ C is not real.

(a) Prove that (λ,v) is also an eigenpair of A. Hint: See Exercise 1.23.

(b) Using part (a), prove that Re(eλtv) and Im(eλtv) are linearly independent solutions of x′ = Ax.

Exercise 12.4. Solve the initial value problem, once by the method of variation of parameters, and once

using Laplace transform. 
x′ = x+ 2y − 2

y′ = −x+ 4y,

x(0) = 1, y(0) = 0

Exercise 12.5. Solve
dx

dt
= Ax, where A =

 0 1

−1 2

 .

Exercise 12.6. Evaluate etA, where A =

 4 1

3 2

 .

Exercise 12.7. For a positive integer n, let A be the (2n)× (2n) matrix, shown below, all of whose entries

are 1 except for the ones in positions (i, j), where i > n and j ≤ n. Using the NFS method evaluate etA.

(Hint: Evaluate A2 − nA.)
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A =



1 · · · 1 1 · · · 1
...

...
...

...
...

...

1 · · · 1 1 · · · 1

0 · · · 0 1 · · · 1
...

...
...

...
...

...

0 · · · 0 1 · · · 1


(2n)×(2n)

Exercise 12.8. Prove that L{d
nx

dtn
} = snX(s)− sn−1x(0)− sn−2x′(0)− · · · − x(n−1)(0).

Exercise 12.9. Suppose A,B are two square matrices of the same size. Assume AetB = etBA for all t ∈ R.

Prove that AB = BA.

Exercise 12.10. Suppose A ∈Mn(R) for which etA = I + tA2 for all t ∈ R. Prove that A = 0.

Hint: See Example 12.14.

12.5 Challenge Problems

Exercise 12.11. Find all differentiable functions f : R→ R for which there is a nonzero vector v ∈ Rn for

which x(t) = f(t)v is a solution to some equation of the form x′ = Ax, where A is a constant n× n matrix.

Exercise 12.12. Suppose A(t) is a square matrix for which A(t) and [A(t)]−1 are both infinitely many times

differentiable for every t ∈ R. Assume in addition that A′′(t) = A′(t)[A(t)]−1A′(t) for all t ∈ R. Prove that

there are constant square matrices B and C for which A(t) = etBC.

12.6 Summary

• To find etA:

– Find a polynomial p(z) for which p(A) = 0.

– Find a NFSoS N0(t), N1(t), . . . , Nm(t) for p(D)[y] = 0. (Here, the order of p(D)[y] = 0 is m+ 1.)

– etA = N0(t)I +N1(t)A+ · · ·+Nm(t)Am.

• If (λ,v) is an eigenpair for A, then x(t) = eλtv is a solution to x′ = Ax.

• If λ is not real, then by taking the real and imaginary parts of eλtv we can find two linearly independent

solutions.

• To find particular solution to x′ = Ax+f(x) we will find u from u′ = [Φ]−1A. This gives us a particular

solution xP (t) = Φ(t)u(t).
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• The solution to the initial value problem x′ = Ax,x(t0) = x0 is given by

x(t) = e(t−t0)Ax0 +

∫ t

t0

e(t−s)Af(s) ds.

• Solving initial value problems with the method of Laplace Transforms is done via solving the equation

sX(s)− x0 = AX(s) + F (s).



Chapter 13

Qualitative Theory of Differential

Equations

13.1 Autonomous Systems

The main focus of this chapter is the study of solutions to systems of the form x′ = f(x), called autonomous

systems.

Definition 13.1. Any system of the form
dx

dt
= f(x) is called autonomous.

Definition 13.2. A solution to a system
dx

dt
= f(x) is called stationary or equilibrium (or a fixed point

or a critical point), if it is a constant function.

Example 13.1. Find all stationary solutions of the system x′ = y2 − 1, y′ = xy2 + x.

Definition 13.3. A solution to a system
dx

dt
= f(x) is said to be semistationary if all components of x(t),

except for one, are constant.

Example 13.2. Find all stationary and semistationary solutions of x′ = x2−xy−x+y, y′ = y(x2−2x+3).

We will now focus on first order 2-dimensional autonomous systems:
dx

dt
= f(x, y),

dy

dt
= g(x, y).

There are several questions that we would like to answer for such systems.

• Are there stationary solutions?

• Are there semistationary solutions?

• What happens to a solution if the initial value is slightly modified?

• What happens to a solution over the long run, i.e. as t gets large?

• Are there periodic solutions?

181
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13.2 Orbit Equation

Example 13.3. Solve the system x′ = 2y, y′ = 2x− 4x3.

Definition 13.4. The orbit equation of the system x′ = f(x, y), y′ = g(x, y) is the equation

g(x, y)
dx

dt
− f(x, y)

dy

dt
= 0.

Sometimes this equation is exact or can be solved using an integrating factor. Other times it is not possible

to solve.

13.3 Stability of Solutions

Definition 13.5. A solution Φ0(t) to
dx

dt
= f(x) is said to be stable if every solution Φ(t) that starts

sufficiently close to Φ0(t) remains close to Φ0(t) for all future values of t. In other words, we say Φ0(t) is

stable if the following holds:

∀ε > 0 ∃δ > 0 s.t. if ||Φ(0)−Φ0(0)|| < δ, then ||Φ(t)−Φ0(t)|| < ε for all solutions Φ, and all future t.

Otherwise, we say Φ0(t) is unstable.

Note that sometimes even though f(x) has derivatives of all orders, there are solutions that are not defined

for all t ≥ 0. This is why we say “for all future t” instead of saying for all t ≥ 0. For example, the solution

to y′ = y2 with initial condition y(0) = 1 is given by y(t) = 1/(1 − t), and thus we may only discuss the

behavior of this function over the interval (−∞, 1). In this case “all future t” means 0 < t < 1. This can be

stated as follows by defining a “maximal” solution.

Definition 13.6. A solution x(t) of x′ = f(x), defined over an open interval (a, b) is called maximal, if this

solution cannot be extended to a solution over an open interval (α, β) properly containing (a, b).

In this chapter we assume all solutions are maximal.

Note also that x = 0 is always a solution to any homogeneous equation x′ = Ax. We will start with some

examples on stability of the solution 0.

Example 13.4. In each case check if 0 is a stable or unstable solution to the system x′ = Ax.

(a) A =

 −3 1

−2 0



(b) A =

 0 2

1 1



(c) A =

 2 2

1 1
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(d) A =

 0 2

−2 0


Definition 13.7. A solution Φ0(t) is said to be asymptotically stable if it is stable and every solution

that starts sufficiently close to Φ0(t) approaches Φ0(t) as t gets large. In other words, there exists δ > 0

such that for every solution Φ(t)

If ||Φ(0)−Φ0(0)|| < δ, then ||Φ0(t)−Φ(t)|| → 0 as t gets as large as possible.

Theorem 13.1. Consider the system
dx

dt
= Ax (∗), where A is a constant n× n matrix.

• If all eigenvalues of A have negative real parts, then all solutions of (∗) are asymptotically stable.

• If at least one eigenvalue of A has positive real part, then all solutions of (∗) are unstable.

• Suppose all eigenvalues of A have nonpositive real parts. Let λ1, . . . , λk (with k ≥ 1) be all distinct

eigenvalues of A whose real parts are zero. Suppose the multiplicity of λj as a root of the characteristic

polynomial of A is mj.

– If A has mj linearly independent eigenvectors corresponding to λj for every j, then every solution

to (∗) is stable, but not asymptotically stable.

– Otherwise, every solution to (∗) is unstable.

Example 13.5. Determine if 0 is a stable, unstable or asymptotically stable solution to the system x′ = Ax,

where A is given below:

A =


0 4 −1

−1 0 −1

0 0 0

 .

13.4 Stability of Stationary Solutions to Nonlinear Systems

In order to understand the stability of a stationary solution to a system x′ = f(x), we will follow the steps

below:

• Approximate the system by a linear system near the stationary solution. This can be done using the

tangent plane approximation.

• Find out if zero is a stable solution to the linear system.

• Find out if the stability of zero for the approximated system and the stability of the stationary solution

for the original system are equivalent.

Let us first consider the following system:

x
′ = f(x, y)

y′ = g(x, y)
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Tangent plane approximation for functions f(x, y) and g(x, y) are given below:

f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0),

g(x, y) ≈ g(x0, y0) + gx(x0, y0)(x− x0) + gy(x0, y0)(y − y0).

The system can now be approximated by the following system:

d

dt

(
x

y

)
=

(
f(x0, y0)

g(x0, y0)

)
+

 fx(x0, y0) fy(x0, y0)

gx(x0, y0) gy(x0, y0)

(x− x0

y − y0

)
.

Assuming (x0, y0) is a stationary point, we have f(x0, y0) = g(x0, y0) = 0, and thus we obtain the following:

d

dt

(
x

y

)
=

 fx(x0, y0) fy(x0, y0)

gx(x0, y0) gy(x0, y0)

(x− x0

y − y0

)
.

Setting x̃ = x− x0, ỹ = y − y0 we obtain the following linear system:

d

dt

(
x̃

ỹ

)
=

 fx(x0, y0) fy(x0, y0)

gx(x0, y0) gy(x0, y0)

(x̃
ỹ

)
.

The above system is often called the linearization of the original system. This can be done for systems

with any number of variables.

Example 13.6. Find and classify all stationary solutions to the following system:

dx

dt
= 1− xy, dy

dt
= x− y3.

Theorem 13.2. Suppose x0 is a stationary solution to x′ = f(x) (∗). Let A be the Jacobian matrix of f(x)

at x0.

• If all eigenvalues of A have negative real parts, then x0 is an asymptotically stable solution to (∗).

• If at least one eigenvalue of A has positive real part, then x0 is an unstable solution to (∗).

• If none of the above happens, then x0 could be stable, unstable or asymptotically stable.

Example 13.7. Characterize the stability of all stationary solutions to the following system

dx

dt
= sin(x+ y),

dy

dt
= ex − 1.

13.5 More Examples

Example 13.8. Determine if 0 is a stable, asymptotically stable, or unstable solution of the system
dx

dt
= Ax

in each of the following cases. Solve it once using the ε− δ definition and once using an appropriate theorem.

(a) A =

 1 1

−1 3
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(b) A =

 1 −1

1 −1


(c) A =

 −4 −2

1 −1


Solution. (a) This matrix only has one eigenvalue of 2 with multiplicity 2. Since 2 is positive, by Theo-

rem 13.1 all solutions are unstable.

Now, we will prove 0 is unstable using the ε− δ definition. Assume on the contrary 0 is stable. Set ε = 1 in

the definition of stability. Therefore, there is δ > 0 for which

||Φ(0)− 0|| < δ implies ||Φ(t)− 0|| < 1 for all t ≥ 0, and all solutions Φ

We see that (2,
(

1
1

)
) is an eigenpair of A, and thus Φ(t) = δ

2e
2t
(

1
1

)
is a solution. Note that

||Φ(0)− 0|| = ||δ
2

(
1

1

)
|| = δ

√
2

2
< δ

By assumption we must have

||δ
2
e2t

(
1

1

)
|| < 1, for all t ≥ 0⇒ δ

√
2e2t < 2.

Letting t→∞ we obtain a contradiction. Therefore, 0 is unstable.

(b) This matrix has precisely one eigenvalue of 0 with multiplicity 2. Its eigenspace is 1-dimensional. Thus,

by Theorem 13.1 all solutions to this system are unstable.

Now, we will prove 0 is unstable using the ε − δ definition. Note that A2 = 0 since the characteristic

polynomial of A is z2. We will find a NFSoS at initial time t0 = 0 for y′′ = 0. The general solution to this

equation is YH = c1 + c2t. The initial values y(0) = y0, y
′(0) = y1 yield c1 = y0, c2 = y1 and thus the general

solution is YH = y0 + y1t, which implies {1, t} is a NFSoS at initial time t0 = 0. Therefore,

etA = I + tA =

 1 + t −t

t 1− t

 .

This means the general solution is

y = c1

(
1 + t

t

)
+ c2

(
−t

1− t

)
.

On the contrary assume 0 is stable. Let ε = 1 in the definition of stability. Thus, there exists δ > 0 for which

the following holds:

∀c1, c2 ∈ R, ||c1
(

1 + 0

0

)
+ c2

(
−0

1− 0

)
− 0|| < δ implies ||c1

(
1 + t

t

)
+ c2

(
−t

1− t

)
− 0|| < 1 for all t ≥ 0.

Setting c1 = 0 and c2 = δ/2 we see that

||0
(

1

0

)
+
δ

2

(
0

1

)
− 0|| = δ

2
< δ
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Therefore, we must have

||0
(

1 + t

t

)
+
δ

2

(
−t

1− t

)
− 0|| < 1 for all t ≥ 0⇒ δ

2

√
t2 + (1− t)2 < 1 for all t ≥ 0.

Letting t→∞ we obtain a contradiction.

(c) The eigenvalues of A are −2 and −3. Both have negative real parts, and thus all solutions are asymptot-

ically stable.

Now, we will prove 0 is stable using the ε− δ definition. Two eigenpairs are (−2,
(−1

1

)
) and (−3,

(−2
1

)
). Thus,

the general solution is Φ(t) = c1e
−2t
(−1

1

)
+ c2e

−3t
(−2

1

)
. Let ε > 0 and set δ = ε/100. Suppose ||Φ(0)|| < δ.

We have:

||c1
(
−1

1

)
+ c2

(
−2

1

)
|| < δ ⇒

√
(c1 + 2c2)2 + (c1 + c2)2 < δ ⇒ |c1 + 2c2| < δ, and |c1 + c2| < δ.

Applying the Triangle Inequality we obtain:

|c1| ≤ | − 2(c1 + c2)|+ |c1 + 2c2| < 2δ + δ = 3δ

|c2| ≤ |c1 + c2|+ | − c1| < δ + 3δ = 4δ

Combining these and the Triangle Inequality we obtain, for every t ≥ 0:

||c1e−2t

(
−1

1

)
+ c2e

−3t

(
−2

1

)
|| ≤ |c1|e−2t||

(
−1

1

)
||+ |c2|e−3t||

(
−2

1

)
|| < 3δ

√
2 + 4δ

√
5 = (3

√
2 + 4

√
5)δ.

This is less than ε, as 3
√

2 + 4
√

5 < 100. Therefore, 0 is a stable solution to the given linear system. Also,

similar to above

||c1e−2t

(
−1

1

)
+ c2e

−3t

(
−2

1

)
|| ≤ |c1|e−2t

√
2 + |c2|e−3t

√
5→ 0, as t→∞.

Therefore, by the Squeeze Theorem ||c1e−2t
(−1

1

)
+ c2e

−3t
(−2

1

)
|| → 0, and thus 0 is asymptotically stable.

Example 13.9. Determine if solutions to the system are stable, unstable or asymptotically stable.

dx

dt
=

 −1 1

0 −2

x +

 0

3


Solution. By Exercise 13.4, stability of any solution to the above system is equivalent to the stability of 0

as a solution to the homogeneous system

dx

dt
=

 −1 1

0 −2

x.

Since the coefficient matrix is upper triangular, its eigenvalues are its diagonal entries, −1 and −2. By

Theorem 13.1 every solution to this system is stable. Thus, every solution to the nonhomogeneous system is

also stable.
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Example 13.10. Suppose A and B are two matrices in M2(R) for which 0 is a stable solution of both

systems
dx

dt
= Ax, and

dx

dt
= Bx. Is it true that 0 must be a stable solution of the system

dx

dt
= (A+B)x?

Answer the same question if the word “stable” is replaced by “unstable” or “asymptotically stable”. Do the

same problem when we add the additional condition that AB = BA.

Solution. Let A =

 −1 1

0 −1

, and B =

 −1 0

5 −1

 . We have A + B =

 −2 1

5 −2

 . Since all

eigenvalues of A and B are negative, 0 is an asymptotically stable solution to both systems x′ = Ax and

x′ = Bx. On the other hand, characteristic polynomial of A+B is (z+ 2)2−5 which has a positive root and

thus 0 is an unstable solution to x′ = (A + B)x. Thus, the answer is no, for “stable” and “asymptotically

stable” cases.

Similarly if we set A =

 −1 0

0 1

 and B =

 1 0

0 −1

, then both A and B have an eigenvalue of 1

which is positive and thus 0 is an unstable solution to both systems x′ = Ax and x′ = Bx. On the other

hand A + B =

 0 0

0 0

 has an eigenvalue of 0 whose eigenspace is 2-dimensional, and thus the system

x′ = (A + B)x is stable. Note that in this case AB = BA and thus the answer for “unstable” is negative

even if AB = BA.

Suppose AB = BA and 0 is a stable solution of both x′ = Ax and x′ = Bx. If (λ,v) is an eigenpair of A,

then Av = λv. We have

ABv = BAv = Bλv = λBv.

Thus, Bv lies in the eigenspace of A corresponding to λ. We will take two cases:

Case I: The dimension of the eigenspace of A corresponding to λ is 1. In this case, Bv is a multiple of v.

If the eigenvalues of A are distinct, then we can repeat this argument and get a basis v,w for R2 consisting

of eigenvectors of A. Writing A and B in this basis we obtain:

A =
(

v w
) λ1 0

0 λ2

( v w
)−1

, and B =
(

v w
) λ3 0

0 λ4

( v w
)−1

.

Adding these up we obtain

A+B =
(

v w
) λ1 + λ3 0

0 λ2 + λ4

( v w
)−1

.

By assumption, all λj ’s have nonpositive real parts and thus real parts of λ1 + λ3 and λ2 + λ4 are both

nonpositive. Since A + B is diagonalizable, the multiplicity of each eigenvalue is equal to the dimension of

the corresponding eigenspace. Thus, by Theorem 13.1, the solution 0 is stable.
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If A has a unique eigenvalue λ, then by Theorem 13.1, since 0 is a stable solution for x′ = Ax, the real part

of eigenvalue λ is negative. Let v,w be a basis for R2 and write A and B in this basis. We obtain

A =
(

v w
) λ ∗

0 λ

( v w
)−1

, and B =
(

v w
) λ3 ∗

0 λ4

( v w
)−1

.

Adding these up we obtain

A+B =
(

v w
) λ+ λ3 ∗

0 λ2 + λ4

( v w
)−1

.

Since the real parts of λ3, λ4 are nonpositive and the real part of λ is negative, the real parts of λ+ λ3 and

λ+ λ4 are both negative. Therefore, the real parts of eigenvalues of A+B are negative. Thus 0 is a stable

solution for x′ = (A+B)x.

Case II: The dimension of the eigenspace of A corresponding to λ is 2. Therefore, writing A in a basis

consisting of two eigenvectors we obtain A = P (λI)P−1 = λI.

Similar to Case I, if B has an eigenvalue whose corresponding eigenspace is 1-dimensional, then we are done.

So, we may assume B also has a unique eigenvalue γ whose corresponding eigenspace is 2-dimensional, and

thus B = γI. By Theorem 13.1, the real parts of both λ and of γ are nonpositive. We see A+B = (λ+ γ)I,

and the real part of λ+ γ is nonpositive. Thus, by Theorem 13.1, the solution 0 is stable for x′ = (A+B)x.

The argument for the asymptotically stable case is similar.

We summarize the results in the following table:

x′ = Ax and x′ = Bx Require AB = BA? x′ = (A+B)x

Unstable No No Conclusion

Stable No No Conclusion

Asymptotically Stable No No Conclusion

Unstable Yes No Conclusion

Stable Yes Stable

Asymptotically Stable Yes Asymptotically Stable

Example 13.11. Find all stationary solutions of each system.

(a) x′ = x3 − y, y′ = sin(xy).

(b) x′ = x− y, y′ = x2 − y2.
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Solution. (a) All stationary solutions satisfy y = x3 and xy = πk for some k ∈ Z. Thus, x4 = πk, i.e.

x = ± 4
√
πk, y = ± 4

√
π3k3. Therefore, all stationary solutions are of the form

(
4
√
πk,

4
√
π3k3), and (− 4

√
πk,− 4

√
π3k3), k ≥ 0 is an integer

(b) We need y = x and x2 = y2. Thus, all points of the form (c, c), where c ∈ R are stationary solutions.

Example 13.12. Find all real numbers c for which 0 is a stable solution to the following system x′ = Ax,

where

A =

 c+ 1 2

5 −1

 .

Solve the problem when “stable” is replaced by “asymptotically stable”.

Solution 1. The characteristic equation is p(z) = z2 − cz − c− 11. The eigenvalues are
c±
√
c2 + 4c+ 44

2
.

The discriminant is equal to (c+ 2)2 + 40 and thus it is positive. Therefore, the eigenvalues are distinct and

real. For 0 to be stable we need both roots to be nonpositive. The larger one is
c+
√
c2 + 4c+ 44

2
, which

means we need to have

c+
√
c2 + 4c+ 44 ≤ 0⇒

√
c2 + 4c+ 44 ≤ −c

For this inequality to hold we need −c > 0 and

c2 + 4c+ 44 ≤ c2 ⇒ 4c+ 44 ≤ 0⇒ c ≤ −11.

Thus, 0 is stable if and only if c ≤ −11, and it is asymptotically stable if and only if c < −11.

Solution 2. Similar to above, the two eigenvalues are real. For both to be nonnegative we need their sum

to be nonnegative and their product to be nonpositive. Their sum is c and their product is −c− 11. Thus 0

is stable if and only if −c− 11 ≥ 0 and c ≤ 0. This yields c ≤ −11.

13.6 Exercises

Exercise 13.1. Find all stationary solutions of each system.

(a) x′ = ey − 1, y′ = x2 − x.

(b) x′ = sin(xy), y′ = x2 − y2.

(c) x′ = x2y − xy + x, y′ = xy2 − y.

Exercise 13.2. Find all semistationary solutions of each system.

(a) x′ = 2x+ yx, y′ = cos(y).

(b) x′ = xy + x+ y + 1, y′ = x2y − y.
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Exercise 13.3. Determine if 0 is a stable, asymptotically stable, or unstable solution of the system
dx

dt
= Ax

in each of the following cases. Solve it once using the ε− δ definition and once using an appropriate theorem.

(a) A =

 0 2

−8 0



(b) A =


1 −1 −2

1 −1 −1

0 0 −1


Exercise 13.4. Suppose f : R → Rn is continuous. Consider the linear nonhomogenuous system with

constant coefficients given below:

x′ = Ax + f(t) (∗)

(a) Using the ε − δ definition, prove that 0 is a stable solution to the homogeneous system x′ = Ax if and

only if every solution to (∗) is stable.

(b) Using the ε − δ definition, prove that 0 is an asymptotically stable solution to the homogeneous system

x′ = Ax if and only if every solution to (∗) is asymptotically stable.

Exercise 13.5. Consider the system
dx

dt
= x− y,

dy

dt
= ex + y.

(a) Prove that this system has a unique equilibrium solution.

(b) Find the stability of this equilibrium solution.

Hint: You do not need to find the stationary solution.

Exercise 13.6. Determine if 0 is a stable, asymptotically stable, or unstable solution of the system
dx

dt
= Ax

in each of the following cases. Solve it once using the ε− δ definition and once using an appropriate theorem.

(a) A =

 −4 6

−3 5

 (Eigenpairs are (2,
(

1
1

)
) and (−1,

(
2
1

)
).)

(b) A =

 0 2

−1 −3

 (Eigenpairs are (−2,
(−1

1

)
) and (−1,

(−2
1

)
).)

(c) A =

 −3 −1

2 0

 (Eigenpairs are (−1,
(−1

2

)
) and (−2,

(−1
1

)
).)

(d) A =


4 −1 5

4 0 4

0 0 −1


Exercise 13.7. Consider the following system:

x′ = x+ 2xy, y′ = x+ y − y2.



13.7. SUMMARY 191

(a) Find all stationary solutions of this system.

(b) Find the linearization of the system near each stationary solution.

(c) Determine if each stationary solution is stable, asymptotally stable, or unstable.

13.7 Summary

• A solution Φ0 to a system is said to be stable if any solution that starts near Φ0 stays near Φ0.

• A solution Φ0 is said to be asymptotically stable if it is stable and every solution that starts near Φ0

approaches Φ0.

• To prove 0 is a stable solution of x′ = Ax using the ε− δ definition:

– Find the general solution Φ(t).

– Start with the inequality ||Φ(t)−Φ0(t)|| < ε. Using the Triangle Inequality, eliminate t, and find

out what upper bounds for c1, c2, . . . you need.

– Use the inequality ||Φ(0)|| < δ to get upper bounds for c1, c2, . . . in terms of δ.

– Combine this information to find δ in terms of ε.

• To prove 0 is an unstable solution to x′ = Ax using the ε− δ definition:

– On the contrary assume 0 is stable.

– Write down the definition of stability with some small ε > 0. (For linear systems any positive ε

would work.)

– Yield a contradiction as t→∞.

• Theorem 13.1 helps determine if solutions to a linear system are stable, unstable, or asymptotically

stable.

• To find statinary solutions of a system x′ = f(x), we solve the system f(x) = 0.

• To find semi-stationary solutions of the system x′ = f(x, y), y′ = g(x, y) we will find all values of x0 for

which f(x0, y) = 0. Then we will solve the equation y′ = g(x0, y). We will do the same for y = y0.

• To check stability of stationary solutions to system x′ = f(x, y), y′ = g(x, y):

– Write down the Jacobian matrix of f, g.

– Evaluate the Jacobian matrix at the stationary solutions.

– Find all eigenvalues of the Jacobian matrix.

– If all eigenvalues have negative real parts, then the stationary solution is asymptotically stable.

– If there is an eigenvalue with positive real part, then the stationary solution is unstable.

– In all other cases, we cannot infer the stability of the stationary solution.
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Chapter 14

Orbits and Phase Plane Portraits

14.1 Orbits and Their Properties

Definition 14.1. Any solution (x(t), y(t)) to a first order autonomous system

dx

dt
= f(x, y),

dy

dt
= g(x, y)

can be represented with a curve in the xy-plane. This curve is called an orbit of this system. When samples

of these orbits are drawn in the xy-plane we obtain what we call a phase plane portrait. An orbit consisting

of a single stationary point is called a trivial orbit. Any other orbit is called nontrivial.

Theorem 14.1 (Existence and Uniqueness Theorem). Let U be an open subset of Rn. Suppose all compo-

nents of the vector field

f(x) = (f1(x), . . . , fn(x)), where x = (x1, x2, . . . , xn),

have continuous first partials with respect to x1, . . . , xn over U . Then, for every t0 ∈ R and every x0 ∈ U ,

the initial value problem
dx

dt
= f(x), x(t0) = x0

has a unique solution defined over some open interval containing t0, and the graph of this solution remains

in U .

Theorem 14.2 (Properties of Orbits). Suppose all components of the vector field f(x) have continuous first

partials. Then,

(a) No two distinct orbits intersect.

(b) If Φ(t) is a solution for which Φ(t0) = Φ(t0 + T ) for some t0, T ∈ R, with T > 0 then Φ(t) = Φ(t+ T )

for all t ≥ t0. In other words, Φ is periodic.

(c) If an orbit lies on a closed curve C, where C contains no stationary points, then the orbit must be

periodic.
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Example 14.1. Prove that every solution to the following system is periodic.

dx

dt
= ye1+x2+y2 ,

dy

dt
= −xe1+x2+y2 .

Example 14.2. Prove that every solution to the following system that starts in the right half plane x > 0

stays there.
dx

dt
= xy,

dy

dt
= ex + y2.

Example 14.3. Show that every solution to the system is periodic:
dx

dt
= y,

dy

dt
= −2x− 4x3.

14.2 Phase Plane Portrait for Linear Systems

Example 14.4. In each case draw a phase plane portrait for the system
dx

dt
= Ax.

(a) A =

 1 4

2 −1

 (Two eigenpairs are (−3,
(−1

1

)
) and (3,

(
2
1

)
).)

(b) A =

 −1 −2

3 4

 (Two eigenpairs are (1,
(−1

1

)
) and (2,

(−2
3

)
).)

(c) A =

 1 6

−1 −4

 (Two eigenpairs are (−1,
(−3

1

)
) and (−2,

(−2
1

)
).)

Example 14.5. In each case draw the phase plane portrait of system x′ = Ax:

(a)

 1 1

−1 1

 (One eigenpair is (1 + i,
(−i

1

)
).)

(b)

 0 1

−4 0

 (One eigenpair is (2i,
(−i

2

)
).

(c)

 0 0

0 0



(d)

 0 0

0 −1


14.3 Phase Plane Portrait for Nonlinear Systems Near Stationary

Solutions

Example 14.6. Consider the system

dx

dt
= y,

dy

dt
= 4x− x3.

(a) Find all stationary solutions of this system.
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(b) Write down the linearization of this system near each stationary solution.

(c) Sketch the phase plane portrait of this system near each stationary solution.

(d) Classify each stationary solution as stable or unstable, and also as attracting or not attracting.

Theorem 14.3 (Poincare-Bendixon Theorem). Let R be a closed and bounded region of the xy-plane. Sup-

pose f(x, y) and g(x, y) have continuous first partials over an open region containing R. Assume a solution

x(t), y(t) to a system of equations
dx

dt
= f(x, y),

dy

dt
= g(x, y)

remains in R for all future t ≥ 0. Suppose further that R contains no stationary solutions. Then, either the

orbit (x(t), y(t)) is itself a closed curve or it spirals into a simple close curve which itself is an orbit of a

periodic solution. Therefore, any such system has a periodic solution.

Example 14.7. Prove that the equation z′′ + (z2 + 2z′2 − 1)z′ + z = 0 has a nontrivial periodic solution.

Example 14.8. Prove that the following system has a nontrivial periodic solution.

x′ = x(1− 4x2 − y2)− 1

2
y(1 + x), y′ = y(1− 4x2 − y2) + 2x(1 + x).

Example 14.9. Prove that the following system has a nontrivial periodic solution.

x′ = −y + x(1− x2 − y2), y′ = x+ y(1− x2 − y2).

Can you find one such solution?

14.4 More Examples

Example 14.10. Find the orbits of each system:

(a) x′ = y(1 + x+ y), y′ = −x(1 + x+ y).

(b) x′ = x2 + cos y, y′ = −2xy.

Sketch. We generally find the orbits by solving the orbit equation, however after that we need to see if each

curve is a complete orbit or a union of orbits. For that we will find the stationary solutions. If there is no

stationary solution on that curve, then the curve is a single orbit.

Solution.(a) First, we will find all stationary solutions. y(1 + x + y) = −x(1 + x + y) = 0 yields, either

1 + x+ y = 0 or x = y = 0. So, each point of the form (a,−1− a) or the origin (0, 0) is an orbit.

The orbit equation is y(1 + x+ y)dy + x(1 + x+ y)dx = 0. If 1 + x+ y 6= 0, we obtain ydy + xdx = 0. This

exact equation yields the circle x2 + y2 = C, for some nonnegative constant C.
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We find find all C’s for which a stationary solution is on this circle. The stationary solution (0, 0) is not

on this circle if C > 0. If (a,−1 − a) is on x2 + y2 = C we obtain a2 + 1 + 2a + a2 = C. This yields

2a2 + 2a+ 1− C = 0, which yields a =
−1±

√
2C − 1

2
. Thus, all orbits can be listed as:

• The origin.

• All points of the form (a,−1− a).

• All circles given by x2 + y2 = C, where C ∈ (0, 1/2).

• The circle x2 + y2 = 1/2, excluding the point (−1/2,−1/2).

• Each of the two arcs of the circle x2 + y2 = C, bwteeen the points

(
−1 +

√
2C − 1

2
,
−1−

√
2C − 1

2
), and (

−1−
√

2C − 1

2
,
−1 +

√
2C − 1

2
),

where C ∈ (1/2,∞).

(b) First, we will find stationary solutions:x
2 + cos y = 0

−2xy = 0⇒ x = 0, or y = 0

If x = 0, then the first equation yields cos y = 0, i.e. y = πk +
π

2
for some integer k. If y = 0, the first equa-

tion yields x2+1 = 0, which has no solutions. Therefore, the stationary solutions are of the form (0, kπ+π/2).

The orbit equation is (x2 + cos y)dy + 2xydx = 0. Solving we obtain x2y + sin y = C. Substituting by the

stationary solutions we obtain sin y = C, which yields C = ±1 depending on if k is even or odd. So, the

orbits are of the form

• All points of the form (0, kπ + π/2), where k is an integer.

• Parts of the curves x2y + sin y = ±1 that lie between the stationary solutions above.

• Curves of the form x2y + sin y = C, where C 6= ±1 is a real number.

Example 14.11. Consider the systems

(1)

x
′ = y + x3

y′ = −x+ y3

(2)

x
′ = y − x3

y′ = −x− y3

(a) Prove each system has precisely one stationary solution: the origin.

(b) Prove that both systems have the same linearization near the origin.
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(c) Show that the phase plane for this linearization is center.

(d) Show 0 is an unstable solution of (1), but it is an asymptotically stable solution for (2).

Solution. (a) The stationary solutions for each system must satisfy

(1)

y + x3 = 0⇒ y = −x3

−x+ y3 = 0⇒ x = y3 = −x9 ⇒ x(1 + x8) = 0⇒ x = 0⇒ y = 0

(2)

y − x
3 = 0⇒ y = x3

−x− y3 = 0⇒ −x− x9 = 0⇒ −x(1 + x8) = 0⇒ x = 0⇒ y = 0

(b) The Jacobian matrices for the systems are

(1)

 3x2 1

−1 3y2

 , and (2)

 −3x2 1

−1 −3y2


The linearization near (0, 0) is given by

d

dt

(
x

y

)
=

 0 1

−1 0

(x
y

)
(c) The eigenvalues of the Jacobian matrix are ±i, and thus the phase plane portrait is center.

(d) For (1) we have
d

dt
(x2 + y2) = 2xx′ + 2yy′ = 2(x4 + y4) ≥ 0. Thus, x2 + y2 is increasing. Assume

x is a nonstationary solution. Hence, x(t) 6= 0 for all t. Thus,
d

dt
(x2 + y2) = 2(x4 + y4) is positive and

hence, ||x(t)|| is strictly increasing. We will show ||x(t)|| approaches infinity as t gets large, and thus x(t) is

unstable. Assume ||x(t)|| does not approach infinity. Since it is strictly increasing, it must be bounded by a

real number M . Therefore,

x(0) ≤ ||x(t)|| ≤ R, for all future t ≥ 0.

Therefore, by the Poincare-Bendixon Theorem, x must approach a periodic solution inside the annulus

||x(0)||2 ≤ x2 +y2 ≤ R2. However, since x2 +y2 is strictly increasing, there cannot be any periodic solutions.

This contradiction shows 0 is unstable.

Similarly, for (2) we have
d

dt
(x2 + y2) = 2xx′ + 2yy′ = −2(x4 + y4) ≤ 0. By an argument similar to above

x2 + y2 must be strictly decreasing and thus it must approach a periodic solution. On the other hand since

x2 + y2 is strictly decreasing no solution is periodic, except for the stationary solution 0. Thus x2 + y2 → 0

as t gets large.

Let ε be a positive real number. If ||x(0)|| < ε, then since ||x(t)|| is decreasing, for all future t ≥ 0 we have

||x(t)|| ≤ ||x(0)|| < ε. Thus, 0 is stable. Combining this with the fact that x(t) approaches 0 we conclude

that 0 is asymptotically stable.
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Example 14.12. Show that each solution to the following system that starts in the interior of the unit circle

remains there. x
′ = y + x(1− x2 − y2)

y′ = −x− y(1− x2 − y2)

Sketch. We need to show the unit circle is a union of orbits, and then use the fact that orbits do not

intersect. The unit circle can be parametrized by x = cos t, y = sin t. However this does not yield a

solution to the system. So, let’s try something more generic. Let x = cos(θ(t)), y = sin(θ(t)). Since

x2 + y2 = cos2(θ(t)) + sin2(θ(t)) = 1 we obtain the following:

− sin(θ(t))θ′(t) = sin(θ(t)), and cos(θ(t))θ′(t) = − cos(θ(t)).

This means we need θ′(t) = −1. We can use θ(t) = −t.

Solution. First, note that the forcing is C1 everywhere. In order to show the claim, we will show the unit

circle is itself an orbit, and hence since orbits do not intersect, every solution that starts in the interior of

the unit circle will stay there. x = cos t, y = − sin t satisfies the system, since

y + x(1− x2 − y2) = − sin t = x′, and − x− y(1− x2 − y2) = − cos t = y′.

Therefore, (cos t,− sin t) is a solution. However, we know (cos t,− sin t) parametrizes the unit circle. There-

fore, the unit circle is an orbit, which completes the proof.

14.5 Exercises

Exercise 14.1. In each case draw a phase-plane portrait for x′ = Ax.

(a) A =

 2 7

2 −3

 (Eigenpairs are (−5,
(−1

1

)
) and (4,

(
7
2

)
).

(b) A =

 1 −2

0 2

 (Eigenpairs are (1,
(

1
0

)
) and (2,

(−2
1

)
).)

(c) A =

 −13 4

−30 9

 (Eigenpairs are (−3,
(

2
5

)
) and (−1,

(
1
3

)
).)

(d) A =

 2 −2

1 −1

 (Eigenpairs are (1,
(

2
1

)
) and (0,

(
1
1

)
).)

(e) A =

 −4 2

−4 2

 (Eigenpairs are (−2,
(

1
1

)
) and (0,

(
1
2

)
).)
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(f) A =

 −1 −1

5 1

 (One eigenpair is (2i,
(−1+2i

5

)
).)

(g) A =

 −1 1

3 1

 (Eigenpairs are (−2,
(−1

1

)
) and (2,

(
1
3

)
).)

(h) A =

 −1 2

−1 1

 (One eigenpair is (i,
(

1−i
1

)
).)

(i) A =

 1 1

−1 −1


(j) A = 2I

(k) A = −I

(l) A = 0

Exercise 14.2. Show that each solution to the system

x′ = x2 + y sinx, y′ = −1 + xy + cos y

that starts in the first quadrant stays there.

Exercise 14.3. Consider the 2-dimensional system

x′ = f(x, y), y′ = g(x, y),

where f, g have continuous first partials on a open region R.

(a) Suppose the trajectory of an orbit on the xy-plane is a close simple curve C that lies in R. Let D be the

region enclosed by C. Using the Green’s Theorem prove that
x

D

fx + gy dA = 0.

(b) Show that if fx + gy is always positive on R, or always negative on R, except possibly at some isolated

points, then there are no nontrivial periodic solutions to this system on R.

Exercise 14.4. Consider the systems

(1)

x
′ = −y − x2

y′ = x

(2)

x
′ = −y + x3

y′ = x

(a) Prove each system has precisely one stationary solution: the origin.

(b) Prove that both systems have the same linearization near the origin.

(c) Show that the phase plane for this linearization is center.

(d) Find all orbits of (1) and show these orbits are all periodic near the origin, but none are periodic when

you get farther away from the origin.
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(e) Using Green’s Theorem show (2) does not have any nontrivial periodic solutions.

(f) Prove that 0 is a stable solution for (1).

(g) Prove that 0 is an unstable solution to (2) by showing x2(t)+y2(t)→∞ as t→∞, for any nonstationary

solution (x, y).

Hint: For the last part, prove x2 + y2 is increasing. Then use Poincare-Bendixon Theorem.

Exercise 14.5. Show that the following equation has a nontrivial periodic solution:

z′′ + [ln(z2 + 4z′2)]z′ + z = 0

Solution.

Exercise 14.6. Consider the following system:

x′ = y, y′ = −1

2
[x2 + (x4 + 4y2)1/2]x

Suppose every solution is uniquely determined once x(0), y(0) are given.

(a) Prove that x(t) = c sin(ct+d), y(t) = c2 cos(ct+d) with c, d ∈ R yields the general solution to this system.

(b) Show that 0 is a stable solution to this system, but it is not asymptotically stable.

(c) Show that every nonzero solution to this system is unstable.

Exercise 14.7. Prove that all solutions of each equation is periodic:

(a) z′′ + ez = 1

(b) z′′ + z3/(1 + z4) = 0

(c) z′′ + z + z7 = 0

(d) z′′ + az + bz3 = 0, where a, b are positive real numbers.

Exercise 14.8. Show that each solution to the following system that starts in the interior of the unit circle

remains there. x
′ = 2y − 3x(1− x2 − y2)

y′ = −2x− y(1− x2 − y2)

Exercise 14.9. Show that each solution to the following system that starts in the interior of the ellipse

x2 + 4y2 = 4 remains there. 
x′ = −2y + 3x(4− x2 − 4y2)

y′ =
x

2
+ 2y(4− x2 − 4y2)
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Exercise 14.10. Given a nonautonomous 2-dimensional system x′ = f(t,x) a solution x(t) describes a curve

in the xy-plane, where x(t) = (x(t), y(t)). By an example show that two such curves may intersect. Also,

show that it is possible that for a solution x to satisfy x(t0 + T ) = x(t0) for some t0, T > 0 without being

periodic.

Exercise 14.11. Prove that all nontrivial orbits of the following system are ellipses.

x′ = 2y, y′ = −x
2
.

Exercise 14.12. Suppose v,w ∈ R2 are nonzero vectors, and 0 ≤ λ1 < λ2 are two real numbers, and c1, c2

are two nonzero real numbers. Consider the curve C given by x(t) = c1e
λ1tv + c1e

λ2tw in the xy-plane. Let

`t be the line tangent to C at x(t). Prove that as t→∞, the slope of `t approaches the slope of lines parallel

to w.

Exercise 14.13. Prove that every nontrivial orbit of the following system is either a ray or a half parabola.

x′ = x, y′ = −2x+ 2y.

Exercise 14.14. Suppose f(x, y) and g(x, y) have continuous first partials over R2. Assume x(t) = (x(t), y(t))

is a solution to the system

x′ = f(x, y), y′ = g(x, y)

for which x(t)→ (x0, y0) as t gets large. Prove that (x0, y0) is a stationary solution.

Hint: Use proof by contradiction. Apply the Poincare-Bendixon Theorem.

Exercise 14.15. Consider the systems

(1)

x
′ = y − x(x2 + y2)

y′ = −x− y(x2 + y2)

(2)

x
′ = y + x(x2 + y2)

y′ = −x− y(x2 + y2)

(a) Find all stationary solutions of both systems.

(b) Prove that both systems have the same linearization near the origin. (Note that the origin is a stationary

solution for both systems.)

(c) Show that the phase plane for this linearization is center, and thus 0 is stable, but not asymptotically

stable solution for the linearization.

(d) Write down the orbit equation of (1) and solve. Use that to prove 0 is an asymptotically stable solution

for (1). Do the same for (2) and show 0 is an unstable solution for (2).

Exercise 14.16. Consider the system

x′ = x2, y′ = 2xy

Prove that 0 is a stable solution for the linearization of this system, but it is an unstable solution for this

system.
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Exercise 14.17. Consider the systems

(1) x′ = x3, y′ = y3, and (2) x′ = −x3, y′ = −y3

(a) Prove that 0 is a stable, but not asymptotically stable solution for the linearization of both systems near

the origin.

(b) Prove that 0 is an unstable solution for (1), while it is an asymptotically stable solution for (2).

Exercise 14.18. Prove that x = sin(t2), y = sin(t3), t ∈ R is not a solution to any autonomous system of

the form

x′ = f(x, y), y′ = g(x, y),

where f, g are C1 functions over R2.

Exercise 14.19. Prove that x = cos(t2), y = sin(t2), t ∈ R is not a solution to any autonomous system of

the form

x′ = f(x, y), y′ = g(x, y),

where f, g are C1 functions over R2.

Exercise 14.20. Find one nontrivial periodic solution to the system in Example 14.8.

Exercise 14.21. Suppose f(x, y), g(x, y) are C1. Prove that no nontrivial periodic solution to the system

x′ = f(x, y), y′ = g(x, y),

is asymptotically stable.

14.6 Challenge Problems

Exercise 14.22. Suppose A(t) = (aij(t))n×n is a matrix whose entries aij(t) are all continuous over R.

Suppose

∫ ∞
0

|aij(t)| dt converges for all i, j and let B(t) =

∫ t

0

A(s) ds. Suppose B(t) and A(t) commute.

Prove that 0 is a stable solution of
dx

dt
= A(t)x.

14.7 Summary

• To prove all solutions of a 2-dimensional system are periodic:

– Find all stationary solutions of the system.

– Write and solve the orbit equation.

– Prove that the orbit equation gives a closed curve.

– Show stationary solutions only lie on their own closed curves obtained above.
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• To draw the phase plane portrait of a 2-dimensional linear system x′ = Ax with A =

 A11 A12

A21 A22

:

– Find eigenpairs of A.

– For real eigenpairs draw the eigensolution orbits ceλtv.

– For each eigensolution orbit indicate with arrows the behavior of the solution as t increases.

– Sketch sample orbits and indicate with arrows the behavior of the solution as t increases.

– When we have nonreal eigenvalues a ± bi, orbits will be spirals (when a 6= 0) or ellipses (when

a = 0).

– Indicate the direction of spirals and their orientations. If a < 0 then the arrows should be inwards,

towards the origin, and if a > 0 the arrows should point outwards. To determine the orientation

of spiral pick a sample point (say (1, 0) or (0, 1)) and see if x or y increases or decreases. Put these

two pieces of information together to determine if the spiral is clockwise or counter-clockwise, and

then specify how the solution behaves with arrows.

• Every phase plane portrait is one of the following:

– Distinct real e-values:

∗ Both positive: Nodal source

∗ Both negative: Nodal sink

∗ One positive, one negative: Saddle

∗ One zero, one positive: Linear source

∗ One zero, one negative: Linear sink

– Nonreal e-values a± ib

∗ a 6= 0: Spiral

∗ a = 0: Center

∗ a < 0: Sink

∗ a > 0: Source

∗ A21 < 0: Clockwise.

– One real e-value and A = λI:

∗ λ = 0: Zero.

∗ λ > 0: Radial source.

∗ λ < 0: Radial sink.

– One real e-value and A 6= λI:

∗ λ 6= 0: Twist.

∗ λ = 0: Parallel Shear.
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• To draw phase plane portraits for nonlinear systems:

– Find all stationary solutions of the system. You could also find semistationary solutions for a

more accurate diagram, but that is not absolutely necessary.

– Find the Jacobian matrix.

– Evaluate the Jacobian matrix at every stationary solution.

– Draw the phase plane portrait near each stationary solution.

– This gives an approximation for the phase plane port near the stationary solution, if either at

least one eigenvalue is positive or all real parts of eigenvalues are negative then this is a good

approximation for the phase plane portrait.

• To prove a system or an equation has a periodic solution use the Poincare-Bendixon Theorem:

– Write down the equation as a first order system if it is not already in that form.

– Find all stationary solutions of the system. (You could skip this step if you can show later that

stationary solutions are not inside the region R.)

– Find a closed and bounded region R for which solutions that start in that region stay in that

region.

– Most of the times the region R is a region between two curves C1 and C2.

– Make sure f(x, y) and g(x, y) have continuous partial derivatives on an open set containing R.
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