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Notations

• ∈, belongs to.

• ∀, for all.

• ∃, there exists or for some.

• Df , the domain of function f .

• Im f or Rf , the image of function f .

• N, the set of nonnegative integers.

• Z+, the set of positive integers.

• Q, the set of rational numbers.

• R, the set of real numbers.

• A ⊆ B, set A is a subset of set B.

• A ⫋ B, set A is a proper subset of set B.

• A ∪B, the union of sets A and B.

• A ∩B, the intersection of sets A and B.

•
n⋃

i=1

Ai, the union of sets A1, A2, . . . , An.

•
n⋂

i=1

Ai, the intersection of sets A1, A2, . . . , An.

• A1 ×A2 × · · · ×An, the Cartesian product of sets A1, A2, . . . , An.

• ∅, the empty set.

• f−1(T ), the inverse image (or pre-image) of set T under function f .

• f(S), the image of set S under function f.

• span S, the subspace spanned by set S.

• dimV , the dimension of vector space V .

• ⟨v,w⟩, the inner product of vectors v and w.

• v ·w, the standard inner product of vectors v,w ∈ Rn.

• ||v||, the norm of vector v.

• detA, the determinant of a square matrix A.
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• Duf(x0), the directional derivative of f at x0 with respect to the nonzero vector u.

• fx, D1f,
∂f

∂x
, the partial derivative of f with respect to x.

• u× v, the cross product of u and v.

• ∇f , the gradient of a scalar function f .

• curl F, the curl of a vector field F.

• div F, the divergence of a vector field F.
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Chapter 1

Week 1

1.1 Sets

A set is a well-defined collection of unordered elements. Each set is usually defined either by listing all of

its elements or by a property as below:

S = {s1, s2, . . . , sn} or S = {s | s satisfies property P}

Note that the order of elements in a set does not matter. So, {1, 2} and {2, 1} are the same sets.

Notation: Instead of “x is an element of the set A” or “x belongs to the set A”, we write “x ∈ A”.

Definition 1.1. Let A and B be two sets for which the following statement is true:

“If x ∈ A, then x ∈ B.”

Then, we say A is a subset of B, in which case we write A ⊆ B. We say a subset A of a set B is proper

if A ̸= B, in which case we write A ⫋ B. The union of A and B, denoted by A ∪ B, is the set consisting

of all elements x that are in A or B (or both.) The intersection of A and B, denoted by A ∩B, is the set

consisting of all elements that are in both A and B. In other words

A ∪B = {x | x ∈ A, or x ∈ B}, and A ∩B = {x | x ∈ A, and x ∈ B}.

The union and intersection of n sets is defined similarly:

n⋃
i=1

Ai = {x | x ∈ Ai, for some i}, and

n⋂
i=1

Ai = {x | x ∈ Ai, for all i}.

Similarly the union and intersection of infinitely many sets A1, A2, . . . are defined and denoted by
∞⋃

n=1
An

and
∞⋂

n=1
An.

The empty set or the null set is the set with no elements. It is denoted by ∅ or {}.

11
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Remark. The word “or” in mathematics is not exclusive. In other words, “x ∈ A or x ∈ B” means, “x is

an element of A or an element of B or both.”

Definition 1.2. We say two sets A and B are equal if and only if A ⊆ B and B ⊆ A, in which case we

write A = B.

Example 1.1. Prove that for every three sets A,B, and C we have (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).

Definition 1.3. An ordered pair (a, b) of objects a and b is two objects a and b with a specified order.

Two ordered pairs (a, b) and (c, d) are the same if and only if a = c and b = d. An n-tuple (a1, a2, . . . , an)

is n objects a1, a2, . . . , an with a specified order. Two n-tuples (a1, a2, . . . , an) and (b1, b2, . . . , bn) are equal

if and only if ai = bi for i = 1, . . . , n.

Definition 1.4. The Cartesian product of n sets A1, A2, . . . , An, denoted by A1 × A2 × · · · × An, is the

set of all n-tuples (a1, a2, . . . , an) for which ai ∈ Ai for all i. The Cartesian product of n copies of a set A is

denoted by An.

Example 1.2. Every point on the plane can be represented by an element of the set R2 = {(x, y) | x, y ∈ R}.

Every point on the n-dimensional space can be represented by an element of the set

Rn = {(x1, . . . , xn) | x1, . . . , xn ∈ R}.

Definition 1.5. We say two sets A and B are disjoint if A∩B = ∅. We say sets A1, A2, . . . , An are pairwise

disjoint if for every i ̸= j, Ai and Aj are disjoint.

To understand sets we often picture them as ovals or circles. The following shows the Venn diagram of

(A ∪B) ∩ C.

A

B C

Definition 1.6. For two sets A,B, the difference A−B consists of all elements of A that are not in B.

A−B = {x ∈ A | x ̸∈ B}.
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When dealing with sets, we often assume all of our sets are subsets of a given larger set U . This set is called a

universal set. For example, in number theory, the universal set is Z. In calculus, we deal with real numbers

and thus our universal set is R. Assume A is a subset of the universal set U , the complement of A in U is

the set consisting of all elements of X that are not in A. The complement of A is denoted by Ac.

Theorem 1.1 (De Morgan’s Laws). Given n subsets A1, . . . , An of a set U we have:

(a)

(
n⋂

j=1

Aj

)c

=
n⋃

j=1

Ac
j .

(b)

(
n⋃

j=1

Aj

)c

=
n⋂

j=1

Ac
j .

Remark. Sometimes sets are labeled by elements of another set. For example, instead of
∞⋃

n=0
An we may write⋃

n∈N
An and instead of

∞⋃
n=−∞

An we may write
⋃
n∈Z

An. This is especially useful when there are too many sets

to label them using only integers. For example, in the union
⋃
r∈R

Ar, there is a set Ar corresponding to every

real number r.

1.2 Functions

Definition 1.7. Given two nonempty sets A and B a function or a mapping f : A → B is a rule that

assigns to every element a ∈ A an element f(a) ∈ B. The set A is called the domain of f and is denoted by

Df . The set B is called the co-domain of f . The range or image of f , denoted by Rf or Im f , is the set

Im f = {f(a) | a ∈ A}.

Two functions f and g are called equal if they have the same domain, the same co-domain, and f(x) = g(x)

for all x in their common domain.

f is called surjective or onto if for every b ∈ B there is a ∈ A for which f(a) = b.

f is called injective or one-to-one if whenever f(a1) = f(a2) we also have a1 = a2.

f is called bijective if it is injective and surjective.

The composition f ◦ g of two functions f, g with Rg ⊆ Df , is a function from Dg to the co-domain of f

given by f ◦ g(x) = f(g(x)), for all x ∈ Dg.

The function idA : A → A defined by idA(a) = a, for all a ∈ A is called the identity function of A.

A function f : A → B is called invertible if and only if there is a function g : B → A for which f ◦ g = idB

and g ◦ f = idA. The function g is called the inverse of f and is denoted by f−1.

Example 1.3 (Projection). The function π1 : A × B → A defined by π1(a, b) = a is called the projection

onto the first component. Similarly, the function πi : A1 × · · · × An → Ai defined by πi(a1, . . . , an) = ai is

called the projection onto the i-th component.

Definition 1.8. Given a function f : A → B, and a subset S of A, the image of S under f is the set

f(S) = {f(s) | s ∈ S}. If T is a subset of B, then the pre-image or inverse image of T under f is the set

f−1(T ) = {a ∈ A | f(a) ∈ T}.
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Note that the pre-image and image are both sets.

Example 1.4. Let f : A× B → B be the projection onto the second component. For every b ∈ B find the

pre-image of {b} under f .

Example 1.5. Let f : R2 → R be a mapping defined by f(x, y) = 2x+3y. For every real number b, evaluate

and describe f−1({b}). How do these pre-images change when we change b?

Theorem 1.2 (Properties of Pre-image). Suppose f : A → B is a function, S ⊆ A, and Ti ⊆ B for

i = 1, . . . , n. Then

(a) S ⊆ f−1(f(S)), and f(f−1(Ti)) ⊆ Ti.

(b) f−1(
n⋃

i=1

Ti) =
n⋃

i=1

f−1(Ti).

(c) f−1(
n⋂

i=1

Ti) =
n⋂

i=1

f−1(Ti).

Proof. (a) Suppose s ∈ S. By definition of image, f(s) ∈ f(S). Therefore, by definition of pre-image

s ∈ f−1(f(S)). This completes the proof of S ⊆ f−1(f(S)).

Suppose x ∈ f(f−1(Ti)). By definition x = f(y), for some y ∈ f−1(Ti). Therefore, f(y) ∈ Ti, which means

x ∈ Ti. This means f(f−1(Ti)) ⊆ Ti.

Parts (b) and (c) are left as exercises.

1.3 Proofs

In writing proofs you should note the following:

• You cannot prove a universal statement (statements involving for every or for all) by examples. For

example if you are asked to prove “The sum of every two odd integers is even.” your proof may not be

“3 is odd, 5 is odd, 3+5=8 is even. Therefore, the sum of every two odd integers is even.”

On the other hand, for existential statements (when a statement is asking you to show something

exists), giving an example and showing that the example satisfies all the required conditions is enough.

• Do not use the same variable for two different things.

• You may not assume anything but what is given in the assumptions.

• All steps must be justified and the justifications must all be clearly stated.

• You may only use known facts. These are typically things that have been previously proven as theorems

or are facts stated in definitions.

• To prove a statement of the form “p if and only if q” we will need to prove both “If p, then q” and “If

q, then p”.

To prove a conditional statement “ If p, then q,” there are three main methods of proof. We will look at each

one by examples.
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1.3.1 Direct Proof

In this method we start from the assumption and by taking logical steps we end up with the conclusion.

Example 1.6. Prove that the function f : R → R defined by f(x) = x3 + 2x is one-to-one.

Solution. By definition of one-to-one, we need to prove if f(x) = f(y), then x = y.

Suppose f(x) = f(y). Then x3 +2x = y3 +2y. Therefore, x3 − y3 +2(x− y) = 0, which implies (x− y)(x2 +

xy + y2 + 2) = 0. This means either x = y or x2 + xy + y2 + 2 = 0. If the second equality holds, by the

quadratic formula we obtain x =
−y ±

√
y2 − 4(y2 + 2)

2
. The discriminant is −3y2 − 8 which is negative.

Therefore, this equality is impossible. This means x = y, as desired.

1.3.2 Proof by Contradiction

In this method, we assume the conclusion is false while the assumption is true. After taking logical steps

we obtain a contradiction, or a false statement. Keep in mind that you must start your proof by “ On the

contrary assume...” or “We will use proof by contradiction.”

Example 1.7. Prove that there are infinitely many primes.

Solution. On the contrary, suppose there are only a finite number of primes, and let p1, p2, . . . , pn be the list

of all primes. Since the integer d = p1 · · · pn + 1 is more than one, d has a prime factor. Since p1, p2, . . . , pn

is the list of all primes, one of the pi’s must divide d. On the other hand pi divides p1p2 · · · pn. Therefore,

pi must divide d − p1p2 · · · pn = 1. This is a contradiction. Therefore, the initial assumption must be false,

and thus there must exist infinitely many primes.

1.3.3 Proof by Induction

To prove a statement P (n) (i.e. a statement that depends on a positive integer n) we will:

• Prove P (1) (basis step); and

• Assume P (n) holds for some n ≥ 1, and then prove P (n+ 1) (inductive step).

If you need to use P (n − 1) in your proof of P (n + 1), then the basis step must involve two consecutive

integers, e.g. P (1) and P (2).

Often times we use what is called strong induction which involves assuming P (1), . . . , P (n) and then prov-

ing P (n+ 1) in addition to proving the basis step.
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When employing the method of mathematical induction keep in mind to always start your proof by “We will

prove the statement by induction on the variable”. Replace “the statement” and “the variable” accordingly.

Also, clearly separate the basis step and the inductive step.

Example 1.8. Prove that the sum of the first n positive odd integers is n2.

1.4 Rn as a Vector Space

As we saw earlier, elements of Rn are n-tuples of the form (x1, x2, . . . , xn), where xj ’s are real numbers. Each

one of these elements is called a vector and these vectors can be added componentwise as follows:

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn).

Each vector can also be multiplied by a real number c (also called a scalar) as follows:

c(x1, x2, . . . , xn) = (cx1, cx2, . . . , cxn)

This vector addition and scalar multiplication satisfy the following properties.

(I) (Closure) For every two vectors x,y ∈ Rn, and every scalar c ∈ R, both x+ y and cx are in Rn.

(II) (Associativity) For every x,y, z ∈ Rn, and every a, b ∈ R, we have x + (y + z) = (x + y) + z, and

a(bx) = (ab)x.

(III) (Commutativity) For every x,y ∈ Rn, we have x+ y = y + x.

(IV) (Additive Identity) For every x ∈ Rn we have x+(0, 0, . . . , 0) = x. (This element (0, 0, . . . , 0) is called

the zero vector and is denoted by 0.)

(V) (Additive Inverse) For every x ∈ Rn, there is an element y ∈ Rn for which x+ y = 0. (This element

y is called the additive inverse of x and is denoted by −x. It is given by −(x1, x2, . . . , xn) =

(−x1,−x2, . . . ,−xn).)

(VI) (Distributivity) For every a, b ∈ R and x,y ∈ Rn, we have (a+ b)x = ax+ bx, and a(x+y) = ax+ay.

(VII) (Multiplicative Identity) For every x ∈ Rn we have 1x = x.

The seven properties I-VII listed above are called vector space properties of Rn. This is often phrased

as “Rn is a vector space.” Note that sometimes we refer to elements of Rn as points. This is only for

conceptualizing these objects. The math does not change. When elements of Rn are seen as points, the zero

vector is referred to as the origin.

Geometrically, elements of R2 can be represented by points on a plane. Elements of R3 can be represented

by points in space. To do that, we need three axes, x-, y-, and z-axes. These three axes must satisfy the

right-hand rule. The coordinates of each point can be found by dropping perpendiculars to the axes.
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The set of all points with positive coordinates, is called the first octant.

Theorem 1.3. The length of a vector u = (x, y, z) ∈ R3 is given by ||u|| =
√

x2 + y2 + z2.

1.5 Warm-ups

Example 1.9. How many elements does the set {2, 1, 3, 2} have? How about the set {3, 2, 1}? How are

these two sets related?

Solution. Since repetition and order does not matter in a set these two sets are the same sets:

{2, 1, 3, 2} = {3, 2, 1}.

So, these sets both have three elements.

Example 1.10. Let E be the set of all even integers and O be the set of all odd integers. Describe E ∪ O

and E ∩O.

Solution. E ∪ O is the set of all integers that are odd or even. Since every integer is either odd or even,

E ∪O = Z.

By definition of intersection, E ∩O is the set of all integers that are both even and odd. Since no integer is

both even and odd, E ∩O = ∅.

Example 1.11. Consider the function f : {1, 2, 3} → {1, 2, 3, 4} defined by f(1) = 2, f(2) = 2, and f(3) = 4.

Find the domain of f , the co-domain of f , the image of f , f({1, 2}), and f−1({2, 3}).
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Solution. The domain of f is {1, 2, 3}. The co-domain of f is {1, 2, 3, 4}. The image of f is {2, 4}.

f({1, 2}) = {f(1), f(2)} = {2, 2} = {2},

and

f−1({2, 3}) = {x ∈ {1, 2, 3} | f(x) ∈ {2, 3}}.

Thus, f−1({2, 3}) = {1, 2}.

1.6 More Examples

Example 1.12. Given sets A = {1, 2}, B = {0, 1,−1}, write each of the following sets by listing all of its

elements:

(a) A ∪B

(b) A ∩B

(c) A×B

Solution. (a) A ∪B consists of all elements that are in A or B. Thus, A ∪B = {1, 2, 0,−1}.

(b) A ∩B consists of all elements that are in both A and B. Thus, A ∩B = {1}.

(c) A×B consists of all elements of the form (a, b), where a ∈ A and b ∈ B. Thus,

A×B = {(1, 0), (1, 1), (1,−1), (2, 0), (2, 1), (2,−1)}

Example 1.13. Prove that for all sets A,B1, B2, . . . , we have A
⋂
(

∞⋃
n=1

Bn) =
∞⋃

n=1
(A ∩Bn).

Solution. Suppose x ∈ A
⋂
(

∞⋃
n=1

Bn). By definition of intersection, x ∈ A and x ∈
∞⋃

n=1
Bn. By definition of

union, x ∈ Bn for some n. This means x ∈ A ∩Bn and thus x ∈
∞⋃

n=1
(A ∩Bn). Therefore,

A
⋂

(

∞⋃
n=1

Bn) ⊆
∞⋃

n=1

(A ∩Bn). (∗)

Suppose x ∈
∞⋃

n=1
(A∩Bn). By definition of union, x ∈ A∩Bn for some n. Thus, by definition of intersection,

x ∈ A and x ∈ Bn. Therefore, x ∈ A and x ∈
∞⋃

n=1
Bn. This implies x ∈ A

⋂
(

∞⋃
n=1

Bn). Therefore,

∞⋃
n=1

(A ∩Bn) ⊆ A
⋂

(

∞⋃
n=1

Bn). (∗∗)

Combining (∗) and (∗∗) we obtain the result.
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Example 1.14. Describe each set as a subset of R2.

(a) [0, 1]× {1}.

(b) [1, 2]× [0, 1].

Solution. (a) This is the set of all (x, y), where x ∈ [0, 1] and y = 1. This is a horizontal segment connecting

(0, 1) and (1, 1).

(b) This set consists of all points (x, y) for which x ∈ [1, 2] and y ∈ [0, 1]. This is a square with vertices

(1, 0), (2, 0), (2, 1), and (1, 1).

Example 1.15. Let C be the unit circle x2 + y2 = 1 in the xy-plane. Geometrically describe the set C ×R.

Solution. C × R is the set of all (x, y, z) for which x2 + y2 = 1. This means C × R is the union of the

translation of the unit circle C in the direction of the z-axis. This is a cylinder.

Example 1.16. Suppose X and Y are finite sets of sizes m and n respectively. Let Y X be the set of all

function f : X → Y. What is the size of Y X? (This should tell you why we use the notation “Y X”.)

Solution. Let f : X → Y be a function. For each x ∈ X, f(x) could be any element of Y . Thus, there are

n possible values for f(x). Since this is true for each element of X, there are nm functions f : X → Y .

Example 1.17. Define the Fibonacci sequence Fn by F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn for all n ≥ 0.

Prove that Fn < 2n for all n ≥ 0.

Sketch. The fact that each term of the sequence depends on the previous terms reminds us of the method of

Mathematical Induction. So, we will employ that method. However since each term depends on the previous

two terms, we will have to start with proving the given statement for two values of n.

Solution. We will prove Fn < 2n by induction on n.

Basis step: F0 = 0 < 20 = 1, and F1 = 1 < 21.

Inductive step: Suppose for some n ≥ 1, Fk < 2k for k = 0, . . . , n. By assumption Fn+1 = Fn + Fn−1 <

2n + 2n−1 = 2n−1(2 + 1) < 2n+1, as desired. This completes the solution.

Example 1.18. Prove that if a real number x satisfies |x|+ x > 0, then x is positive.

Solution. On the contrary assume x is not positive. Therefore, we have two cases:
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Case I: x = 0. This means |x|+ x = 0, which is a contradiction.

Case II: x < 0. This implies |x| = −x and thus, |x|+ x = 0, which is a contradiction.

Therefore x must be positive.

Example 1.19. Let f : A → B be a function, S ⊆ A, and T ⊆ B. Prove that:

(a) If f is one-to-one, then S = f−1(f(S)).

(b) If f is onto, then T = f−1(f(T )).

Solution. (a) By Theorem 1.2, S ⊆ f−1(f(S)). It is enough to show f−1(f(S)) ⊆ S. Suppose x ∈

f−1(f(S)). By definition of pre-image, f(x) ∈ f(S). By definition of image, f(x) = f(s) for some s ∈ S.

Since f is one-to-one, x = s and thus x ∈ S. This shows f−1(f(S)) ⊆ S, as desired.

(b) By Theorem 1.2, f(f−1(T )) ⊆ T . Thus, it is enough to prove T ⊆ f(f−1(T )). Let x ∈ T . Since f

is onto, there is a ∈ A such that f(a) = x. Thus, by definition of pre-image a ∈ f−1(T ). Therefore, by

definition of image f(a) ∈ f(f−1(T )). Since f(a) = x, we obtain x ∈ f(f−1(T )). Therefore, T ⊆ f(f−1(T )),

as desired.

Example 1.20. Let f : R → R be defined as f(x) = x2. Find each of the following:

(a) f([0, 1)).

(b) f−1([−1, 0)).

(c) f−1((0, 2)).

Solution. (a) Note that if x ∈ [0, 1), then 0 ≤ x2 < 1 and thus f([0, 1)) ⊆ [0, 1). Furthermore, if y ∈ [0, 1),

then f(
√
y) = y. Therefore, [0, 1) ⊆ f([0, 1)). This shows f([0, 1)) = [0, 1).

(b) By definition of pre-image, x ∈ f−1([−1, 0)) if and only if f(x) ∈ [−1, 0) if and only if −1 ≤ x2 < 0,

which is impossible. Therefore, f−1([−1, 0)) = ∅.

(c) By definition of pre-image, x ∈ f−1(0, 2) if and only if f(x) ∈ (0, 2), i.e. 0 < x2 < 2. This holds if and

only if 0 < x <
√
2 or −

√
2 < x < 0. Therefore, f−1((0, 2)) = (0,

√
2) ∪ (−

√
2, 0).

Example 1.21. Let f : A → B be a function. Find each of the following:

(a) f(∅).

(b) f−1(∅).
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(c) f−1(B).

Solution. (a) f(∅) consists of all elements of the form f(x), where x ∈ ∅, but since ∅ contains no elements,

f(∅) = ∅.

b. f−1(∅) consists of all elements a ∈ A for which f(a) ∈ ∅. However since ∅ contains no elements f−1(∅) = ∅.

c. f−1(B) consists of all elements a ∈ A for which f(a) ∈ B, but since B is the co-domain, f(a) is always in

B, and thus f−1(B) = A.

Example 1.22. Let f : A → B be a function, and S1, . . . , Sn be subsets of A. Prove that

(a) f

(
n⋃

i=1

Si

)
=

n⋃
i=1

f (Si).

(b) f

(
n⋂

i=1

Si

)
⊆

n⋂
i=1

f (Si). By an example show that the equality does not always hold.

Solution. (a) Let x ∈ f

(
n⋃

i=1

Si

)
. Then, x = f(s) for some s ∈

n⋃
i=1

Si. By definition of union, s ∈ Sj for

some j. Therefore, x = f(s) ∈ f(Sj), which implies x ∈
n⋃

i=1

f(Si). The other inclusion is similar and is left

as an exercise.

(b) Let x ∈ f

(
n⋂

i=1

Si

)
. By definition of image, x = f(s) for some s ∈

n⋂
i=1

Si. By definition of intersection,

s ∈ Si for all i, and thus x = f(s) ∈ f(Si) for all i. Therefore, x ∈
n⋂

i=1

f (Si) , as desired.

Consider f : {1, 2} → {1} given by f(1) = f(2) = 1. Let S1 = {1} and S2 = {2}. Then, by definition,

S1∩S2 = ∅ and thus f(S1∩S2) = ∅. On the other hand f(S1) = f(S2) = {1} and thus f(S1)∩f(S2) ̸= ∅.

Example 1.23. Determine if each function below is one-to-one, onto, both or neither.

(a) f : R2 → R2 given by f(x, y) = (x+ 2y, x− y).

(b) f : Z2 → Q+ given by f(m,n) = 2m · 3n.

Solution. (a) Suppose f(x, y) = f(a, b). This impliesx+ 2y = a+ 2b

x− y = a− b

Subtracting the two equations above we obtain 3y = 3b and thus y = b. Substituting into the first equation

we obtain x = a. Therefore, f is one-to-one.
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Given (a, b) ∈ R2, we will need see if there is (x, y) ∈ R2 for which f(x, y) = (a, b). Solving the systemx+ 2y = a

x− y = b

we obtain x = (a+ 2b)/3 and y = (a− b)/3. Therefore, this function is also onto.

(b) Suppose f(m,n) = f(r, s) for some integers m,n, r, s. Therefore, 2m · 3n = 2r · 3s. Without loss of

generality assume m ≥ r. We see that 2m−r = 3s−n. If the exponent m − r is positive, then the left side

is even, while the right side is odd. This contradiction showsm = r and thus n = s. Therefore, f is one-to-one.

This function is not onto. For example f(m,n) = 5 has no solutions, because 2m · 3n = 5 is impossible by

the uniqueness of prime factorization.

Example 1.24. For a function f : A → B prove that the equality f(S1 ∩ S2) = f(S1) ∩ f(S2) holds for all

subsets S1, S2 of A if and only if f is one-to-one.

Solution. First, note that by Example 1.22, we know

f(S1 ∩ S2) ⊆ f(S1) ∩ f(S2).

Suppose f is one-to-one. Let x ∈ f(S1)∩ f(S2). By definition, x = f(s1) = f(s2) for some s1 ∈ S1, and some

s2 ∈ S2. Since f is one-to-one, we have s1 = s2. Therefore, s1 ∈ S1 ∩ S2. This means x ∈ f(S1 ∩ S2). This

shows f(S1) ∩ f(S2) = f(S1 ∩ S2).

Now, assume f(S1 ∩ S2) = f(S1) ∩ f(S2) for every two subsets S1, S2 of A. Suppose f(a) = f(b), and let

S1 = {a}, S2 = {b}. We know f(S1) = {f(a)} and f(S2) = {f(b)}. Therefore, f(S1) ∩ f(S2) = {f(a)}. If

a ̸= b, then S1 ∩ S2 = ∅, which means f(S1 ∩ S2) = ∅ ≠ {f(a)}. Therefore, S1 ∩ S2 is not empty, and thus

a = b. This shows f is one-to-one.

Example 1.25. Suppose c is a real number and v is a vector in Rn. Prove that if cv = 0, then c = 0 or

v = 0.

Solution. Let v = (x1, . . . , xn). On the contrary, assume neither c is zero, nor v is the zero vector. Therefore,

xi is not zero for some i. Since c ̸= 0, we have cxi ̸= 0. Thus,

cv = (cx1, . . . , cxi, . . . , cxn) ̸= 0.

This contradiction shows c = 0 or v = 0.

Further Reading: Click here for further reading on Sets, Maps, and Vector Spaces.

https://drive.google.com/file/d/1qIvjksdaoqUSnkdkEZ1uC7TRa-Uui4q4/view
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1.7 Exercises

Exercise 1.1. Given the following sets A,B,C list all elements of (A×B)∩C, A∪ (B ∩C) and A×B×C.

A = {1,−1}, B = {1, 0}, C = {(1, 1), (1, 0)}.

Exercise 1.2. For n sets A1, A2, . . . , An, prove that A1 ×A2 × · · · ×An = ∅ if and only if Ai = ∅ for some

i.

Hint: Proof by contradiction might be useful.

Exercise 1.3. Suppose for two nonempty sets A,B we know A×B = B ×A. Prove that A = B.

Exercise 1.4. Determine which of the following statements are true.

(a) (Z× R) ∪ (R× Z) = R× R.

(b) (Z× R) ∩ (R× Z) = Z× Z.

(c) (R− Z)× Z = (R× Z)− (Z× Z)

Exercise 1.5. Prove that⋃
x∈[0,1]

([x, 1]× [0, x2]) = {(x, y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ x2}

Exercise 1.6. Prove that ⋂
x∈[0,1]

([x, 1]× [0, x2]) = {(1, 0)}

Exercise 1.7. Let X be a nonempty set with n elements. How many one-to-one functions f : X → X are

there?

Exercise 1.8. The graph of a function f : X → Y is defined by Γf = {(x, f(x)) | x ∈ X}. Prove that two

functions f, g : X → Y are equal if and only if Γf = Γg.

Exercise 1.9. Suppose f, g are two functions for which Rg ⊆ Df . Prove or disprove each statement.

(a) If f, g are injective, then so is f ◦ g.

(b) If f, g are surjective, then so is f ◦ g.

Exercise 1.10. Determine if each function is injective, surjective or neither.

(a) f : R2 → R2 given by f(x, y) = (x+ y, xy).

(b) f : Rn → R given by f(x1, . . . , xn) = x1 + · · ·+ xn.

(c) f : R → R given by f(x) = x3 − 5x.

Exercise 1.11. Prove parts (b) and (c) of the Theorem 1.2: Suppose f : A → B is a function, and Ti ⊆ B

for i = 1, . . . , n. Then
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(a) f−1(
n⋃

i=1

Ti) =
n⋃

i=1

f−1(Ti).

(b) f−1(
n⋂

i=1

Ti) =
n⋂

i=1

f−1(Ti).

Exercise 1.12. Let E,D be the set of all even and odd integers, respectively. Find a bijection f : N → E

and another bijection g : D → N.

1.8 Challenge Problems

Challenge problems are for those who want to get more out of this class.

Exercise 1.13. Let r ≥ 2 be a fixed positive integer, and let F be an infinite family of distinct sets, each of

size r, no two of which are disjoint. Prove that there exists a set of size r − 1 that intersects each set in F .

Exercise 1.14. Let A be a nonempty set. Suppose f : P(A) → P(A) is a bijection for which for every

subsets X and Y of A:

If X ⊆ Y, then f(X) ⊆ f(Y ).

(a) If A is finite, show that if f(X) ⊆ f(Y ), then X ⊆ Y.

(b) Show part (a) does not necessarily hold when A is infinite.

1.9 Summary

• To prove A ⊆ B, start with x ∈ A and prove x ∈ B.

• To prove two sets A and B are equal we need to show if x ∈ A, then x ∈ B and vice-versa.

• For a function f : A → B, a subset S of A, and a subset T of B, we have the following:

x ∈ f(S) iff x = f(s) for some s ∈ S, and y ∈ f−1(T ) iff f(y) ∈ T.

• f−1(
n⋃

i=1

Ti) =
n⋃

i=1

f−1(Ti) and f−1(
n⋂

i=1

Ti) =
n⋂

i=1

f−1(Ti).

• f(f−1(T )) ⊆ T and S ⊆ f−1(f(S)).

• To prove a statement by contradiction, assume the conclusion is false and after taking logical steps

obtain a contradiction.

• To prove a statement depending on a positive integer n, first prove the statement for n = 1 (basis step),

then prove that if the statement is true for n it must be true for n+ 1 (inductive step).
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2.1 Subspaces

Definition 2.1. A subset W of Rn is called a subspace of Rn if W along with the same operations of Rn

itself satisfies all properties of a vector space, i.e. I-VII listed above.

Theorem 2.1 (Subspace Criterion). A subset W of Rn is a subspace if and only if it satisfies all of the

following:

• W contains the zero vector, and

• for all x,y ∈ W and c ∈ R, we have x + y ∈ W and cx ∈ W . [We say W is closed under vector

addition and scalar multiplication.]

Example 2.1. Here are some examples of subspaces:

(a) The set of all points (x, y) on a given line y = mx is a subspace of R2.

(b) The sets {0} and Rn are subspaces of Rn.

Example 2.2. If W and U are subspaces of Rn, then so is W ∩ U .

Solution. We will use the subspace criterion Theorem (i.e. Theorem 2.1). First note that 0 belongs to both

U and W and thus it is in U ∩W.

Next, suppose x,y ∈ U ∩W and c ∈ R. By definition of intersection, x, and y are in both U and W . Since U

and W are both subspaces, by Theorem 2.1, we have x+y ∈ U , x+y ∈ W , cx ∈ U and cx ∈ W . Therefore,

by definition of intersection, x+ y ∈ U ∩W , and cx ∈ U ∩W , as desired.

25
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2.2 Linear Dependence, Spanning, and Basis

Definition 2.2. Let S = {v1, . . . ,vm} be a subset of the vector space Rn, and w be a vector in Rn. We

say w is a linear combination of elements of S if w = c1v1 + · · · + cmvm for some c1, . . . , cm ∈ R. By

definition, if S is the empty set, then the only linear combination of elements of S is 0, the zero vector.

We note that every vector v = (x, y, z) in R3 can be written as:

(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).

The vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are in some way “independent” of one another. The next definition

allows us to formalize this idea of “independence”.

Definition 2.3. We say vectors v1,v2, . . . ,vm ∈ Rn are linearly dependent if one of these vectors can be

written as a linear combination of the others. Otherwise, we say v1,v2, . . . ,vm are linearly independent.

Example 2.3. Check if each of the following vectors are linearly dependent or linearly independent.

(a) (1, 0, 0), (0, 1, 0), and (0, 0, 1).

(b) (1, 2, 4), (3, 1, 2), and (4, 3, 6).

Theorem 2.2. The vectors v1, . . . ,vm ∈ Rn are linearly dependent if and only if there are real numbers

c1, . . . , cm, not all zero, such that c1v1 + c2v2 + · · ·+ cmvm = 0.

In other words, vectors v1,v2, . . . ,vm are linearly independent if and only if the following statement is true

If c1v1 + c2v2 + · · ·+ cmvm = 0 for some scalars c1, c2, . . . , cm, then c1 = c2 = · · · = cm = 0.

Definition 2.4. Given a subspace V of Rn, we say a subset S of V is spanning (or generating) if every

v ∈ V is a linear combination of some vectors in S.

Definition 2.5. We say a subset B of a subspace V of Rn is a basis if B is both linearly independent and

spanning.



2.3. SOME EXAMPLES OF SUBSPACES 27

Example 2.4. Prove that (1, 0, 0), (0, 1, 0), (0, 0, 1) form a basis for R3.

Theorem 2.3. Let V be a subspace of Rn. Vectors v1,v2, . . . ,vm ∈ V form a basis for V if and only if

every vector w ∈ V can be uniquely written as w = c1v1 + c2v2 + · · ·+ cmvm.

2.3 Some Examples of Subspaces

Example 2.5 (Span of vectors). Let A be a set of vectors in Rn, and let span A be the set consisting of all

vectors that are linear combinations of some vectors of A. Then span A is a subspace of Rn.

Definition 2.6. Let A be an m×n matrix. The row space of A denoted by Row(A) is the subspace of Rn

spanned by the rows of A, and the column space of A denoted by Col(A) is the subspace of Rm spanned

by the columns of A.

Example 2.6. Consider the matrix  1 2 −1

0 4 2


Describe the row and column space of the matrix above.

Example 2.7 (Row space and column space). Row space and column space of every matrix are vector

spaces.

2.4 Solving Systems

Suppose we would like to solve the system of equations
3x+ 2y − z = 4

x+ 3y − 2z = 1

5x+ y − z = 4

In high school algebra, we learn two methods for solving systems of linear equations: substitution and

elimination. Substitution could typically get too computational, especially when the number of variables is

too large. Elimination often works better, but we still need to keep track of too many things. Our objective

is to keep track of all of the work in a more organized fashion. We will keep all coefficients in a single matrix.

This matrix is called the augmented matrix of the given system. For the example, the augmented matrix

of the above system is as follows: 
3 2 −1 4

1 3 −2 1

5 1 −1 4


In the elimination method, we will add an appropriate multiple of one of the equations to another equation.

This means we are doing the same thing to the rows of the augmented matrix. We will note that each step

is reversible and thus we are not inserting or eliminating any solutions. In this process, three operations are

used. The operations (listed below) are called elementary row operations.
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• Row Addition: Adding a scalar multiples of a row to another row.

• Row Interchange: Interchanging two rows.

• Row Rescaling: Multiplying a row by a nonzero number.

The objective is to obtain a matrix that satisfies all of the following.

• All zero rows are at the bottom.

• The entries below the first nonzero entry of each row are all zero.

• The leading nonzero entry of each row is to the left of the leading nonzero entry of all rows below it.

Such a matrix is called a matrix in echelon form.

If in addition to the above, the first nonzero entry of each row is 1 we say the matrix is in reduced echelon

form.

To apply this method:

• Interchange rows so that the first entry of the first row is nonzero. (If the first column is all zero, apply

this to the first nonzero column.)

• Using the first row and the row addition operation, make all other entries of the first nonzero column

zero.

• If possible, by interchanging rows, make the second entry of the second row nonzero. If not, move on

to the next entry.

• Repeat this process so that you obtain a matrix in echelon form.

• Rescale all rows to obtain 1’s as the leading nonzero entries of all nonzero rows to obtain a matrix in

reduced echelon form.

Theorem 2.4. Every matrix can be turned into a matrix in reduced echelon form by applying the three

elementary row operations. Furthermore, the reduced echelon form for any matrix is unique.

Definition 2.7. The leading nonzero entries in a matrix in echelon form are called pivot entries. Each

column that contains a pivot entry is called a pivot column.

Definition 2.8. A system of linear equations is called homogeneous if the right hand side of the system

is all zeros. In other words, any homogeneous system is of the following form:

a11x1 + a12x2 + · · ·+ a1kxk = 0

a21x1 + a22x2 + · · ·+ a2kxk = 0
...

an1x1 + an2x2 + · · ·+ ankxk = 0
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Here, all aij ’s are constants. Note that every homogeneous system has a trivial solution

x1 = x2 = · · · = xk = 0.

Intuitively, in a homogeneous system if the number of equations is less than the number of variables, we must

have infinitely many solutions. Let’s test this hypothesis with an example.

Example 2.8. Find all solutions of the system:
2x1 − x2 + 3x3 + x4 = 0

x1 − 3x2 + x4 = 0

x2 − x3 + 4x4 = 0

With the method used in the solution of the above example we can prove the following theorem:

Theorem 2.5. Any homogeneous system that has less equations than variables has a nontrivial solution.

Corollary 2.1. Every n+ 1 vectors in Rn are linearly dependent.

2.5 More Examples

Example 2.9. Determine if each of the following is a subspace of R2.

(a) The set of points on the line 3x+ 2y = 1.

(b) The set of points on the line 4x− 3y = 0.

(c) The set of points on the unit circle x2 + y2 = 1.

Solution. (a) This is not a subspace of R2 since (0, 0) does not lie on this line, but the origin lies on every

subspace.

(b) This is a subspace. To prove that we will use the Subspace Criterion. First, note that (0, 0) is on this

line. Suppose (a, b) and (c, d) lie on this line and r ∈ R. By assumption,

4a− 3b = 0, and 4c− 3d = 0.

We have

4(a+ c)− 3(b+ d) = (4a− 3b) + (4c− 3d) = 0 + 0 = 0, and 4(ra)− 3(rb) = r(4a− 3b) = r0 = 0.

Therefore, (a+ c, b+ d) and (ra, rb) both belong to the same line. Thus, this line is a subspace of R2.

(c) This is not a subspace since it does not contain (0, 0).

Example 2.10. Prove that every set of vectors that contains the vector 0 is linearly dependent.
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Solution. Let S be a set of vectors containing 0. We see that 10 = 0 and the coefficient 1 is nonzero.

Therefore, by Theorem 2.2, the set S is linearly dependent.

Example 2.11. Prove the vectors x = (1, 2), and y = (−1, 2) form a basis for R2.

Solution. We need to show x and y are linearly independent and spanning.

For linear independence, suppose c1x+c2y = 0, for some real numbers c1, c2. Thus, (c1−c2, 2c1+2c2) = (0, 0),

which implies c1 = c2 and c1 = −c2. This yields c1 = c2 = 0. Therefore, x and y are linearly independent.

For spanning, suppose (a, b) ∈ R2. We will have to find c1, c2 ∈ R for which c1x+ c2y = (a, b). This means

we need to solve the system:

c1 − c2 = a

2c1 + 2c2 = b

Now solve this and find c1 and c2 in terms of a and b, and your solution would be complete.

Remark: After proving the two vectors above are linearly independent, we could also invoke part b of

Theorem 3.3.

Example 2.12. Let S and T be two subsets of Rn. Then span S = span T if and only if S ⊆ span T and

T ⊆ span S.

Solution. ⇒: Suppose span S = span T . By definition of span, S ⊆ span S = span T . Similarly

T ⊆ span T = span S, as desired.

⇐: Now, suppose S ⊆ span T, and T ⊆ span S. Every element v ∈ span T is of the form v = c1v1+· · ·+cnvn

for some v1,v2, . . . ,vn ∈ T . Since T ⊆ span S and span S is a subspace, v ∈ span S. Therefore, span T ⊆

span S. Similarly span S ⊆ span T . This implies span S = span T, as desired.

Example 2.13. Let v1, . . . ,vm ∈ Rn be linearly independent. Consider arbitrary vectors w1, . . . ,wm ∈ Rk,

and let x1 = (v1,w1), . . . ,xm = (vm,wm) ∈ Rn+k be vectors created by placing components of vj followed

by components of wj . Prove that x1, . . . ,xm are linearly independent.

Solution. Let c1, . . . , cm ∈ R be scalars for which

c1x1 + · · ·+ cmxm = 0.

Using the way xj ’s are created we have

c1(v1,w1)+ · · ·+ cm(vm,wm) = 0 ⇒ (c1x1+ · · ·+ cmvm, c1w1+ · · ·+ cmwm) = 0 ⇒ c1x1+ · · ·+ cmvm = 0.

Since v1, . . . ,vm are linearly independent we obtain c1 = · · · = cm = 0, and hence x1, . . . ,xm are linearly

independent.
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Example 2.14. Suppose v1, . . . ,vn are linearly independent vectors of Rk and w1,w2, . . . ,wm are also

linearly independent vectors of Rk. Prove that v1, . . . ,vn,w1, . . . ,wm are linearly independent if and only if

span {v1, . . . ,vn} ∩ span {w1, . . . ,wm} = {0}.

Solution. For simplicity, let U = span {v1, . . . ,vn}, and W = span {w1, . . . ,wm}.

⇒: Suppose v1, . . . ,vn,w1, . . . ,wm are linearly independent and x ∈ U ∩W . Thus x =
n∑

i=1

aivi =
m∑
j=1

bjwj ,

for some ai, bj ∈ R. Therefore,
n∑

i=1

aivi−
m∑
j=1

bjwj = 0. Since v1, . . . ,vn,w1, . . . ,wm are linearly independent,

we must have ai = bj = 0 and thus x = 0. On the other hand 0 ∈ U ∩W . Therefore, U ∩W = {0}.

⇐: Now assume U ∩W = {0}. Suppose
n∑

i=1

aivi+
m∑
j=1

bjwj = 0. This implies
n∑

i=1

aivi = −
m∑
j=1

bjwj ∈ U ∩W,

which implies
n∑

i=1

aivi = −
m∑
j=1

bjwj = 0. Since v1, . . . ,vn and w1, . . . ,wm are linear independent we must

have ai = bj = 0 for all i, j. This completes the proof.

Example 2.15. Determine if each of the following matrices is in echelon form, reduced echelon form or

neither. If the matrix is not in reduced echelon form, turn it into reduced echelon form by appropriate

elementary row operations. In each step make sure you specify which row operation is used.

(a)


1 0 −1

0 −1 0

0 2 3



(b)


−1 0 2 0

0 1 0 0

0 0 0 5


Solution. (a) This is not in echelon form. Applying R3 + 2R2, then, −R2 we obtain the following:


1 0 −1

0 −1 0

0 2 3

 R3+2R2−−−−−→


1 0 −1

0 −1 0

0 0 3

 −R2−−−→


1 0 −1

0 1 0

0 0 3


Now, if we apply R3/3 followed by R1 +R3 we obtain a matrix in reduced echelon form as shown below:


1 0 −1

0 1 0

0 0 3

 R3/3−−−→


1 0 −1

0 1 0

0 0 1

 R1+R3−−−−−→


1 0 0

0 1 0

0 0 1


(b) This is in echelon form but is not in reduced echelon form. Applying −R1 and R3/5 yields a matrix in
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reduced echelon form.
−1 0 2 0

0 1 0 0

0 0 0 5

 −R1−−−→


1 0 −2 0

0 1 0 0

0 0 0 5

 R3/5−−−→


1 0 −2 0

0 1 0 0

0 0 0 1



Example 2.16. Find all values of h for which the following system has a solution.
x1 + 2x2 − x3 = 7 + h

x2 − 2x3 = 3

2x1 + 5x2 − 4x3 = h

Solution. We will row reduce the augmented matrix associated with the above system:
1 2 −1 7 + h

0 1 −2 3

2 5 −4 h

 R3−2R1−−−−−→


1 2 −1 7 + h

0 1 −2 3

0 1 −2 −14− h

 R3−R2−−−−−→


1 2 −1 7 + h

0 1 −2 3

0 0 0 −17− h


Note that the (1, 2) entry can be easily made zero by applying R1 − 2R2. This means, from the first two

equations, we can find x1, x2 in terms of x3. For this system to have a solution we need 0 = −17 − h, or

h = −17 .

Further Reading: Click here and here for further reading on systems of linear equations and echelon forms.

2.6 Exercises

Exercise 2.1. Determine if each of the following is a subspace of Rn once by checking if they satisfy all

axioms I-VII listed in this chapter, and once by using the subspace criterion.

(a) The set of all vectors (x1, . . . , xn) ∈ Rn satisfying x1 + 2x2 + · · ·+ nxn = 0.

(b) The empty set.

(c) The set of all vectors (x1, . . . , xn) ∈ Rn satisfying x2
1 + x2

2 + · · ·+ x2
n = 0.

(d) The set of all vectors (x1, . . . , xn) ∈ Rn satisfying x2
1 + x2

2 + · · ·+ x2
n = 1.

Exercise 2.2. Suppose U and W are subspaces of Rn for which U ∪W is also a subspace. Prove that U ⊆ W

or W ⊆ U .

Hint: Use proof by contradiction.

https://drive.google.com/file/d/1F0Gx3_9FGUThBs4Nw4b0otMJF-zl_k26/view
https://drive.google.com/file/d/1-mST1ixFxrx2CcT0a8cuhM7RR0sEDyQq/view
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Exercise 2.3. Suppose V and W are subspaces of Rn. Define

V +W = {v + w | v ∈ V, and w ∈ W}.

Prove that V +W is a subspace of Rn.

Exercise 2.4. Suppose V is the subset of R3 consisting of all points (x, y, z) for which

x+ 2y − z = 0, and 2x− 4y + 7z = 0.

Prove that V is a subspace of R3.

Exercise 2.5. Suppose A = (x1, y1), and B = (x2, y2) are two distinct points on the plane. Let S be the set

of all points that are equidistant from A and B. Find the necessary and sufficient condition on points A,B

for which S is a subspace of R2.

Exercise 2.6. Prove that the only finite subspace of Rn is the trivial subspace {0} containing only the zero

vector.

Exercise 2.7. Suppose V,W are two subspaces of Rn for which V ∩W contains at least one nonzero vector.

Prove that V ∩W is an infinite set.

Exercise 2.8. Show the only proper subspace of R is {0}.

Exercise 2.9. Prove that if n > 1, then Rn can be written as a union of its proper subspaces.

Exercise 2.10. Prove the following set is a subspace of R3, once by showing it satisfies all properties I-VII

of a vector space, and once by applying the Subspace Criterion.

{(x, y, z) ∈ R3 | x+ y + 2z = 0, and z − 2y + 3x = 0}

Exercise 2.11. Determine if each of the following matrices is in echelon form, reduced echelon form or

neither. If the matrix is not in reduced echelon form, turn it into reduced echelon form by appropriate

elementary row operations. In each step make sure you specify which row operation is used.

(a)


1 2 1

0 1 3

1 2 3



(b)


1 2 −1 0

0 1 0 0

0 1 0 5


Exercise 2.12. Using elementary row operations, find all solutions of each system or show the system has

no solutions.

(a)


x1 + 3x2 + x4 = 5

x2 − x3 + 5x4 = 1

2x1 − x3 + x4 = 0
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(b)


x1 + x2 + 3x3 − x4 = 5

x2 − x3 + 5x4 = −2

2x1 + 3x2 + 5x3 + 3x4 = 0

Exercise 2.13. Show that if a matrix B is obtained by applying an elementary row operation to a matrix

A, then Row(A) = Row(B). (Hint: Check each of the three row operations separately. You could use

Example 2.12.) By an example show that Col(A) = Col(B) does not always hold.

Exercise 2.14. Describe all 2× 2 matrices that are in reduced echelon form.

Exercise 2.15. Let v1, . . . ,vn be vectors in a subspace V of Rn for which some of them are linearly dependent.

Prove that all of them are linearly dependent.

Exercise 2.16. Prove that if two vectors in Rn are linearly dependent, then one of them is a scalar multiple

of the other. By an example show that it is not necessarily true that both must be multiples of each other.

Exercise 2.17. Find three vectors in R3 that are linearly dependent but each pair of them are linearly

independent.

Exercise 2.18. Determine which of the following vectors form a basis for the appropriate Rn.

(a) (1, 2), (−2, 1).

(b) (1, 0, 1), (1, 1, 2), (−1,−2,−3).

(c) (1, 0), (2, 3), (1, 1).

(d) (1, 0, 0), (0, 1, 1), (0, 1, 2).

Exercise 2.19. Find all values of real number h for which each equation has a solution or show no such h

exists.

(a) 
x1 + 3x2 − x3 = h+ 2

2x1 + x2 − x3 = h

−3x1 + x2 + x3 = h+ 1

(b) 
x1 + x2 − 2x3 = h+ 2

x1 + x3 = 5

−3x1 + x2 = 3h

(c) 
x1 + x2 − 2x3 + x4 = h

x1 + x3 − 2x4 = 5

3x1 + 2x2 − 3x3 = 2h+ 9



2.7. CHALLENGE PROBLEMS 35

2.7 Challenge Problems

Exercise 2.20. Let k,m, n be positive integers with k < m ≤ n. Find the necessary and sufficient condi-

tion on these integers for which there are m linearly dependent vectors in Rn each k of which are linearly

independent.

2.8 Summary

• To prove v1, . . . ,vn are linearly independent vectors, start with c1v1 + · · · + cnvn = 0 and prove

c1 = · · · = cn = 0.

• To prove v1, . . . ,vn are generating, start with an arbitrary vector in the vector space and show it can

be written as a linear combination of vj ’s.

• A basis is a set of vectors that are linearly independent and generating.

• Every matrix can be turned into a matrix in echelon form by using three row operations: row addition,

row interchange, and row rescale.

• The number of pivot entries is the same as both the dimension of row space and the dimension of

column space.

• To find a basis for a space spanned by a set of vectors in Rn:

– Place these vectors in rows of a matrix.

– Row reduce this matrix.

– The nonzero rows of the echelon form, create a basis for the desired space.

• W is a subspace of Rn if W along with the operations of Rn itself satisfies all properties I-VII of a

vector space.

• To prove W is a subspace of Rn we use the Subspace Criterion: W contains the zero vector, and W is

closed under addition and scalar multiplication.
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Chapter 3

Week 3

3.1 Dimension of a Vector Space

Theorem 3.1. If m is an integer more than n, then every m vectors of Rn are linearly dependent.

Theorem 3.2. Assume V is a subspace of Rn with a basis of size m. Then, every basis of V also contains

precisely m vectors.

Definition 3.1. A subspace V of Rn is said to have dimension m, written as dimV = m, if it has a basis

of size m.

Example 3.1. Find the dimension of each of the following vector spaces.

(a) Rn

(b) {0}

(c) The line y = 3x in the xy-plane.

Theorem 3.3. Let V be a subspace of Rn of dimension m. Then,

(a) Every m linearly independent vectors in V form a basis for V .

(b) Every m spanning vectors in V form a basis for V .

Example 3.2. All subspaces of R2 are either {0}, lines through the origin or R2 itself.

37
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Subspaces of R2: The origin; All lines through the origin, and R2 itself.

Theorem 3.4. Let A be a matrix.

• The dimension of Row(A) is equal to the number of pivot entries of the echelon form of A. Furthermore,

the nonzero rows of the echelon form of A form a basis for Row(A).

• The dimension of Col(A) is equal to the number of pivot entries of the echelon form of A. Furthermore,

the pivot columns of A form a basis for Col(A).

Example 3.3. Find a basis for Row(A) and Col(A), where

A =


1 2 0 1

0 1 3 0

−1 1 2 3


Definition 3.2. The rank of a matrix A, denoted by rank A, is the dimension of Row(A) (which is the

same as the dimension of Col(A)).

Definition 3.3. The transpose of an m×n matrix A is an n×m matrix denoted by AT whose every (i, j)

entry is the (j, i) entry of A.

Theorem 3.5. For every matrix A, we have rank A = rank AT .

Example 3.4. Find a basis for the subspace of R4 generated by (1, 2, 0, 1), (−1, 1, 2, 1), (1, 5, 2, 3), (2, 1,−2, 0).

Example 3.5 (Null space). Given an m×n matrix A whose columns are v1,v2, . . . ,vn ∈ Rm, the set of all

vectors v = (x1, x2, . . . , xn) ∈ Rn for which

x1v1 + x2v2 + · · ·+ xnvn = 0

is a subspace of Rn.

Definition 3.4. The subspace defined in the previous example is called the null space or the kernel of A.
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3.2 Inner Products and Angles

To better understand the geometry of Rn, we need to define the notion of angles between vectors.

Example 3.6. Consider the vectors u = (x1, y1) and v = (x2, y2) in R2. Let θ be the angle between u and

v. Using the law of cosines, prove that

x1x2 + y1y2 =
√

x2
1 + y21

√
x2
2 + y22 cos θ.

Definition 3.5. An inner product (or scalar product) on Rn is a function that assigns a real number

⟨x,y⟩ to every pair of vectors x,y ∈ Rn that satisfies the following for all x,y, z ∈ Rn and all a, b ∈ R:

(a) ⟨x,x⟩ > 0 if x ̸= 0 (Positivity),

(b) ⟨x,y⟩ = ⟨y,x⟩ (Symmetry),

(c) ⟨ax+ by, z⟩ = a⟨x, z⟩+ b⟨y, z⟩ (Linearity).

Note that by symmetry and linearity with respect to the first vector we can obtain the linearity with respect

to the second vector:

⟨z, ax+ by⟩ = a⟨z,x⟩+ b⟨z,y⟩

Example 3.7. The following are two examples of inner products in Rn.

(a) ⟨(x1, x2, . . . , xn), (y1, y2, . . . , yn)⟩ = x1y1 + x2y2 + · · ·+ xnyn.

(b) ⟨(x1, x2, . . . , xn), (y1, y2, . . . , yn)⟩ = x1y1 + 2x2y2 + · · ·+ nxnyn.

Remark. The first inner product of Rn in the example above is called the standard inner product of Rn.

It is also sometimes called the dot product of Rn, and is denoted by “·”. In other words:

(x1, x2, . . . , xn) · (y1, y2, . . . , yn) =
n∑

j=1

xjyj .

When a particular inner product is not specified we will use the dot product above.

The length of a vector v ∈ Rn relative to an arbitrary inner product is given by ||v|| =
√
⟨v,v⟩. Therefore,

the length of a vector x = (x1, x2, . . . , xn) relative to the standard inner product is given by

||x|| =
√
x · x =

√
x2
1 + x2

2 + · · ·+ x2
n,

which matches the familiar Euclidean distance in R2.

By Example 3.6 we notice that, in R2, when θ =
π

2
we have v ·w = 0. This suggests the following definition:
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Definition 3.6. Given an inner product on Rn, we say two vectors v,w ∈ Rn are orthogonal (or perpen-

dicular) iff ⟨v,w⟩ = 0. We say nonzero vectors v1,v2, . . . ,vn are orthogonal iff vi, and vj are orthogonal

for every i ̸= j.

Example 3.8. Show that (1, 2,−1) and (−1, 1, 1) are orthogonal vectors of R3 using the standard inner

product of R3.

Example 3.9. Let ei ∈ Rn be the vector whose i-th component is 1 and whose all other components are

zero. Then, {e1, e2, . . . , en} is an orthogonal basis for Rn.

Theorem 3.6 (Pythagorean Theorem). If vectors v,w ∈ Rn are orthogonal relative to an inner product of

Rn, then

||v||2 + ||w||2 = ||v +w||2.

Example 3.6 suggests we should define the angle θ between two vectors v,w by cos θ =
⟨v,w⟩

||v|| ||w||
. In order

for us to be able to define the angle between two vectors by cos θ =
⟨v,w⟩

||v|| ||w||
we need the following:

Theorem 3.7 (Cauchy-Schwarz Inequality). Given an inner product ⟨, ⟩ of Rn, we have

|⟨v,w⟩| ≤ ||v|| ||w||.

Definition 3.7. The angle between two vectors v and w in Rn relative to a given inner product ⟨, ⟩ is

defined by

θ = cos−1

(
⟨v,w⟩

||v|| ||w||

)
.

Example 3.10. Find the angle between (1, 2,−1) and (1, 1, 3), once relative to the standard inner product

and once relative to the inner product given by

⟨(x1, y1, z1), (x2, y2, z2)⟩ = x1x2 + 2y1y2 + 3z1z2.

3.3 Norms

The definition of length, ||v|| =
√
v · v, in the previous section relied on an inner product of Rn, however the

concept of “length” or “distance” can be defined independently. We will define a norm to be an assignment of

nonnegative real numbers to vectors that satisfy certain properties that we expect from a geometric distance.

Definition 3.8. A norm on Rn is a function that assigns to any vector v ∈ Rn a nonnegative real number

||v|| that satisfies all of the following:

(a) ||v|| > 0 for every nonzero v ∈ Rn (Positivity),

(b) ||v +w|| ≤ ||v||+ ||w|| for every v,w ∈ Rn (Tirangle Inequality), and

(c) ||cv|| = |c| ||v|| for every v ∈ Rn and c ∈ R (Homogeneity).
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The following theorem connects the two notions of inner product and norm.

Theorem 3.8. If ⟨, ⟩ is an inner product on Rn, then the function defined by ||v|| =
√

⟨v,v⟩ is a norm.

Example 3.11. The following are examples of norms on Rn.

(a) ||(x1, x2, . . . , xn)|| =
√
x2
1 + x2

2 + · · ·+ x2
n.

(b) ||(x1, x2, . . . , xn)|| = max{|x1|, |x2|, . . . , |xn|}.

Theorem 3.9. Suppose v1,v2, . . . ,vn ∈ Rk are orthogonal (nonzero) vectors with respect to some inner

product of Rk. Then, they are linearly independent.

The following theorem allows us to find an orthogonal basis for any subspace of Rm.

Theorem 3.10 (Gram-Schmidt Orthogonalization Process). Let ⟨, ⟩ be an inner product on Rm, and let

v1,v2, . . . ,vn be linearly independent vectors in Rm. Define vectors w1,w2, . . . ,wn recursively as follows:

w1 = v1

w2 = v2 −
⟨v2,w1⟩
⟨w1,w1⟩

w1

w3 = v3 −
⟨v3,w1⟩
⟨w1,w1⟩

w1 −
⟨v3,w2⟩
⟨w2,w2⟩

w2

...

wn = vn − ⟨vn,w1⟩
⟨w1,w1⟩

w1 −
⟨vn,w2⟩
⟨w2,w2⟩

w2 − · · · − ⟨vn,wn−1⟩
⟨wn−1,wn−1⟩

wn−1

Then w1,w2, . . . ,wn form a basis for the subspace of Rm spanned by v1,v2, . . . ,vn.

Corollary 3.1. Every subspace of Rn has an orthogonal basis.

Definition 3.9. We say vectors v1,v2, . . . ,vn are orthonormal relative to an inner product ⟨, ⟩ if they are

orthogonal and ⟨vi,vi⟩ = 1 for every i. (i.e. all of them have norm 1.)

Example 3.12. Find an orthogonal basis for the subspace of R4 generated by (1, 2, 0,−1), (0, 1, 0, 2), (0, 0, 2, 1).

Definition 3.10. Let W be a subspace of Rn. The orthogonal complement of W relative to an inner

product ⟨, ⟩, denoted by W⊥, is defined as

W⊥ = {v ∈ Rn | ⟨v,w⟩ = 0 for all w ∈ W}.

Theorem 3.11. Let W be a subspace of Rm. Then W⊥ is a subspace of Rm and

dimW + dimW⊥ = m.
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Proof. The fact that W⊥ is a subspace is left as an exercise.

Let {w1, . . . ,wk} be an orthogonal basis for W , and {wk+1, . . . ,wn} be an orthogonal basis for W⊥. Since

each element of W is orthogonal to each element of W⊥, B = {w1, . . . ,wn} is an orthogonal set and thus

it is linearly independent. It is left to prove B is generating. Let v ∈ Rm. Using a method similar to

Gram-Schmidt process, we see that x = v − ⟨v,w1⟩
⟨w1,w1⟩

w1 − · · · − ⟨v,wk⟩
⟨wk,wk⟩

wk is orthogonal to w1, . . . ,wk

and thus all elements of W . Therefore, x ∈ W⊥. This implies there are scalars ck+1, . . . , cn for which

x = ck+1wk+1 + · · ·+ cnwn,

This means

v =
⟨v,w1⟩
⟨w1,w1⟩

w1 + · · ·+ ⟨v,wk⟩
⟨wk,wk⟩

wk + ck+1wk+1 + · · ·+ cnwn ∈ span B,

as desired.

3.4 Warm-ups

Example 3.13. Find the angle between vectors (1, 0,−1) and (2, 1, 2) in R3 using the standard inner product.

Solution. If the angle between these two vectors is θ, then we have

cos θ =
(1, 0,−1) · (2, 1, 2)

||(1, 0,−1)|| ||(2, 1, 2)||
=

2 + 0− 2√
1 + 0 + 1

√
4 + 1 + 4

= 0 ⇒ θ =
π

2
.

Therefore, the two vectors are orthogonal.

3.5 More Examples

Example 3.14. Find a vector in R3 in the direction of (1,−2, 2) that has length 4 with the Euclidean norm.

Solution. The vector must be of the form c(1,−2, 2) where c is a positive constant. The length must be

four and thus c2 + 4c2 + 4c2 = 42, which means c =
4

3
. The answer is

(
4

3
,
−8

3
,
8

3

)
.

Another method would be to notice that ||(1,−2, 2)|| =
√
1 + 4 + 4 = 3. Thus, by properties of norm we have∣∣∣∣∣∣∣∣43(1,−2, 2)

∣∣∣∣∣∣∣∣ = 4

3
· 3 = 4.

This yield the same answer.

Example 3.15. Suppose {v,w} is a basis for a 2-dimensional subspace V of Rn. Let a, b be two real

numbers. Prove that {v + aw,v + bw} is a basis for V if and only if a ̸= b.
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Solution. ⇒: Suppose {v + aw,v + bw} is a basis for V . Thus, v + aw and v + bw cannot be scalar

multiples and thus v + aw ̸= v + bw, which means a ̸= b, as desired.

⇐: Now, assume a ̸= b. We will show v + aw,v + bw are linearly independent. Suppose c1(v + aw) +

c2(v + bw) = 0, for some scalars c1, c2. This means (c1 + c2)v1 + (ac1 + bc2)w = 0. Since v,w are linearly

independent we must have c1 + c2 = ac1 + bc2 = 0. Eliminating c1 from the two equations we obtain

(b − a)c2 = 0, which implies c2 = 0 and thus c1 = 0. This means v + aw,v + bw are linearly independent.

Since the dimension of V is 2, {v + aw,v + bw} is a basis for V .

Example 3.16. Prove that if || · || is a norm relative to an inner product of Rn and v,w ∈ Rn, then

||v +w||2 + ||v −w||2 = 2(||v||2 + ||w||2).

Solution. By definition we have ||v ±w||2 = ⟨v ±w,v ±w⟩. By linearity and symmetry this simplifies to

⟨v ±w,v ±w⟩ = ⟨v,v⟩ ± ⟨v,w⟩ ± ⟨w,v⟩+ ⟨w,w⟩ = ⟨v,v⟩ ± 2⟨v,w⟩+ ⟨w,w⟩.

Summing the two together and using the fact that ⟨v,v⟩ = ||v||2 and ⟨w,w⟩ = ||w||2 we obtain the result.

Example 3.17. Consider the subspace V of R4 spanned by v = (1, 2, 0, 1) and w = (1,−1, 1, 2). Find a

basis for the orthogonal complement of V relative to the standard basis.

Solution. Note that since v and w are not multiples of each other, dimV = 2. By Theorem 3.11, we have

dimV ⊥ = 4− 2 = 2.

We will find a basis for R4 containing v and w. To do that, we will place these vectors in rows of a matrix,

and row reduce the matrix as below: 1 2 0 1

1 −1 1 2

 R2−R1−−−−−→

 1 2 0 1

0 −3 1 1


Therefore, by adding e3 and e4 to the rows of this matrix, we obtain a matrix in echelon form. Thus,

v,w, e3, e4 form a basis for R4. Now, we will apply the Gram-Schmidt process.

w1 = v

w2 = w − ⟨w,v⟩
⟨v,v⟩

v

w3 = e3 −
⟨e3,w1⟩
⟨w1,w1⟩

w1 −
⟨e3,w2⟩
⟨w2,w2⟩

w2

w4 = e4 −
⟨e4,w1⟩
⟨w1,w1⟩

w1 −
⟨e4,w2⟩
⟨w2,w2⟩

w2 −
⟨e4,w3⟩
⟨w3,w3⟩

w3

The vectors w3,w4 are linearly independent and are in V ⊥. Since dimV ⊥ = 2, the two vectors w3 and w4

form a basis for V ⊥.
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Example 3.18. Let c ∈ R be a constant. For which constants c does the product

⟨(x1, y1), (x2, y2)⟩ = x1x2 + cy1y2

define an inner product on R2?

Scratch: Positivity means, from x2 + cy2 = 0 we need to be able to imply x = y = 0. This means c cannot

be nonpositive.

Solution. We claim that the given expression is an inner product if and only if c is positive.

If c ≤ 0, then ⟨(0, 1), (0, 1)⟩ = c ≤ 0, violating the positivity property. Thus, it is not an inner product.

Now assume c > 0 and let x = (x1, y1),y = (x2, y2), z = (x3, y3) ∈ R2, a, b ∈ R. If (x1, y1) ̸= 0, then

x2
1 + cy21 > 0 and thus we obtain the positivity.

⟨x,y⟩ = x1x2 + cy1y2 = x2x1 + cy2y1 = ⟨y,x⟩. This proves the symmetry.

⟨ax+ by, z⟩ = (ax1 + bx2)x3 + c(ay1 + by2)y3 = a(x1x3 + cy1y3) + b(x2x3 + cy2y3) = a⟨x, z⟩+ b⟨y, z⟩. This

proves the linearity.

Example 3.19. Prove that if || · || is a norm on Rn, then ||0|| = 0.

Solution. By homogeneity ||00|| = |0| ||0|| = 0||0|| = 0. Since 00 = 0, we obtain ||0|| = 0, as desired.

Example 3.20. Suppose v1,v2 form an orthogonal basis for R2 with respect to some inner product. Prove

that if w is orthogonal to v1, then w = cv2 for some scalar c.

Solution. Since v1,v2 is a basis for R2, there are scalars c1, c2 for which w = c1v1 + c2v2. By assumption

and linearity of inner product we obtain the following:

⟨w,v1⟩ = 0 ⇒ c1⟨v1,v1⟩+ c2⟨v2,v1⟩ = 0.

Since v1 and v2 are orthogonal we obtain c1⟨v1,v1⟩ = 0. Since v1 is an element of a basis, we know v1 ̸= 0,

and by positivity of inner products we conclude that c1 = 0, which means w = c2v2, as desired.

Example 3.21. Prove that for all real numbers x1, . . . , xn, y1, . . . , yn we have

(x1y1 + · · ·+ xnyn)
2 ≤ (x2

1 + · · ·+ x2
n)(y

2
1 + · · ·+ y2n).

Solution. We will use the Cauchy-Schwarz Inequality for the standard inner product of Rn. Consider the

two vectors

v = (x1, . . . , xn), and w = (y1, . . . , yn) in Rn.

We have

v ·w = x1y1 + · · ·+ xnyn, ||v|| =
√
x2
1 + · · ·+ x2

n, and ||w|| =
√
y21 + · · ·+ y2n.
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Applying the Cauchy-Schwarz Inequality we obtain:

|x1y1 + · · ·+ xnyn| ≤
√

x2
1 + · · ·+ x2

n ·
√
y21 + · · ·+ y2n.

Squaring both sides we obtain the result.

Example 3.22. Prove that if v1, . . . ,vn are vectors in Rm with a norm || · ||, then

||v1 + · · ·+ vn|| ≤ ||v1||+ · · ·+ ||vn||.

Solution. We will prove this by induction on n.

Basis step: For n = 1 both sides of the inequality are ||v1||. This proves the basis step.

Inductive Step: Let v1, . . . ,vn+1 be vectors in Rm. Suppose

||v1 + · · ·+ vn|| ≤ ||v1||+ · · ·+ ||vn|| (∗)

By the Triangle Inequality we obtain:

||v1 + · · ·+ vn+1|| ≤ ||v1 + · · ·+ vn||+ ||vn+1||.

Combining this with (∗) completes the inductive step.

Example 3.23. Find a basis for the orthogonal complement of V = span {(1, 2,−1), (0, 1, 1)} under the

standard inner product.

Solution. Placing these vectors into rows of a matrix we obtain the following matrix: 1 2 −1

0 1 1


This matrix is in echelon form and adding (0, 0, 1) gives us another matrix in echelon form:

1 2 −1

0 1 1

0 0 1


This means the vectors v1 = (1, 2,−1),v2 = (0, 1, 1),v3 = (0, 0, 1) are linearly independent and thus they

form a basis for R3. Since the dimension of V is 2, by Theorem 3.11 the dimension of its orthogonal

complement is 1. Using the Gram-Schmidt process we will find the following vectors:

w1 = v1,

w2 = v2 −
v2 ·w1

w1 ·w1
w1,

w3 = v3 −
v3 ·w1

w1 ·w1
w1 −

v3 ·w2

w2 ·w2
w2

Thus, w3 is orthogonal to every element of V . Therefore, w3 forms a basis for the orthoghonal complement

of V . (The calculation must be done!)
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3.6 Exercises

Exercise 3.1. Suppose the homogeneous system

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0
...

an1x1 + an2x2 + · · ·+ annxn = 0

has only the trivial solution. Prove that for every b1, b2, . . . , bn ∈ R, the system

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

an1x1 + an2x2 + · · ·+ annxn = bn

has a unique solution.

Hint: Use dimRn = n, and consider the vectors (a11, a21, . . . , an1), . . . , (a1n, a2n, . . . , ann).

Exercise 3.2. Determine the dimension of each vector space.

(a) The subspace of R3 generated by vectors (1, 2,−1), (2, 3, 4), and (4, 10, 2).

(b) The subspace of R3 generated by (1, 2, 0), (−1, 1, 1), and (1, 5, 1).

Exercise 3.3. Consider the homogeneous system

a11x1 + a12x2 + · · ·+ a1kxk = 0

a21x1 + a22x2 + · · ·+ a2kxk = 0
...

an1x1 + an2x2 + · · ·+ ankxk = 0

Prove that the set of vectors (x1, x2, . . . , xk) ∈ Rk satisfying the system above is a subspace of Rk. In other

words, you are solving Example 3.5.

Exercise 3.4. Let V be a subspace of Rn. Prove that if A = {v1,v2, . . . ,vk} is a linearly independent set

of vectors in V , then there is a basis for V that contains A.

Hint: Consider the subspace generated by v1,v2, . . . ,vk. If this subspace is not Rn, and then add an element

vk+1 from Rn, but outside of span A to the set A. Show this new larger set is linearly independent. Repeat

this until you get a basis. You must show this process ends. This is where you should use the fact that Rn

is finite dimensional.

Exercise 3.5. Suppose W and V are subspaces of Rn for which W ⊆ V . Prove that if dimW = dimV , then

W = V .



3.6. EXERCISES 47

Exercise 3.6. Let V be a subspace of Rn. Prove that if A is a spanning subset of V , then there is a basis

for V that is a subset of A.

Exercise 3.7. Find the dimension of the vector space spanned by (0, 0, 1, 1), (1, 1, 0, 0), and (1, 1, 0, 1).

Exercise 3.8. Find the angle between:

(a) (1, 2,−1) and (0, 2,−1) in R3 with the standard inner product.

(b) (1, 1, 5) and (1,−1, 0) with the inner product given by ⟨(x1, y1, z1), (x2, y2, z2)⟩ = x1x2 + 2y1y2 + 3z1z2.

Exercise 3.9. Determine if the triangle whose vertices are A = (1, 2, 2), B = (−1, 1, 0), C = (2,−2, 1) is a

right triangle.

Exercise 3.10. Consider R3 with the standard inner product. Find an orthogonal basis for R3 for which

one of the elements of this basis is (1, 2,−1).

Hint: Use the idea of echelon form to extend this vector to a basis. Then apply Gram-Schmidt. See

Example 3.23.

Exercise 3.11. Find all real numbers c for which the vectors (1, 2, c) and (−1,−c, c+1) are orthogonal with

respect to the standard inner product. For this value of c, give an example of an inner product where these

two vectors are not orthogonal.

Exercise 3.12. Find all inner products of R2, if any, for which ||e1|| = 4, ||e2|| = 3 and the angle between

e1 and e2 is
π

3
.

Hint: First, use the given assumptions to find ⟨e1, e2⟩. Next, write (x1, x2) and (y1, y2) as linear combinations

of e1, e2. Then use linearity, symmetry and the given assumptions to evaluate ⟨(x1, x2), (y1, y2)⟩. Finally,

show the result is in fact an inner product.

Exercise 3.13. Suppose c1, . . . , cn are real constants. Define a function ⟨, ⟩ by

⟨(x1, . . . , xn), (y1, . . . , yn)⟩ =
n∑

j=1

cjxjyj .

(a) Show ⟨, ⟩ is linear and symmertic.

(b) Show that ⟨, ⟩ is an inner product iff c1, . . . , cn are all positive.

Exercise 3.14. Suppose ⟨, ⟩ is an inner product of Rn. Let v = (x1, . . . , xn) and w = (y1, . . . , yn) be two

vectors in Rn.

(a) By writing v and w as linear combinations of e1, . . . , en, and applying linearity prove that ⟨v,w⟩ =
n∑

k=1

n∑
j=1

⟨ek, ej⟩xkyj.

(b) Using the previous part and Exercise 3.13, deduce that every inner product of Rn for which e1, . . . , en

are orthogonal is of the form ⟨v,w⟩ =
n∑

j=1

cjxjyj for some positive real numbers c1, . . . , cn, and every

such function is an inner product.
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Exercise 3.15. Let v1,v2, . . . ,vn be orthogonal vectors in an inner product vector space. Prove that

||v1 + v2 + · · ·+ vn||2 = ||v1||2 + ||v2||2 + · · ·+ ||vn||2.

Hint: Use the Pythagorean Theorem and proof by induction.

Exercise 3.16. Suppose ⟨, ⟩ is an inner product of Rn. Using linearity prove that for every w ∈ Rn we have

⟨0,w⟩ = ⟨w,0⟩ = 0. Deduce the Cauchy-Schwarz inequality in the case when v = 0. (In class we assumed

v ̸= 0.)

Exercise 3.17. Let B = {v1,v2, . . . ,vn} be a basis for Rn. For every two vectors

v = a1v1 + a2v2 + · · ·+ anvn, and w = b1v1 + b2v2 + · · ·+ bnvn in Rn,

define ⟨v,w⟩ = a1b1 + a2b2 + · · ·+ anbn. Prove that this defines an inner product on Rn.

Exercise 3.18. Prove the converse of the Pythagorean Theorem stated below:

Given an inner product ⟨, ⟩ of Rn and v,w ∈ Rn, if ||v +w||2 = ||v||2 + ||w||2, then ⟨v,w⟩ = 0.

Exercise 3.19. Let v,w ∈ Rn, and ⟨, ⟩ be an inner product of Rn. Prove that |⟨v,w⟩| = ||v|| ||w|| if and

only if w is a scalar multiple of v or v = 0.

Hint: Follow the proof of Cauchy-Schwarz inequality and see when the equality holds.

Exercise 3.20. Let A be an m × n matrix with real entries. We have shown that Row(A) and Ker A are

both subspaces of Rn. What is the relationship between Ker A and (Row(A))⊥? Justify your answer.

Hint: Show that a vector is in (Row(A))⊥ if and only if it is orthogonal to all rows of A.

Exercise 3.21. Let S be a nonempty subset of Rn, and ⟨, ⟩ be an inner product of Rn. Prove that S⊥ defined

by

S⊥ = {v ∈ V | ⟨v, s⟩ = 0 for all s ∈ S}

is a subspace of Rn.

Exercise 3.22. Suppose W is a subspace of Rn. Prove that (W⊥)⊥ = W.

Hint: Show the dimension of both sides are the same, and the right hand side is a subset of the left hand

side.

Exercise 3.23. Suppose v,w ∈ Rn satisfy v ·w = 0. Prove that ||v+w|| = ||v−w|| once using properties

of inner product, once using the definition of dot product, and once using geometry.

Exercise 3.24. For every inner product ⟨, ⟩, its corresponding norm, and every two vectors u,v prove the

polarization identity stated below:

⟨u,v⟩ = 1

2

(
||u+ v||2 − ||u− v||2

)
.
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Exercise 3.25. Prove the Angle Bisection Theorem:

Consider Rn equipped with an inner product. Suppose ABC is a triangle in Rn, and D is a point on side

BC for which ∠BAD = ∠DAC. Then,
||AB||
||AC||

=
||BD||
||DC||

.

Exercise 3.26. Prove the Law of Sines:

Consider Rn equipped with an inner product. Suppose ABC is a triangle in Rn. Then,
||AB||

sin(∠ACB)
=

||AC||
sin(∠ABC)

.

Exercise 3.27. Consider an inner product ⟨, ⟩ on Rn. Suppose A,B,C are three distinct points in Rn that

do not lie on a line. Show that if two sides of ABC are congruence, i.e. ABC is isosceles, then two of its

angles are congruent.

3.7 Challenge Problems

Exercise 3.28. Prove that there is no inner product on R2 that gives us the norm ||(x1, x2)|| = max{|x1|, |x2|}.

Exercise 3.29. Let k be a positive integer. Find the smallest positive integer n for which there are k nonzero

vectors v1, v2, . . . , vk ∈ Rn for which vi and vj are orthogonal for every i and j for which i > j + 1.

3.8 Summary

• The dimension of a vector space is the number of vectors in a basis of that vector space.

• In a vector space of dimension n every n+ 1 (or more) vectors are linearly dependent.

• Rank of a matrix is the dimension of its column space.

• To show v1, . . . ,vn form a basis for a vector space V we can do one of the following:

– v1, . . . ,vn are linearly independent and spanning.

– v1, . . . ,vn are linearly independent and dimV = n.

– v1, . . . ,vn are spanning and dimV = n.

• To check if ⟨v,w⟩ is an inner product we need to check if it satisfies three properties: Positivity,

Symmetry, and Linearity.

• The angle θ between two vectors v,w is given by cos θ =
⟨v,w⟩

||v|| ||w||
.

• If the angle between two vectors is π/2 we say the two vectors are orthogonal.

• Pythagorean Theorem: If v and w are orthogonal, then ||v +w||2 = ||v||2 + ||w||2.

• Cauchy-Schwarz Inequality: In any inner product space |⟨v,w⟩| ≤ ||v|| ||w||.
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• To check if ||v|| is a norm, we need to check if it satisfies three properties: Positivity, Triangle Inequality,

and Homogeneity.

• Given linearly independent vectors v1, . . . ,vn in an inner product space, we can use the Gram-Schmidt

process to find an orthogonal basis for the subspace spanned by vi’s.

• The orthogonal complement of a subspaceW is the subspace consisting of all vectors that are orthogonal

to all vectors in W .

• To find a basis for W⊥:

– First find a basis for W .

– Extend that basis to a basis of Rn using echelon form.

– Start from vectors in W and apply the Gram-Schmidt process. This produces an orthogonal basis

for W followed by an orthogonal basis for W⊥.



Chapter 4

Week 4

4.1 Linear Mappings and Matrices

Remark. All vector spaces are subspaces of Rn for some positive integer n.

Definition 4.1. Let V,W be two vector spaces. (i.e. V is a subspace of Rm and W is a subspace of Rn for

some positive integers m,n.) A function L : V → W is said to be linear iff for all v,w ∈ V and c ∈ R,

• L(v +w) = L(v) + L(w) (Additivity), and

• L(cv) = cL(v) (Homogeneity)

Example 4.1. Determine which of the following functions are linear:

(a) f : R → R, f(x) = cx, where c is a constant.

(b) g : R → R, g(x, y) = 2x+ 3y.

(c) h : R → R, h(x) = 2x+ 3.

(d) k : Rn → R, k(v) = ⟨w,v⟩, where w is a fixed vector and ⟨, ⟩ in an inner product of Rn.

Theorem 4.1. Let L : V → W be a mapping between vector spaces. Then, the following are equivalent.

(a) L is linear.

(b) L(u+ cv) = L(u) + cL(v) for all u,v ∈ V and all c ∈ R.

(c) L(au+ bv) = aL(u) + bL(v) for all u,v ∈ V and all a, b ∈ R.

Example 4.2. Identify all linear mappings f : R3 → R2.

Example 4.3. Prove that all linear mappings f : Rn → R are given by f(v) = w · v, where w is a fixed

vector in Rn.

51
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Example 4.4. Prove that all linear mappings f : Rn → Rm are given by

f(v) =


w1 · v

...

wm · v

 ,

where w1, . . . ,wm ∈ Rn are fixed vectors.

Definition 4.2. Given an m× n matrix

A =


w1

...

wm

 ,

where wj ’s are rows of A, and given a column vector v ∈ Rn. The product of A and v, denoted by Av, is

given by

Av =


w1 · v

...

wm · v

 .

Theorem 4.2. A mapping f : Rn → Rm is linear if and only if there is an m × n matrix A for which

f(v) = Av. Furthermore, for every given linear mapping f the matrix A is unique. The columns of A are

given by f(e1), . . . , f(en). In other words,

A = (f(e1) · · · f(en)) .

Definition 4.3. The matrix A of the linear mapping f in theorem above is called the matrix of f with

respect to the standard basis and is denoted by Mf .

Example 4.5. Let α ∈ [0, 2π] be an angle. Suppose Rα : R2 → R2 is the rotation with angle α about the

origin. From geometry we know Rα is linear. Find the matrix of Rα with respect to the standard basis.

Definition 4.4. Let A be an m× n and B be an n× k matrix. The matrix AB is an m× k matrix whose

j-th column is obtained from multiplying A by the j-th column of B. In other words, the (i, j) entry of AB

is obtained by finding the dot product of the i-th row of A with the j-th column of B.

Remark. Note that to be able to evaluate the multiplication AB of two matrices A and B, we need the

number of columns of A to be the same as the number of rows of B.

Example 4.6. Evaluate the matrices AB and BA, where

A =

 1 2

3 1

 , and B =


0 −1

2 3

5 −1

 .

Example 4.7. Consider a 2× 3 matrix A and a vector v as follows:

A =

 a11 a12 a13

a21 a22 a23

 , and v =


x1

x2

x3


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Show that Av is the following linear combination of columns of A:

Av = x1

 a11

a21

+ x2

 a12

a22

+ x3

 a13

a23

 .

Remark. For every m× n matrix A and every column vector v ∈ Rn the vector Av is a linear combination

of columns of A with coefficients from entries of v.

Theorem 4.3. If the mappings f : Rn → Rm and g : Rm → Rk are linear, then g ◦ f : Rn → Rk is also

linear and Mg◦f = MgMf .

Proof. The part that g ◦ f is linear is left as an exercise. We know the j-th column of the matrix of g ◦ f is

g ◦ f(ej). This equals g(f(ej)) = Mgf(ej). Since the j-th column of Mf is f(ej), the j-th column of MgMf

is precisely Mgf(ej). Therefore, the j-th column of MgMf is precisely g ◦ f(ej). Therefore, the matrix of

Mg◦f in standard basis is MgMf , as desired.

Example 4.8. The matrix of the identity mapping I : Rn → Rn defined by I(x) = x is given by

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 1


.

The matrix above is called the identity matrix of size n and is denoted by In.

Theorem 4.4. For matrices A,B,C and a real number r we have the following:

(a) A(BC) = (AB)C (associativity).

(b) A(B + C) = AB +AC, and (B + C)A = BA+ CA (distributivity).

(c) r(AB) = (rA)B = A(rB).

(d) AIn = A, and ImA = A.

Provided that in each case the appropriate multiplication or addition is defined.

4.2 Kernel and Image

Definition 4.5. Given a linear mapping L : V → W , the kernel of L is defined as Ker L = L−1({0}). In

other words,

Ker L = {v ∈ V | L(v) = 0}.

The image of L is defined as

Im L = {w ∈ W | w = L(v) for some v ∈ V }.
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Theorem 4.5. Let L : V → W be a linear mapping of vector spaces. Then Ker L is a subspace of V and

Im L is a subspace of W .

Proof. We will use the subspace criterion for both.

First, note that L(0) = L(00) = 0L(0) = 0, by homogeneity. Thus, L(0) = 0. Therefore, 0 ∈ Ker L. Now,

assume x,y ∈ Ker L, and c ∈ R. By definition, L(x) = L(y) = 0. By linearity we have

L(x+ y) = L(x) + L(y) = 0+ 0 = 0, and L(cx) = cL(x) = c0 = 0 ⇒ x+ y, cx ∈ Ker L.

Therefore, Ker L is a subspace of V .

Since L(0) = 0, the zero vector of W is in Im L. Assume v,w ∈ Im L. Thus, there are vectors x,y ∈ V for

which v = L(x) and w = L(y). Given a scalar c ∈ R we have

v +w = L(x) + L(y) = L(x+ y) ∈ Im L, and cv = cL(x) = L(cx) ∈ Im L.

Therefore, Im L is a subspace of W .

Example 4.9. Find the kernel and image of the linear transformation L : R3 → R2 given by

L(x, y, z) = (x+ 2y + z, 2x− y − z).

Theorem 4.6. If L : V → W is a linear mapping of vector spaces, and Ker L = {0}, then L is one-to-one

and dim Im L = dimV.

Theorem 4.7. Suppose L : Rn → Rm is a linear mapping whose matrix in the standard basis is A. Then,

(a) Im L = Col(A).

(b) Ker L = (Row(A))⊥.

(c) dimKer L+ dim Im L = n.

Theorem 4.8 (Rank-Nullity Theorem). Let V and W be vector spaces, and L : V → W be a linear mapping.

Then,

dimKer L+ dim Im L = dimV.

4.3 More Examples

Example 4.10. Find Ker L, and Im L, where L : R3 → R2 is defined by

L(v) =

 1 2 3

−1 −1 0

v.
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Solution. We row reduce the given matrix to obtain. 1 0 −3

0 1 3


This means the first two columns of the original matrix are linearly independent. Therefore, the image is

2-dimensional. Since the image is a subspace of R2, by Exercise 3.5 the image must be equal to R2.

For the kernel, we must solve the system  x− 3z = 0

y + 3z = 0

This gives us x = 3z, and y = −3z. Therefore,

Ker L = {(3z,−3z, z) | z ∈ R} = span {(3,−3, 1)}.

Example 4.11. Find the kernel and image of the rotation mapping Rα : R2 → R2.

Solution. For kernel, suppose Rα(v) = 0 for some v ∈ R2. But that means if we rotate 0 with angle −α we

should obtain the vector v, and thus v = 0. Therefore, Ker Rα = {0}.

By the Rank-Nullity Theorem dimKer Rα + dim Im Rα = 2. Thus dim Im Rα = 2, and since Im Rα is a

subspace of R2 we conclude that Im Rα = R2, as desired.

Example 4.12. Let L : V → W be a linear mapping. Prove that L(0) = 0.

Solution. By linearity we have L(0) = L(00) = 0L(0) = 0, since the product of 0 and any vector is 0.

Example 4.13. Prove Theorem 4.1.

Solution. (a) ⇒ (b): Assume L is linear. By additivity and homogeneity we have

L(u+ cv) = L(u) + L(cv) Additivity

= L(u) + cL(v) Homogeneity

(b) ⇒ (c): Assume L satisfies (b), and let u,v ∈ V, a, b ∈ R. Applying (b) to vectors au,v and the scalar b

we obtain the following:

L(au+ bv) = L(au) + bL(v)

= L(0+ au) + bL(v)

= L(0) + aL(u) + bL(v)
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On the other hand if we set a = b = 0 in (b), we obtain L(0) = 0. Thus, L(au+ bv) = aL(u) + bL(v), which

proves (c).

(c) ⇒ (a): Letting a = b = 1 in (c) we obtain L(u + v) = L(u) + L(v), which is precisely the additivity.

Letting a = 0 in (c), we obtain L(0u + bv) = 0L(u) + bL(v), which implies L(bv) = bL(v), which is the

homogeneity. Therefore, L is linear.

Example 4.14. Let c be a scalar, A,B be two matrices with real entries and v be a column vector. Prove

or disprove each of the following:

(a) If cv = 0, then c = 0 or v = 0.

(b) If AB = 0, then A = 0 or B = 0.

(c) If Av = 0, then A = 0 or v = 0.

Solution. (a) This is true. Suppose cv = 0. If c ̸= 0, then multiplying both sides by 1/c we obtain 1v = 0

and thus v = 0.

(b) This is false. Consider the two matrices A = (1 0) and B =

(
0

1

)
. Neither A nor B is zero, but AB = 0.

(c) This is false. The same example as the one in part (b) works.

Example 4.15. Prove that if a, b are real numbers with b ̸= 0, then the function f : R → R given by

f(x) = ax+ b is not linear.

Solution. There are multiple ways of doing this. One way would be to note f(0) = b ̸= 0 and thus f cannot

be linear by Example 4.12.

Another way would be to use Theorem 4.2: If f were linear, then there would be a 1× 1 matrix A for which

f(x) = Ax. Note that 1× 1 matrices are just real numbers. Thus, we must have ax+ b = Ax for all x ∈ R

and thus b = 0, which is a contradiction.

We could also check that such f does not satisfy the homogeneity (or the additivity) condition. For example

f(2) = 2a+ b ̸= 2f(1) = 2a+ 2b, since b ̸= 0.

Example 4.16. Determine if each of the following functions is linear:

(a) L : R2 → R, given by L(x, y) = xy.

(b) L : R2 → R, given by L(x, y) = x+ 3y.
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(c) L : Rn → R, given by L(x1, . . . , xn) = x1.

Solution. (a) This is not linear. Note that f(1, 0) = 0, f(0, 1) = 0, and f(1, 1) = 1. This means

f(1, 1) ̸= f(1, 0) + f(0, 1), which implies f is not additive and thus it is not linear.

(b) This is linear. We have

L(x, y) = (1 3)

(
x

y

)
.

By Theorem 4.2 this mapping is linear.

(c) This is linear using Theorem 4.2 and the following:

L(x1, . . . , xn) = (1 0 · · · 0)


x1

...

xn

 .

Example 4.17. Let V,W be two vector spaces, and let v1,v2, . . . ,vn be a basis for V . Assume S, T : V → W

are linear transformations. Prove that S = T if and only if S(vj) = T (vj) for j = 1, . . . , n.

Solution. ⇒: If S = T , then S(vj) = T (vj), as desired.

⇐: Suppose S(vj) = T (vj) for j = 1, . . . , n. Let v ∈ V . Since v1,v2, . . . ,vn is a basis for V , there are

scalars c1, c2, . . . , cn for which v =
n∑

j=1

cjvj . By linearity of S and T , and the fact that S(vj) = T (vj) we

have

S(v) = S(

n∑
j=1

cjvj) =

n∑
j=1

cjS(vj) =

n∑
j=1

cjT (vj) = T (

n∑
j=1

cjvj) = T (v).

Therefore, S = T, as desired.

Example 4.18. Suppose T : R2 → R3 is a linear transformation for which T (1, 2) = (1, 0, 1) and T (2, 1) =

(1, 1, 0). Find the matrix MT .

Solution. We need to find T (e1) and T (e2). We see

(1, 0) =
2

3
(2, 1)− 1

3
(1, 2), and (0, 1) =

2

3
(1, 2)− 1

3
(2, 1).

By linearity of T we have

T (e1) =
2

3
T (2, 1)− 1

3
T (1, 2) =

2

3
(1, 1, 0)− 1

3
(1, 0, 1) = (1/3, 2/3,−1/3),

and

T (e2) =
2

3
T (1, 2)− 1

3
T (2, 1) =

2

3
(1, 0, 1)− 1

3
(1, 1, 0) = (1/3,−1/3, 2/3).
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Therefore, by a theorem the matrix MT is given by

MT =


1
3

1
3

2
3

−1
3

−1
3

2
3



4.4 Exercises

Exercise 4.1. Determine if each of the following is a linear mapping. If it is linear, provide a proof. If it

is not, by an example prove that it fails to satisfy one of the conditions of linear mappings.

(a) L : R3 → R3, L(x, y, z) = (x+ y, z, x2).

(b) L : R2 → R3, L(x, y) = (x+ 2y, y,−x).

(c) L : R3 → R2, L(x, y, z) = (xy, xz).

(d) L : R3 → R2, L(x, y, z) = (x+ y, z − 1).

Exercise 4.2. Find all linear transformations T : R3 → R2 satisfying all of the following:

T (1, 2, 0) = (0, 2), T (−1, 1, 1) = (−2, 3), and T (1,−2,−1) = (1,−3).

Exercise 4.3. Let α ∈ [0, 2π) be an angle. Consider the transformation Tα : R3 → R3 which rotates every

point around the z-axis with angle α. Assume we know Tα is linear. Find MTα .

Exercise 4.4. Find all 2 × 2 matrices A that commute with every other matrix. In other words, find all

matrices A ∈ M2(R), for which AB = BA, for every B ∈ M2(R).

Exercise 4.5. True or false? If true provide a proof, and if false provide a counter-example.

(a) If for a square matrix A we have A2 = 0, then A = 0.

(b) If the two products AB and BA are defined, then A and B must be square matrices.

(c) AB = BA for every two 2× 2 matrices A and B

Exercise 4.6. Find an example of three matrices A,B,C for which AB = BA,AC = CA, but BC ̸= CB.

Exercise 4.7. Find an example of two matrices A,B for which A2 and B commute but A and B do not

commute.

Exercise 4.8. Prove that if two matrices A and B commute, then for every two positive integers m,n the

two matrices An and Bm also commute.
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Exercise 4.9. Using the definition of linearity, prove that if S : V → W and T : W → U are linear mappings

of vector spaces, then T ◦ S : V → U is also linear.

Exercise 4.10. Suppose T : V → W is a linear transformation between vector spaces. Using induction,

prove that for every c1, . . . , cn ∈ R and every v1, . . . ,vn ∈ V , we have

T (c1v1 + · · ·+ cnvn) = c1T (v1) + · · ·+ cnT (vn).

Exercise 4.11. Provide an example of a mapping f : Rn → Rm for some n,m that is homogeneous, but it

is not linear.

Exercise 4.12. Let V,W are two vector spaces. Suppose L : V → W is a mapping that is additive and

satisfies L(cu) = cL(u), for all u ∈ V and all positive c ∈ R. Does L have to be linear?

Exercise 4.13. Suppose T : V → W is a mapping between vector spaces that is additive. Prove that:

(a) T (−v) = −T (v), for all v ∈ V.

(b) For every positive integer n and every v ∈ V , T (nv) = nT (v). (Hint: Use induction on n.)

(c) Combining parts (a) and (b), prove T (nv) = nT (v) for every v ∈ V and every n ∈ Z.

(d) Prove that for every r ∈ Q and every v ∈ V, we have T (rv) = rT (v).

Exercise 4.14. Let V,W be vector spaces. Assume v1, . . . ,vn form a basis for V , and let w1, . . . ,wn ∈ W .

Prove that T : V → W defined by

T (c1v1 + c2v2 + · · ·+ cnvn) = c1w1 + c2w2 + · · ·+ cnwn, for all c1, c2, . . . , cn ∈ R

is a linear transformation.

Exercise 4.15. Suppose f, g : Rn → Rm are linear mappings. Prove that f + g : Rn → Rm is linear, and

that Mf+g = Mf +Mg.

Exercise 4.16. Suppose V,W are subspaces of Rm and Rn, respectively. Prove that V ×W is a subspace of

Rm+n and that

dim(V ×W ) = dimV + dimW.

Exercise 4.17. Suppose L : V → W is a bijective linear transformation. Prove that L−1 : W → V is linear.

Exercise 4.18. Suppose A,B are matrices of size m×n and n×k, respectively. Prove that (AB)T = BTAT .

4.5 Challenge Problems

Definition 4.6. For two subspaces U and W of Rn, define

U +W = {x ∈ V | x = u+w for some u ∈ U, and w ∈ W}.
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Exercise 4.19. Suppose U and W are subspaces of a vector space V . Prove that

dim(U +W ) + dim(U ∩W ) = dimU + dimW.

Exercise 4.20. Suppose A ∈ Mn(R) is not invertible. Prove that there is a nonzero matrix B ∈ Mn(R) for

which AB = BA = 0.

4.6 Summary

• To prove L : V → W is linear we need to prove two properties for all v,w ∈ V and c ∈ R :

– Additivity: L(v +w) = L(v) + L(w), and

– Homogeneity: L(cv) = cL(v)

• To prove L : V → W is not linear, we need to show either the additivity or the homogeneity fails for at

least some vectors and constants. We do not need to prove that both additivity and homogeneity fail.

• To find the product Av, where A is an m× n matrix and v is an n× 1 column we can use one of the

following:

– Using rows of A, write: A =


w1

...

wm

. Then we have Av =


w1 · v

...

wm · v

 .

– Using columns of A, write: A =
(

v1 · · · vn

)
and v =


x1

...

xn

. Then,

Av = x1v1 + · · ·+ xnvn.

• Every linear mapping L : Rn → Rm is given by L(v) = Av, where A is an m× n matrix. The columns

of the matrix A are L(e1), . . . , L(en). Every such mapping is linear.

• The (i, j) entry of AB is obtained by finding the dot product of the i-th row of A and the j-th column

of B.

• For the matrix AB to be defined we need the number of columns of A and the number of rows of B to

be the same.

• If A is a matrix of size m× n and B is a matrix of size n× k, then the matrix AB is of size m× k.

• Note that in general AB and BA are not the same matrices.

• Image and kernel of every linear mapping are subspaces.

• The Rank-Nullity Theorem states that for every linear mapping L : V → W we have

dimKer L+ dim Im L = dimV.
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Week 5

5.1 Determinants

In this section we would like to define the determinant of a square matrix. One interpretation of determinants

is volume. Given n vectors v1, . . . ,vn ∈ Rn, we want the n× n determinant det(v1 · · ·vn) to determine the

volume of the parallelepiped determined by these n vectors. We expect any reasonable volume to follow some

properties discussed below.

Definition 5.1. Let D : Mn(R) → R be a function.

(a) We say D is multi-linear if D is linear with respect to each row. In other words, for every i we have

D



v1

...

avi + bw
...

vn


= aD



v1

...

vi

...

vn


+ bD



v1

...

w
...

vn


.

(b) We say D is alternating if D


v1

...

vn

 = 0 when vi = vj for some i ̸= j.

To keep the notations more compact, instead of writing D


v1

...

vn

 we write D(v1, . . . ,vn); inserting commas

to indicate v1, . . . ,vn are rows and not columns.

Example 5.1. Let D : M2(R) → R be an alternating, multi-linear function. Prove that

D(u,v) = −D(v,u).
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Example 5.2. Find all alternating, multi-linear function D : M2(R) → R satisfying D(I) = 1.

Theorem 5.1. Let D : Mn(R) → R be alternating and multi-linear, then it satisfies the following properties.

(a) Swapping two rows, negates D. In other words,

D(v1, . . . ,vi, . . . ,vj , . . . ,vn) = −D(v1, . . . ,vj , . . . ,vi, . . . ,vn)

(b) Rescaling a row by c rescales D by c. In other words,

D(v1, . . . , cvi, . . . ,vn) = cD(v1, . . . ,vi, . . . ,vn).

(c) Adding a multiple of one row to another does not change D. In other words,

D(v1, . . . ,vi + cvj , . . . ,vn) = D(v1, . . . ,vi, . . . ,vn).

(d) D(v1, . . . ,vn) = 0 if v1, . . . ,vn are linearly dependent.

Clearly the first three operations are very familiar. These are precisely the row operations that we explored

when solving systems of linear equations.

Theorem 5.2. For every positive integer n, there is a unique multi-linear, alternating function D : Mn(R) →

R satisfying D(I) = 1.

Definition 5.2. Let D be the function in the above theorem. Then the determinant of an n × n matrix

A whose rows are v1, . . . ,vn is defined as D(v1, . . . ,vn).

Example 5.3. Evaluate

det


1 2 −1

2 0 1

3 2 1


5.2 Row Operations and Matrix Multiplication

The outcome of each row operation to matrix A is a matrix EA as follows:

• If the operation is interchanging rows i and j with i < j, then

E =



e1
...

ej
...

ei
...

en


.
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• If the operation is rescaling of the i-th row by a factor of c, then E =



e1
...

cei
...

en


.

• If the operation is adding a multiple of the j-th row to the i-th row then E =



e1
...

ei + cej
...

en


.

Definition 5.3. Any matrix E of one the forms above is called an elementary matrix.

Combining the above and Theorem 5.1 we conclude that det(EA) = (detE)(detA), for every n× n matrix

A and n× n elementary matrix E as above.

Theorem 5.3. Let A and B be two n× n matrices, then det(AB) = (detA)(detB)

Determinants can be evaluated using co-factor expansions. Here is an example.

det


a11 a12 a13

a21 a22 a23

a31 a32 a33

 = a11 det

 a22 a23

a32 a33

− a12 det

 a21 a23

a31 a33

+ a13 det

 a21 a22

a31 a32

 .

In other words, we can write the determinant of a 3× 3 matrix A as follows:

detA = a11 detA11 − a12 detA12 + a13 detA13,

where Aij is obtained by removing the i-th row and the j-th row of A.

Theorem 5.4. (Cofactor Expansion Along a Row or a Column) Let A = (aij)n×n be an n× n matrix with

aij as its (i, j) entry. Then, for every i with 1 ≤ i ≤ n, we have

detA =

n∑
j=1

(−1)i+jaij detAij ,

where Aij is obtained by removing the i-th row and the j-th row of A. Similarly, for every j with 1 ≤ j ≤ n,

we have

detA =

n∑
i=1

(−1)i+jaij detAij ,

Definition 5.4. A square matrix A is called invertible or nonsingular if there is a square matrix B for

which AB = BA = I. When A is invertible its inverse is denoted by A−1.
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Example 5.4. Find the inverse of


1 1 2

0 1 3

2 1 0


Theorem 5.5. For a square matrix A the following are equivalent:

(a) A is invertible.

(b) detA ̸= 0.

(c) Columns of A are linearly independent.

(d) Rows of A are linearly independent.

Theorem 5.6 (Cramer’s Rule). Let A = (a1 · · ·an) be an invertible matrix. Then for every column vector

b, the only solution to Ax = b is

x =


x1

...

xn

 ,

where xj =
det(a1 · · ·aj−1 b aj+1 · · ·an)

det(A)
.

Example 5.5. Solve the system of equations using Cramer’s Rule:
x+ y − 2z = 1

y + 2z = 1

x− z = 3

Theorem 5.7. Let A be an invertible matrix. Then the (i, j) entry of A−1 equals
(−1)i+j det(Aji)

detA
, where

Aji is the matrix obtained from A by removing the j-th row and i-th column of A.

5.3 More Examples

Example 5.6. For real numbers a1, . . . , an let A = diag(a1, . . . , an) be the n × n matrix whose diagonal

entries are a1, . . . , an in that order. Prove that detA = a1 · · · an in two ways:

(a) Using induction along with co-factor expansion.

(b) Using row operations

Solution. (a) We will prove this by induction on n.

Basis step. For n = 1, A = (a1), and we have det(a1) = a1.
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Inductive step. Expanding detA along the last row we obtain detA = (−1)n+nan det(diag(a1, . . . , an−1)) (∗),

since the rest of the terms in the expansion are zero. By inductive hypothesis det(diag(a1, . . . , an−1)) =

a1 · · · an−1. Combining this with (∗) we obtain the result.

(b) Note that rows of the given matrix are a1e1, . . . , anen. By the rescaling row operation with a factor of

a1 and with respect to the first row we obtain the following:

det


a1e1

a2e2
...

anen

 = a1 det


e1

a2e2
...

anen


Repeating this we conclude that

det(diag(a1, . . . , an)) = a1 · · · an det I = a1 · · · an,

as desired.

Example 5.7. Suppose A is a square matrix such that A and A−1 both only have integer entries. Prove

that detA = ±1.

Solution. By co-factor expansion we know that detA is an integer. (This can be done by induction on the size

of A.) Similarly detA−1 is also an integer. Since det(AA−1) = det I = 1, we must have (detA)(detA−1) = 1.

Since both detA and detA−1 are integers, we must have detA = ±1.

Example 5.8. Let a, b, c be three real numbers. Evaluate the following determinant:

det


a a2 a3

b b2 b3

c c2 c3


Solution. We will use Theorem 5.1.

det


a a2 a3

b b2 b3

c c2 c3

 = abcdet


1 a a2

1 b b2

1 c c2


Use row operations R2 −R1 and R3 −R1 we obtain the following:

abcdet


1 a a2

0 b− a b2 − a2

0 c− a c2 − a2

 = abc(b− a)(c− a) det


1 a a2

0 1 b+ a

0 1 c+ a

 ,
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which is obtained by taking out scalars b− a and c− a from the second and third rows of the matrix. Using

the row operation R3 −R2 we obtain the following:

abc(b− a)(c− a) det


1 a a2

0 1 b+ a

0 0 c− b

 = abc(b− a)(c− a)(c− b) det


1 a a2

0 1 b+ a

0 0 1


Expanding this along the first column and the fist column again we obtain abc(b− a)(c− a)(c− b) .

Example 5.9. Let A,B,C be three matrices of sizes n×m,m× k, and k × n, respectively. Prove that:

(a) Row(CA) ⊆ Row(A).

(b) Col(AB) ⊆ Col(A).

Using the above, conclude that if P,Q are n× n and m×m invertible matrices, then

rank (PA) = rank (AQ) = rank A.

Solution. (a) Suppose rows of A are a1, . . . ,an. Assume the i-th row of C is (ci1 · · · cin). Then the i-th row

of CA would be

ci1a1 + · · ·+ cinan ∈ span {a1, . . . ,an} = Row(A).

This means every row of CA is in Row(A). Since Row(A) is closed under linear combination, all linear

combinations of rows of CA are in Row(A). Therefore, Row(CA) ⊆ Row(A).

(b) Let v1, . . . ,vm be all columns of A and (b1j · · · bmj)
T be the j-th column of B. The j-th column of AB

is then given by

b1jv1 + · · ·+ bmjvm ∈ span {v1, . . . ,vm} = Col(A).

Therefore, every column of AB is in Col(A). Similar to above Col(AB) ⊆ Col(A), as desired.

Now, assume P is an invertible n× n matrix. By (a) above we have:

Row(PA) ⊆ Row(A).

On the other hand if we write A = P−1PA and apply part (a) again we obtain the following:

Row(A) = Row(P−1(PA)) ⊆ Row(PA).

Therefore, Row(PA) = Row(A). Similarly we can show if Q is an invertible m×m matrix then Col(AQ) =

Col(A).
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5.4 Exercises

Exercise 5.1. Evaluate the following determinant by each of the following methods.

(a) Using row operations, i.e. Theorem 5.1.

(b) Using co-factor expansion.

det


1 −1 2

0 2 −1

3 4 1


Exercise 5.2. Prove that if A is an n× n matrix and E is an n× n elementary matrix corresponding to a

row operation, then det(EA) = (detE)(detA).

Hint: Use Theorem 5.1.

Exercise 5.3. Suppose a, b, c, d are real numbers for which ad ̸= bc. Using the method of row reduction find

the inverse of the 2× 2 matrix  a b

c d

 .

You may have to take cases. (You must use the row reduction method.)

Exercise 5.4. A square matrix is called upper triangular iff all enteries below its main diagonal are zero.

Prove that the determinant of an upper triangular matrix is the product of its diagonal entries.

det



a11 a12 · · · a1n

a22 · · · a2n
. . .

...

0 ann


= a11a22 · · · ann

Hint: Use induction and co-factor expansion.

Exercise 5.5. A binary matrix is one whose entries are all 0 or 1. What is the largest number of zeros that

an n× n invertible binary matrix can have? How about the smallest number of zeros?

Exercise 5.6. Prove that if A is an n×m matrix and B is an m× n matrix, where m < n, then AB is not

invertible.

Hint: Use Theorem 2.5.

Exercise 5.7. Show that if the entries of an invertible matrix are all rational, then all entries of its inverse

are also rational.

Exercise 5.8. Prove that the inverse of an n× n matrix is unique.

Exercise 5.9. A square matrix A is said to be orthogonal iff AAT = I. Prove that an n × n matrix A is

orthogonal if and only if rows of A form an orthonormal basis for Rn.
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5.5 Challenge Problems

Exercise 5.10. Suppose A(x) is an n×n matrix all of whose entries are continuous functions over an open

interval I. Suppose det(A(x)) ̸= 0 for every x ∈ I. Prove that all entries of the inverse of A are continuous

functions over I.

Exercise 5.11. Prove that for every positive integer n the n × n matrix whose (i, j) entry is
1

i+ j − 1
is

invertible.

Exercise 5.12. Is there a subspace M2(R) of dimension larger than 1 whose only noninvertible matrix is

the zero matrix? How about M3(R)? How about Mn(R)?

Exercise 5.13. For real numbers a0, a1, . . . , an let Sk =
k∑

j=0

aj for k = 0, 1, . . . , n. Evaluate determinant of

the following matrix: 

S0 S0 S0 S0 · · · S0

S0 S1 S1 S1 · · · S1

S0 S1 S2 S2 · · · S2

S0 S1 S2 S3 · · · S3

...
...

...
. . .

...

S0 S1 S2 S3 · · · Sn


5.6 Summary

• To evaluate determinants use row operations along with co-factor expansion.

• Swapping two rows (or columns) negates the determinant.

• Row (or column) additions do not change the determinant.

• Rescaling a row (or a column) by a factor c multiplies the determinant by c.

• If the rows (or columns) of a matrix are linearly dependent then the matrix has zero determinant.

• detA = detAT

• det(AB) = det(A) det(B)

• A matrix A is invertible if and only if detA ̸= 0 if and only if rows (or columns) or A are linearly

independent.

• To find the inverse of a square matrix A:

– Create a matrix (A|I) by placing the identity matrix next to the matrix A.

– Row reduce this matrix to obtain a matrix of this form (I|B).

– B would be the inverse of A.
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– If row reducing A does not end up with the identity matrix and we end up with a zero row, then

A would not be invertible.
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Chapter 6

Week 6

6.1 Limits and Continuity

In order to be able to define limit of a function at a given point, we need to be able to approach that point.

For example consider the following function:

f(x) =


x+ 1 if x < 0

2 if x = 1

2x− 1 if 2 ≤ x

The domain of this function is (−∞, 0) ∪ {1} ∪ [2,∞). Since the only points close to zero inside the domain

are less than 0, we can only talk about lim
x→0−

f(x), and not lim
x→0+

f(x). The point x = 1 is an isolated point,

so we cannot talk about the limit at x = 1, and for x = 2 we can only talk about the limit from the right.

This motivates the following definition:

Definition 6.1. Let a be a point in Rn. The open ball of radius r centered at a is defined by

Br(a) = {x ∈ Rn | ||x− a|| < r},

and the closed ball of radius r centered at a is defined by

Br(a) = {x ∈ Rn | ||x− a|| ≤ r}.

Definition 6.2. Let D be a subset of Rn. A point a in Rn is called a limit point of D iff every open ball

centered at a contains at least one point of D other than a.

Example 6.1. Find all limit points of (0, 1) in R.

Definition 6.3. Let D be a subset of Rn, f : D → Rm be a function, a be a limit point of D, and b ∈ Rm.

We say b is the limit of f at a, written

lim
x→a

f(x) = b

71
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iff for every ϵ > 0, there is δ > 0 such that if for some x ∈ D, we have 0 < ||x−a|| < δ, then ||f(x)−b|| < ϵ.

If no such b exists we say f does not have a limit at a or the limit does not exist.

Remark. Note that since the limit of a function at a only depends on the functional values near a, if two

functions f and g are the same near a, except possibly at a, then their limits at a are the same.

Similar to above we may also define limits of sequences.

Definition 6.4. Let xk ∈ Rn, with k = 1, 2, . . . be a sequence and a ∈ Rn. We say xk converges to a written

as xk → a or lim
k→∞

xk = a iff the following holds:

∀ ϵ > 0 ∃ N ∈ N such that ∀ k ∈ N, if k ≥ N, then ||xk − a|| < ϵ.

Example 6.2. Prove that lim
x→1

3x+ 2 = 5.

Example 6.3. Prove that lim
x→1

1 + x

1 + 2x
=

2

3
.

Example 6.4. Prove that lim
(x,y)→(1,−1)

x2 + y2 = 2.

Example 6.5. Show that lim
(x,y)→(0,0)

xy

x2 + y2
does not exist.

Theorem 6.1. Suppose D is a subset of Rn, a is a limit point of D, and f : D → Rm is a function. If there

are two sequences xk,yk ∈ D−{a} for which xk → a and yk → a, but the limits lim
k→∞

f(xk) and lim
k→∞

f(yk)

are not the same. Then lim
x→a

f(x) does not exist.

Definition 6.5. Given a function f : D → Rm, where D is a subset of Rn, we write f = (f1, . . . , fm)

if f(x) = (f1(x), . . . , fm(x)) for all x ∈ D, and we say functions f1, . . . , fm from D to R are coordinate

functions of f .

Theorem 6.2. Let D be a subset of Rn, and a be a limit point of D, and b = (b1, . . . , bm) ∈ Rm. Assume

f = (f1, . . . , fm) : D → Rm is a function. Then lim
x→a

f(x) = b if and only if lim
x→a

fi(x) = bi, for all

i = 1, . . . ,m.

Theorem 6.3 (Squeeze Theorem). Suppose D is a subset of Rn, and a is a limit point of D. Let f, g, h :

D → R be functions for which

f(x) ≤ g(x) ≤ h(x) for all x ∈ D − {a}.

If lim
x→a

f(x) = lim
x→a

h(x) = L for some real number L, then lim
x→a

g(x) = L.

Definition 6.6. Let a be a limit point of a subset D of Rn. We say a function f : D → Rm is continuous

at a if lim
x→a

f(x) = f(a). If f is continuous at every point inside its domain we say f is continuous.

Example 6.6. Prove that the following functions are continuous.

(a) πi : Rn → R defined by πi(x1, . . . , xn) = xi, where 1 ≤ i ≤ n is fixed.

(b) p : R2 → R defined by p(x, y) = xy.
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(c) s : R2 → R defined by s(x, y) = x+ y.

Theorem 6.4. Let D be a subset of Rn, and a be a limit point of D. The mapping f : D → Rm is continuous

at a if and only if each coordinate function of f is continuous at a.

Theorem 6.5. Suppose D1 and D2 are subsets of Rn and Rm, respectively. Let f : D1 → Rm, and

g : D2 → Rk be two functions. Let a be a limit point of D1, and a limit point of the domain of g ◦ f . Suppose

lim
x→a

f(x) = b, and b ∈ D2, and that g is continuous at b. Then lim
x→a

g ◦ f(x) = g(b).

Theorem 6.6. Let D be a subset of Rn, and a be a limit point of D. Suppose f, g : D → R be functions.

Then

lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x),

and

lim
x→a

(f(x)g(x)) = ( lim
x→a

f(x))( lim
x→a

g(x)),

assuming both lim
x→a

f(x) and lim
x→a

g(x) exist.

Theorem 6.7. All of the following single variable real-valued functions are continuous over their domains:

Polynomials and Root functions, Rational functions, Trigonometric functions and their inverses, Exponential

functions and their inverses.

Example 6.7. Prove that the function f : R3 → R2 defined by f(x, y, z) = (x + y, sin(xy) + cos(z)) is

continuous.

Example 6.8. Every polynomial p(x1, . . . , xn) is a continuous function from Rn to R.

6.2 More Examples

Example 6.9. Suppose a is a limit point of D, where D is a subset of Rn. Prove that every open ball

centered at a contains infinitely many points of D.

Solution. Suppose on the contrary an open ball Br(a) contains only finitely many points of D. Let b ̸= a

be the point in Br(a) ∩D with the minimum distance to a, and set s = ||b− a||.

We claim Bs(a) contains no point of D that is different from a.

Let x ∈ D ∩Bs(a). By the definition of s, x = a. This contradicts the fact that a is a limit point of D.

Example 6.10. Find all limit points of the set A = { 1
n | n = 1, 2, 3, . . .}.

Solution. We will show that 0 is the only limit point of this set. First note that for every ball (−r, r) (with

r > 0) around 0, there is a positive integer n for which r > 1/n and thus (−r, r) has a point in A other than

0. Therefore, by definition, 0 is a limit point of A.
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Now, assume 0 ̸= x ∈ R. If x is negative then the ball B−x(x) contains no element of A, since if y ∈ B−x(x),

then |y − x| < −x or y − x < −x, and thus y < 0, which means y ̸∈ A.

If x = 1
n for some positive integer n, then we will show that B 1

n− 1
n+1

( 1n ) contains no point of A other than

x. If y ∈ B 1
n− 1

n+1
( 1n ), then

1

n
− 1

n
+

1

n+ 1
< y <

1

n
+

1

n
− 1

n+ 1

It is enough to show that 1
n+1 < y < 1

n−1 . To prove that, it is enough to show 1
n + 1

n − 1
n+1 < 1

n−1 , which

is true if and only if 2
n < 2n

n2−1 , which holds if and only if n2−1 < n2. This means 1/n is not a limit point of A.

Suppose 1
n+1 < x < 1

n . Then, the ball of radius r = min(x − 1
n+1 ,

1
n − x) centered at x contains no point

of A. If y ∈ Br(x), then |y − x| < r, and thus x − r < y < x + r, or y < x + 1
n − x = 1

n . Similarly

y > x− r > x− (x− 1
n+1 ) =

1
n+1 . This means y ̸∈ A, and thus x is not a limit point of A.

Example 6.11. Using the definition, find each limit or show it does not exist.

(a) lim
(x,y)→(1,0)

x2 + 2y

x+ y
.

(b) lim
(x,y)→(0,0)

(x+ y) sin

(
1

x2 + y2

)
.

(c) lim
(x,y)→(0,0)

y2

x2 + y2
.

(d) lim
(x,y)→(2,1)

xy − x2 + y.

Scratch. For the first part, we know the limit should be 1, since both numerator and denominator are

continuous. We will need to prove the following:

∀ ϵ > 0 ∃ δ > 0 such that 0 < ||(x, y)− (1, 0)|| < δ ⇒
∣∣∣∣x2 + 2y

x+ y
− 1

∣∣∣∣ < ϵ (∗)

The first inequality in (∗) can be written as
√

(x− 1)2 + y2 < δ, which implies |x− 1| < δ and |y| < δ.

The latter inequality in (∗) can be simplified as∣∣∣∣x2 + 2y

x+ y
− 1

∣∣∣∣ < ϵ ⇐⇒
∣∣∣∣x2 + y − x

x+ y

∣∣∣∣ < ϵ.

Since we know x ≈ 1 and y ≈ 0, for the numerator we have

x2 − x = x(x− 1) ≈ 0, and y ≈ 0.

We already know |y| < δ. We can then bound |x| by making sure δ ≤ 1, which implies

|x− 1| < 1 ⇒ −1 < x− 1 < 1 ⇒ 0 < x < 2 ⇒ |x(x− 1)| < 2δ.

On the other hand, the denominator |x + y| is approximately 1. We will guarantee this quantity remains

away from zero by choosing an appropriate delta. By assuming δ ≤ 1 we obtain −1 < y < 1 and 0 < x < 2,
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which implies −1 < x+ y < 3, but that is not good enough, since in this range, x+ y could be very close to

zero. We will make δ even smaller. Letting δ ≤ 1/3 we will get 2/3 < x < 4/3 and −1/3 < y < 1/3, which

implies 1/3 < x + y < 5/3. Therefore, 1/|x+ y| < 3. Putting what we have so far together we obtain the

following: ∣∣∣∣x2 + 2y

x+ y
− 1

∣∣∣∣ = ∣∣∣∣x2 + y − x

x+ y

∣∣∣∣ ≤ ∣∣∣∣x2 − x

x+ y

∣∣∣∣+ ∣∣∣∣ y

x+ y

∣∣∣∣ < 3× 2δ + 3δ = 9δ.

Therefore, we need to make sure δ ≤ 1, δ ≤ 1/3, and δ ≤ ϵ/9.

For part (b) we know∣∣∣∣(x+ y) sin

(
1

x2 + y2

)∣∣∣∣ ≤ |x+ y| ≤ |x|+ |y| < δ + δ = 2δ, if
√
x2 + y2 < δ.

Thus, we need to make sure 2δ ≤ ϵ.

For part (c) we will approach the origin along the line y = mx to obtain
m2x2

x2 +m2x2
=

m2

1 +m2
. Since this

depends on m the limit does not exist. We will show that using proof by contradiction and taking two

different values of m that yield different limits, e.g. m = 0 and m = 1. If the limit were b, then b must be

close to both
02

1 + 02
= 0 and

12

1 + 12
= 1/2. This is not possible and can be shown by taking ϵ = 1/4, which

is half of the distance between 0 and 1/2.

Solution. (a) We will show that the limit is 1. For every ϵ > 0 let δ = min(1/3, ϵ/9). Note that since 1/3

and ϵ/9 are positive, δ is positive as well. If ||(x, y)− (0, 0)|| < δ, then√
(x− 1)2 + y2 < δ ⇒ |x− 1| < δ, and |y| < δ ⇒ |x− 1| < 1/3, and |y| < 1/3 ⇒ 2/3 < x < 4/3.

This also implies

1/3 < x+ y < 4/3 + 1/3 = 5/3 ⇒ |x+ y| > 3 ⇒ 1

|x+ y|
< 3.

This yields the following:∣∣∣∣x2 + 2y

x+ y
− 1

∣∣∣∣ = ∣∣∣∣x2 + y − x

x+ y

∣∣∣∣ ≤ ∣∣∣∣x2 − x

x+ y

∣∣∣∣+ ∣∣∣∣ y

x+ y

∣∣∣∣ = ∣∣∣∣x(x− 1)

x+ y

∣∣∣∣+ ∣∣∣∣ y

x+ y

∣∣∣∣ < 4

3
× 3× δ + 3δ = 7δ ≤ 7ϵ

9
< ϵ.

(b) We will show the limit is 0. For every ϵ > 0 let δ = ϵ/2. Suppose ||(x, y) − (0, 0)|| < δ. We have√
x2 + y2 < δ, and thus |x|, |y| < δ. Therefore,∣∣∣∣(x+ y) sin

(
1

x2 + y2

)∣∣∣∣ ≤ |x+ y| ≤ |x|+ |y| < δ + δ = 2δ = ϵ.

This completes the proof of the claim.

(c) We will show this limit does not exist. Assume on the contrary that the limit is a real number b. In the

definition of limit let ϵ = 1/4. There is δ > 0 for which

0 <
√

x2 + y2 < δ ⇒
∣∣∣∣ y2

x2 + y2
− 0

∣∣∣∣ < 1

4
.

Letting x = δ/2 and y = 0 we have
√
x2 + y2 = δ/2 < δ. Therefore,

|0− b| < 1

4
⇒ −1

4
< b <

1

4
(∗)
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Letting x = y = δ/2 we have
√

x2 + y2 =
√

2δ2/4 = δ/
√
2 < δ. Therefore, we must have

|1/2− b| < 1

4
⇒ 1

4
< b <

3

4
.

This contradicts (∗). Thus, the limit does not exist.

(d) We will prove the limit is −1. Let ϵ > 0 and set δ = min(1, ϵ/8). Since δ ≤ 1, if ||(x, y)− (2, 1)|| < δ, then√
(x− 2)2 + (y − 1)2 < δ, which implies |x− 2| < 1 and |y − 1| < δ. Thus, 1 < x < 3. This means |x| < 3.

Using the Triangle Inequality we have the following:

|xy − x2 + y − (−1)| = |x(y − 1) + x− x2 + y − 1 + 2|

≤ |(y − 1)(x+ 1)|+ |x− x2 + 2|

< δ(|x|+ 1) + |x− 2||x+ 1|

≤ 4δ + δ(|x|+ 1)

≤ 4δ + 4δ

= 8δ ≤ ϵ.

This completes the proof.

Example 6.12. Find each limit or show it does not exists. You may use any method.

(a) lim
(x,y,z)→(1,π,0)

(x2 + sin(xy)− x cos y + xz).

(b) lim
(x,y)→(0,0)

x√
x2 + y2

.

(c) lim
(x,y)→(0,0)

x5 + y5

x4 + y4
.

Solution. (a) Since the projection functions, polynomials, trigonometric functions are all continuous func-

tions, the function x2 + sin(xy)− x cos y + xz is continuous. Therefore, the limit is

1 + sin(π)− cos(π) + 0 = 2.

(b) Letting y = x we obtain

x√
x2 + y2

=
x√
2|x|

= ± 1√
2
.

Letting x → 0+ we obtain
1√
2
, and letting x → 0− we obtain − 1√

2
. Since these two values are different, by

Theorem 6.1 the limit does not exist.

(c) Note that along all lines y = mx and x = 0 the limit is zero, so we suspect the limit might be zero. We

can write the following chain of inequalities:

∣∣∣∣x5 + y5

x4 + y4

∣∣∣∣ ≤ ∣∣∣∣ x5

x4 + y4

∣∣∣∣+ ∣∣∣∣ y5

x4 + y4

∣∣∣∣ = ∣∣∣∣ x4

x4 + y4

∣∣∣∣ |x|+ ∣∣∣∣ y4

x4 + y4

∣∣∣∣ |y| ≤ |x|+ |y|.
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This gives us the following inequalities:

−|x| − |y| ≤ x5 + y5

x4 + y4
≤ |x|+ |y|.

Since |x| and |y| are continuous, we have

lim
(x,y)→(0,0)

|x|+ |y| = lim
(x,y)→(0,0)

−|x| − |y| = 0.

By the Squeeze Theorem, the answer is zero.

More examples can be found on Colley’s Vector Calculus: pages 100-109 Examples 4, 8, 9, 10, 14, 16.

6.3 Exercises

Exercise 6.1. Using the definition of limit, find each of the following limits or show they do not exist:

(a) lim
(x,y)→(2,1)

xy − x2 + y.

(b) lim
(x,y)→(0,0)

x2y

x2 + y2
.

(c) lim
(x,y)→(2,1)

xy

x+ y
.

Exercise 6.2. Prove that every linear mapping L : Rn → Rm is continuous.

Hint: Use the matrix ML.

Exercise 6.3. Prove that for every a ∈ Rn and every r > 0, the open ball Br(a) is convex, i.e., for every

x,y ∈ Br(a) and every t ∈ [0, 1], we have tx+ (1− t)y ∈ Br(a).

Exercise 6.4. Evaluate the limit or show it does not exist:

lim
(x,y)→(0,0)

(3x3 + y cos(x+ y)) sin

(
1

x2 + y4

)
.

Hint: Use the Squeeze Theorem.

Exercise 6.5. Prove that every real number is a limit point of Q.

Hint: Given a real number r you need to show there is a rational number in (r−ϵ, r+ϵ) that is not r. Choose

a positive integer n for which ϵn > 1. Argue that there is an integer between nr and nr + nϵ.

Exercise 6.6. Evaluate each of the following or show they do not exist, once using the ϵ − δ definition of

limit, and once using an appropriate theorem.

(a) lim
(x,y,z)→(1,2,3)

x+ 2y − 3z.

(b) lim
(x,y)→(0,0)

x2 + y3

x4 + y2
.
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Exercise 6.7. Evaluate each limit or show it does not exist.

(a) lim
(x,y)→(0,0)

xy4

x4 + y4
.

(b) lim
(x,y)→(0,0)

sin(xy)

x2 + y2
.

(c) lim
(x,y)→(π,0)

sin(x+ y)

y
.

Exercise 6.8. Show that the following function is not continuous at (0, 0).

f(x, y) =


x2 − y2

x2 + y2
if (x, y) ̸= (0, 0)

0 if x = y = 0

Exercise 6.9. Consider the function f(x, y) =
xy

x2 + y2
defined over R2−{(0, 0)}. Show that lim

(x,y)→(0,0)
f(x, y)

does not exist, but both lim
x→0

lim
y→0

f(x, y), and lim
y→0

lim
x→0

f(x, y) exist.

Exercise 6.10. Consider the function f(x, y) =
xy2

x2 + y4
. Prove that limits of f(x, y) along all lines through

the origin are zero, but lim
(x,y)→(0,0)

f(x, y) does not exist.

6.4 Challenge Problems

Exercise 6.11. Let a, b be two constants. Prove that lim
(x,y)→(0,0)

xayb

x2 + y2
exists if and only if a+ b > 2.

Exercise 6.12. Find the limit or show it does not exist: lim
(x,y)→(0,0)

xy

x2 + (y ln(x2))2
.

6.5 Summary

• To prove lim
x→a

f(x) = b using the definition:

– Start with writing down the definition.

– The objective is to find δ in terms of ϵ.

– Simplify both ||x− a|| < δ and ||f(x)− b|| < ϵ.

– You may need to break up the inequality ||f(x)−b|| < ϵ into portions that tend to zero, then use

||x− a|| < δ to find an inequality for each piece in terms of δ.

– After you find δ you need to re-write the work as a full solution. Start with “Let ϵ > 0 and set

δ = · · · ”.

• To find the limit of a function f = (f1, . . . , fn) we find the limit of each of the component functions fi.

• To find the limit of a function f : D → R at a:

– Find the limit of f(x) as x approaches a along different paths.
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– If two of these limits are different or if any of the limits does not exist, then the original limit does

not exist.

– If all limits are the same value b, then we suspect the limit might in fact be b.

– Then follow the process above and prove the limit is b.

– Sometimes the Squeeze Theorem could help. In order to create appropriate inequalities polar

coordinates may be used.
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Chapter 7

Week 7

7.1 Topology of Rn

Definition 7.1. A subset A of Rn is called open if given any point a ∈ A, there exists an open ball Br(a)

(with r > 0) that is completely contained in A.

Example 7.1. For any positive real number r and any a ∈ Rn the ball Br(a) is open,

Theorem 7.1. Open sets in Rn satisfy the following properties:

(a) ∅ and Rn are open.

(b) The union of any collection of open sets is open.

(c) The intersection of any finite number of open sets is open.

Example 7.2. By an example show that the intersection of a collection of open sets may not be open.

Definition 7.2. A subset A of Rn is said to be closed if Rn −A is open.

Example 7.3. Prove that [a, b] is closed in R.

Theorem 7.2. A subset A of Rn is closed if and only if it contains all of its limit points.

Theorem 7.3. Closed subsets in Rn satisfy the following properties:

(a) ∅ and Rn are closed.

(b) The union of any finite number of closed sets is closed.

(c) The intersection of any collection of closed sets is closed.

Theorem 7.4. Let f : Rn → Rm be a function.

(a) f is continuous if and only if given any open subset U of Rm, the inverse image f−1(U) is an open subset

of Rn.

81
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(b) f is continuous if and only if given any closed subset C of Rm the inverse image f−1(C) is a closed

subset of Rn.

Example 7.4. Prove that the circle x2 + y2 = 1 is a closed subset of R2.

Example 7.5. Prove that every closed ball in Rn is a closed subset of Rn.

Definition 7.3. A subset A of Rn is called compact if every infinite subset of A has a limit point which

lies in A.

Example 7.6. Prove that R, and (0, 1) are not compact.

Definition 7.4. A subset A of Rn is said to be bounded if it lies inside some open ball .

Example 7.7. Prove that a subset of Rn is bounded if and only if it is inside an open ball centered at the

origin.

Theorem 7.5 (Bolzano–Weierstrass Theorem). A subset of Rn is compact if and only if it is bounded and

closed.

Theorem 7.6 (The Extreme Value Theorem). Suppose A is a compact subset of Rn and f : A → R is

continuous. Then, f attains its maximum and minimum values. In other words, there exist x0,y0 ∈ A for

which f(x0) ≤ f(x) ≤ f(y0) for all x ∈ A.

7.2 Curves in Rn

Recall that for a function f : R → R, we define its derivative at a by

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

This can also be written as

lim
h→0

f(a+ h)− f(a)− f ′(a)h

h
= 0.

In other words, the value of f(a + h) − f(a) is very close to f ′(a)h, when h is small. Note that f ′(a)h is a

linear function in terms of h.

Definition 7.5. Given a function f : I → Rn, where I ⊆ R is an open interval, the derivative of f at point

a ∈ I is given by

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

If this limit does not exists we say f is not differentiable at a. The n-th derivative of f at a, denoted by

f (n)(a), is recursively defined as the derivative of f (n−1) at a. Note that for the n-th derivative of f to exist

at a, the (n− 1)-st derivative of f must exist on an open interval centered at a.

Theorem 7.7. Suppose f = (f1, . . . , fn) : I → Rn is a function, where I ⊆ R is an open interval. Then, f

is differentiable at a point a ∈ I if and only if fj is differentiable at a for all j, j = 1, . . . , n. Furthermore, if

f is differentiable at a, then f ′(a) = (f ′
1(a), . . . , f

′
n(a)).
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Proof. Follows from Theorem 6.2.

Theorem 7.8 (Properties of Derivatives). Let a be a number is an open interval I. Suppose f, g : I → Rn,

and φ : I → R are differentiable at a. Then,

(a) (f + g)′(a) = f ′(a) + g′(a).

(b) (f · g)′(a) = f ′(a) · g(a) + f(a) · g′(a). [Recall that “·” denotes the standard inner product of Rn.]

(c) (φf)′(a) = φ′(a)f(a) + φ(a)f ′(a).

Theorem 7.9 (The Chain Rule). Suppose I and J are open intervals, φ : I → J is differentiable at a ∈ I,

and f : J → Rn is differentiable at φ(a). Then (f ◦ φ)′(a) = φ′(a)f ′(φ(a)).

Definition 7.6. Let I be an open interval, and f : I → Rn is a function that is differentiable at a point a ∈ I.

The linear function L : R → Rn defined by L(h) = f ′(a)h is denoted by dfa, and is called the differential

of f at a.

Theorem 7.10. The mapping f : I → Rn is differentiable at some a ∈ I, where I is an open interval, if

and only if there exists a linear mapping L : R → Rn such that

lim
h→0

f(a+ h)− f(a)− L(h)

h
= 0.

Furthermore, when such a linear mapping exists, it is unique and L(h) = f ′(a)h.

Example 7.8. Evaluate the derivative and the differential of f(x) = (sinx, x2, x+ cosx).

Consider the identity function x : R → R. We have dxa(h) = 1h = h. If φ : I → R is differentiable at a point

a ∈ I, then dφa(h) = φ′(a)h, which means dφa(h) = φ′(a)dxa(h), or dφa = φ′(a)dxa. This is quite similar

to the notation φ′(x) =
dφ

dx
.

If f : R → Rn is differentiable at φ(a), then

d(f ◦ φ)a(h) = (f ◦ φ)′(a)h = f ′(φ(a))φ′(a)h = dfφ(a)(dφa(h)) = dfφ(a) ◦ dφa(h).

Therefore,

d(f ◦ φ)a = dfφ(a) ◦ dφa.

7.3 More Examples

Example 7.9. Prove that every finite subset of Rn is closed.

Solution. Since every finite subset of Rn is the union of sets of the form {x}, by Theorem 7.3 it is enough to

show {x} is closed for every x ∈ Rn. We will show its complement is open. If y ̸= x, then let r = ||y−x||. We

know r > 0. We will show that x ̸∈ Br(y). Otherwise ||y − x|| < r = ||y − x||, which is a contradiction.
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Example 7.10. Prove that every ellipse
x2

a2
+

y2

b2
= 1 is a compact subset of R2.

Solution. We need to show this curve is closed and bounded. By definition of the inverse image, such an

ellipse is f−1({1}), where f : R2 → R is given by f(x, y) =
x2

a2
+

y2

b2
. Since f is a polynomial, it is continuous.

Since {1} is a finite set, it is closed. Therefore, by Theorem 7.4, this inverse image is closed.

Now, note that Since
x2

a2
+

y2

b2
= 1 we have x2 ≤ a2 and y2 ≤ b2, and thus

√
x2 + y2 ≤

√
a2 + b2, which

means the ellipse lies inside an open ball of radius
√
a2 + b2 + 1 centered at the origin, which means it is

bounded. Thus, the ellipse is compact.

Example 7.11. Prove that the only subspace of Rn that is open is Rn itself.

Sketch. We know every subspace V contains the origin. Since the subspace is open it must contain a ball

around the origin, but a ball contains all directions, e.g. some multiple of e1must be in the ball. Since V is

a subspace, it must contain e1. Similarly V contains all ei’s. Since V is a subspace, it must be Rn.

Solution. Suppose V is a subspace of Rn that is open. We know 0 ∈ V , since it is a subspace. Therefore,

there is r > 0 for which Br(0) ⊆ V . We see that for every i we have || r2ei|| =
r
2 ||ei|| =

r
2 < r, and thus

r
2ei ∈ V . Since V is closed under scalar multiplication we have ei ∈ V . Therefore, V contains the span of

e1, . . . , en, which is Rn. Thus, V = Rn.

Example 7.12. Suppose x0 is a point in Rn and D is a nonempty compact subset of Rn. Prove that there

exists a closest point y0 ∈ D to x0. In other words ||x0 − y0|| ≤ ||x0 − y|| for all y ∈ D.

Solution. Define f : Rn → R by f(x) = ||x0 − x||. Let x0 = (a1, . . . , an). Note that this function is

f(x1, . . . , xn) =
√
(a1 − x1)2 + · · ·+ (an − xn)2,

which is a composition of a polynomial and the square root function, and thus it is continuous. By a theorem,

f(D) must have a minimum value. Suppose this minimum value is f(y0). This means for all y ∈ D, we have

f(y0) ≤ f(y). This is the same as ||x0 − y0|| ≤ ||x0 − y||, as desired.

Example 7.13. Prove that the union and intersection of any finite number of compact sets is compact.

Solution. Suppose A1, . . . , Am are compact subset of Rn. By Theorem 7.5 each Aj is bounded and closed.

We need to show
m⋂
j=1

Aj and
m⋃
j=1

Aj are both closed and bounded.

By Theorem 7.3 both sets
m⋂
j=1

Aj and
m⋃
j=1

Aj are closed.
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Suppose for every j the set Aj is contained in the ball Brj (0). Consider r = max(r1, . . . , rm). Thus, for all j

we have Aj ⊆ Brj (0) ⊆ Br(0). Therefore, both the union and intersection of Aj ’s are in Br(0). Thus,
m⋂
j=1

Aj

and
m⋃
j=1

Aj are both bounded.

Example 7.14. Prove that the intersection of a closed subset of Rn and a compact subset of Rn is compact.

Solution. Let A be a closed and B be a compact subset of Rn. By the Bolzano-Weierstrass Theorem, B is

closed. Therefore, by Theorem 7.3, the set A ∩B is also closed. Since B is compact, it is bounded and thus

there is a balls Br(p) that contains B. Since A∩B is a subset of B, the ball Br(p) contains A∩B. Therefore,

A∩B is bounded. This implies A∩B is both bounded and closed. Thus, by the Bolzano-Weirestrass Theorem

A ∩B is compact.

Example 7.15. Prove that the function f(x, y) = x4 + 3xy + y4 attains its maximum and minimum values

over the circle x2 + y2 = 1.

Solution. By the Extreme Value Theorem, it is enough to show f is continuous and the circle x2 + y2 = 1

is compact. Note that f , as a polynomial, is continuous. The given circle lies in the open ball B2(0, 0),

since every point on the circle satisfies x2 + y2 < 4. Also, the circle can be describes as g−1({1}), where

g(x, y) = x2 + y2. Note that g is continuous and the set {1} is closed. Thus, by Theorem 7.4 the given circle

is closed. Therefore, the given circle is compact.

Example 7.16. Prove that the function

f(x, y, z) = sin(x+ 2y + 3z) + cos(z) + sin(x− y) + cos(x+ y)

attains its maximum and minimum values over R3.

Solution. First, note that

f(x+ 2πk, y + 2πℓ, z + 2πm) = f(x, y, z), ∀k, ℓ,m ∈ Z.

This means all functional values can be obtained by assuming x, y, z ∈ [0, 2π]. Therefore, we can consider

the function f over the cube C given by 0 ≤ x, y, z ≤ 2π. This cube is bounded since every point in the cube

satisfies x2 + y2 + z2 ≤ 3× 4π2. This cube is the intersection of the sets

M = {(x, y, z) ∈ R3 | 0 ≤ x ≤ 2π}, N = {(x, y, z) ∈ R3 | 0 ≤ y ≤ 2π}, and P = {(x, y, z) ∈ R3 | 0 ≤ z ≤ 2π}.

The inequality 0 ≤ x ≤ 2π can be described by 0 ≤ π1(x, y, z) ≤ 2π, where π1 : R3 → R is given by

π1(x, y, z) = x. Hence M = π−1
1 ([0, 2π]). Since [0, 2π] is closed, by Theorem 7.4 the set M is closed.

Similarly N and P are also closed subsets of R3. The intersection of these three sets gives us the desired

cube C. Therefore, by Theorem 7.3 the set C is closed. Thus, C is compact by Theorem 7.5. Since f is

continuous, f attains its maximum and minimum values by the Extreme Value Theorem.
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Example 7.17. Given a real number a, find the derivative and the differential of each of the following

functions at a:

(a) f(x) = (1 + x, ex, sin(2x)).

(b) g(x) = (x2, 3, x).

(c) h(t) = (1 + t2, 2t− cos t,
√
1 + t2).

Solution. (a) The derivative of f is f ′(a) = (1, ea, 2 cos(2a)). Its differential is the function dfa : R → R3

given by dfa(h) = (h, eah, 2h cos(2a)).

(b) The derivative of g is g′(a) = (2a, 0, 1). Its differential is the function dga : R → R3 given by dga(h) =

(2ah, 0, h).

(c) The derivative of h is h′(a) = (2a, 2 + sin a, 1/2 · (1 + a2)−1/2(2a)) = (2a, 2 + sin a, a/
√
1 + a2). The

differential is a function dfa : R → R3 given by dfa(h) = (2ah, 2h+ h sin a, ah/
√
1 + a2).

7.4 Exercises

Exercise 7.1. Determine if each of the following sets is closed, open or neither.

(a) {(x, y) ∈ R2 | 1 ≤ x2 + y2 ≤ 2}.

(b) Q2 as a subset of R2.

(c) {(x1, . . . , xn) ∈ Rn | xi ≤ 0 for some i}.

(d) {(x1, . . . , xn) ∈ Rn | xi is not an integer for all i}.

Exercise 7.2. Consider the set

A = {(x, y) ∈ R2 | x ≥ 0, and y > 0}.

(a) Geometrically sketch this set and explain if it is closed, open or neither closed nor open.

(b) Carefully prove your claim in part (a).

Exercise 7.3. Prove that the intersection of a closed subset of Rn and a compact subset of Rn is compact.

Exercise 7.4. Suppose f : R → Rn is differentiable. Prove that ||f(t)|| is constant, if and only if f(t) and

f ′(t) are orthogonal for every t ∈ R.

Hint: ||f(t)||2 = f(t) · f(t).

Exercise 7.5. (a) Prove that every nonempty open subset of Rn is a union of a collection of balls; all of

which have a rational radius.
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(b) Prove that every nonempty open subset of Rn is a union of a collection of balls; all of which have a

irrational radius.

Exercise 7.6. Let D be a nonempty compact subset of Rn. For every x ∈ Rn let f(x) be the minimum

distance between x and points of D. (See Example 7.12). Prove that f : Rn → R is continuous.

Hint: Use the ϵ− δ definition of limit.

Exercise 7.7. Prove that every subspace of Rn is a closed subset of Rn.

Hint: Write down a linear transformation whose kernel is the given subspace of Rn.

Definition 7.7. Let A be a subset of Rn. The point a is said to be a boundary point of a set A if every

open ball centered at a contains at least one point that is in A and at least one point that is outside of A.

The set of boundary points of A is denoted by ∂A and is called the boundary of A.

Exercise 7.8. Prove that for every subset A of Rn, its boundary and the boundary of its complement are

the same.

Exercise 7.9. Prove that the boundary of every subset of Rn is a closed subset of Rn.

Exercise 7.10. Suppose A = {a1,a2, . . .} is a subset of Rm for which ||an|| ≥ n for all n ≥ 1. Prove that A

has no limit points.

Exercise 7.11. Let A,B be two nonempty subset of Rn, and x ∈ Rn. Define

x+A = {x+ a | a ∈ A}, and A+B = {a+ b | a ∈ A, and b ∈ B}.

(a) Prove that if A is open, then so is x+A.

(b) Prove that if A is open, then so is A+B.

(c) Prove that if A is closed, then so is x+A.

(d) Prove that if A is closed and B is finite, then A+B is also closed.

(e) Prove that if A and B are bounded, then so is A+B.

(f) With an example show that it is possible that both A and B are closed but A+B is not.

Definition 7.8. Let a ∈ Rn and r be a positive real number. A sphere of radius r centered at a, denoted

by Sr(a), is given by

Sr(a) = {x ∈ Rn | ||x− a|| = r}.

Exercise 7.12. Prove that for every r > 0 and every a ∈ Rn we have Sr(a) = Br(a)− Br(a). Deduce that

every sphere is closed.

Exercise 7.13. Find all constants a, b, c for which the following represents a sphere in R3:

ax2 + (2a− b)y2 + z2 + 2ax+ 2y + c = 0.
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Exercise 7.14. Consider the point A = (1, 2, 0) ∈ R3. Find all constants λ for which the set of points P

whose distance to the origin is λ times their distance to A is a sphere.

Exercise 7.15. Prove Theorem 7.8.

Exercise 7.16. Find the derivative and differential of each function f : R → Rn given below:

(a) f(t) = (t3, tan t,
√
1 + t2).

(b) g(t) = (t, t2 + 1, 2t).

(c) h(t) = (1− t, t2).

Exercise 7.17. Suppose f, g : R → Rn are two differentiable curves and (s0, t0) ∈ R2 is a point for which

the points f(t0) and g(s0) are closer than any other points on the two curves. Prove that f(t0) − g(s0) is

orthogonal to both f ′(t0) and g′(s0). Use this fact to find the closest distance between lines f(t) = (t+1, t, t−1)

and g(s) = (2s, s− 1, 2s+ 1). You may assume this minimum distance exists.

Hint: Show that t0 must be a critical point of ||f(t)− g(s0)||2.

Exercise 7.18. Suppose A1, . . . , Am are open subsets of Rn and C is a closed subset of Rn. Prove that

(
m⋃
i=1

Ai)− C is a closed subset of Rn.

Exercise 7.19. Give an example of a continuous function f : R → R, a closed subset C of R and an open

subset U of R for which f(C) is not closed, and f(U) is not open.

Exercise 7.20. Give examples of continuous functions f : R2 → R and subsets A of R that each of the

following holds:

(a) A is not open, but f−1(A) is open.

(b) A is not closed, but f−1(A) is open.

(c) A is compact, but f−1(A) is not compact.

Exercise 7.21. Suppose U is a non-empty open subset of Rn for which there is a positive real number r such

that Br(x) ⊆ U for all x ∈ U . Prove that U = Rn.

7.5 Challenge Problems

Exercise 7.22. Suppose A ⊆ Rn and B ⊆ Rm are compact sets. Then, A×B is a compact subset of Rn+m.

Exercise 7.23. In this exercise we will prove that Rn has no nonempty, proper subset that is both open and

closed. Assume ∅ ≠ U ̸= Rn is both open and closed and set V = Rn − U .

(a) Let u ∈ U , v ∈ V , and r be a real number with max(||u||, ||v||) < r. Prove that U ∩Br(0) and V ∩Br(0)

are both compact and nonempty.
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(b) Define f : Rn × Rn → R by f(x,y) = ||x− y||. Show that f is continuous.

(c) Deduce there are points x ∈ U ∩ Br(0) and y ∈ V ∩ Br(0) that are closest among all points of the two

subsets.

(d) Using the fact that
x+ y

2
must be either in U or in V obtain a contradiction.

7.6 Summary

• To prove A is open start with an arbitrary a ∈ A and show there is an open ball Br(a) that completely

lies in A.

• Br(a) is open.

• To prove A is closed, either show its complement is open or show all limit points of A belong to A.

• To show A is bounded prove there is r for which ||a|| < r for all a ∈ A.

• To show A is compact, show it is closed and bounded.

• To show a function f : A → R attains its maximum and minimum values:

– Show A is closed and bounded, i.e. compact.

– Show f is continuous.

– Invoke the Extreme Value Theorem to conclude f attains its maximum and minimum values.

• The derivative of a function f : R → Rn is given by differentiating each coordinate function of f .

• The differential of f at a is a linear mapping dfa : R → Rn given by dfa(h) = f ′(a)h. This linear

mapping is the only linear mapping L that satisfies the following:

lim
h→0

f(a+ h)− f(a)− L(h)

h
= 0.
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Chapter 8

Week 8

8.1 Directional Derivatives

Definition 8.1. Let F : Rn → Rm be a function, a ∈ Rn, and 0 ̸= v ∈ Rn. The directional derivative of

F with respect to v at a is

DvF (a) = lim
h→0

F (a+ hv)− F (a)

h
.

When v = ei, this directional derivative is denoted by

Dei
F (a) = DiF (a) =

∂F

∂xi
(a) = Fxi

(a).

This is called the i-th partial derivative of F at a.

Example 8.1. Evaluate the partial derivatives of x2 + xy − y3.

Example 8.2. Evaluate the directional derivative of the following function with respect to the vector (1, 2)

at the origin:

F (x, y) =


x2

x2 + y2
if (x, y) ̸= (0, 0)

0 otherwise

Theorem 8.1. Let U be an open subset of Rn. Given a function F : U → Rm, a vector 0 ̸= v ∈ Rn, a point

a ∈ U , and 0 ̸= c ∈ R, we have DcvF (a) = cDvF (a).

We know from the definition of directional derivative that

lim
h→0

F (a+ hv)− F (a)− hDvF (a)

h
= 0.

This brings us to the following definition:

Definition 8.2. Let a be a point in an open subset U of Rn. We say F : U → Rm is differentiable at a

iff there exists a linear transformation L : Rn → Rm such that

lim
h→0

F (a+ h)− F (a)− L(h)

||h||
= 0.

91
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Theorem 8.2. The linear transformation L in the previous definition is unique.

Definition 8.3. The linear transformation in the above theorem is called the differential of F at a, and

is denoted by dFa. Its matrix is called the derivative of F at a, and is denoted by F ′(a).

Remark. Suppose U is an open subset of Rn. Let F : U → Rm be a function that is differentiable at some

a ∈ U . Then dFa : Rn → Rm is linear and its matrix F ′(a) is an m× n matrix for which dFa(h) = F ′(a)h,

where h is a column vector in Rn.

Theorem 8.3. Let a be a point in an open subset U of Rn. If F = (F1, . . . , Fm) : U → Rm is differentiable

at a, then

DvF (a) = dFa(v) = F ′(a)v.

Furthermore, the (i, j) entry of F ′(a) is
∂Fi

∂xj
(a). In other words,

F ′(a) =



∂F1

∂x1
(a)

∂F1

∂x2
(a) · · · ∂F1

∂xn
(a)

∂F2

∂x1
(a)

∂F2

∂x2
(a) · · · ∂F2

∂xn
(a)

...
...

...
...

∂Fm

∂x1
(a)

∂Fm

∂x2
(a) · · · ∂Fm

∂xn
(a)



.

Definition 8.4. The matrix in the previous Theorem is called the Jacobian matrix of F and a.

Example 8.3. Assume we know F : R2 → R3 defined by F (x, y) = (x2 + y, x − 1, y2) is differentiable

everywhere. Find its derivative F ′(1, 2) and its differential dF(1,2). Use that to find the directional derivative

D(2,3)F (1, 2).

As a consequence of this theorem we obtain the following:

Corollary 8.1. Suppose U is an open subset of Rn and f : U → R is a function that is differentiable at

some a ∈ U . Then, for every 0 ̸= v ∈ Rn we have

Dvf(a) = v · (D1f(a), . . . , Dnf(a)).

Definition 8.5. The gradient of a function f : U → R, where U is an open subset of Rn is the function

∇f : U → Rn defined by ∇f(a) = (D1f(a), . . . , Dnf(a)).

Definition 8.6. A direction is a unit vector u. The directional derivative of a function F in the

direction of a nonzero vector v at point a is DuF (a), where u = v/||v||.

Theorem 8.4. Let a ∈ U , where U is an open subset of Rn. Suppose f : U → R is differentiable at a and

that ∇f(a) ̸= 0. Then, the maximum directional derivative of f at a is in the direction of ∇f(a), and this

maximum directional derivative is equal to ||∇f(a)||. Similarly, the minimum directional derivative of f at

a is in the direction of −∇f , and this minimum directional derivative is equal to −||∇f(a)||.
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Example 8.4. Find the maximum and minimum directional derivative of the function f : R3 → R given by

f(x, y, z) = sin(xyz) + x2 + yz at (2π, 1, 3). Assume f is differentiable on R3.

Definition 8.7. Let a be a point in an open subset U of Rn. A function F : U → Rm is said to be

continuously differentiable at a iff all partial derivatives D1F, . . . ,DnF exist on U and they are all

continuous at a.

Theorem 8.5. Suppose U is an open subset of Rn. If F : U → Rm is continuously differentiable at a point

a ∈ U , then F is differentiable at a.

Example 8.5. Prove that F : R2 → R3 defined by F (x, y) = (x2+y, 2xy, y2−x) is differentiable everywhere.

Definition 8.8. Suppose U is an open subset of Rn, and f : U → R is differentiable. A point a ∈ U is called

a critical point of f , iff ∇f(a) = 0.

Definition 8.9. Let f : U → R be a function, where U is an open subset of Rn. We say f attains a local

minimum (resp., a local maximum) at a, iff there is an open subset V of U for which f(a) ≤ f(x) (resp.,

f(a) ≥ f(x)) for all x ∈ V . If f has a local maximum or a local minimum at a we say f has a local extremum

at a.

Theorem 8.6. Suppose f : U → R is differentiable, where U is an open subset of Rn. If f attains a local

extremum at a point a ∈ U , then a is a critical point of f .

Definition 8.10. Let U be an open subset of Rn, and F : U → Rm be differentiable. Suppose a ∈ U . Then,

the approximation

F (x) ≈ F (a) + dFa(x− a)

is called the tangent plane approximation of F near a.

Example 8.6. Approximate
√
1.95× 2.01× 4.01 using tangent plane approximation.

Given a function f : U → R, where U is an open subset of Rn, and a ∈ U , we have the following:

df(h) = Dhf = ∇f · h =
∑

Difhi = Difdxi(h).

Therefore, we can write df =
n∑

i=1

∂f

∂xi
dxi.

Definition 8.11. Let f : U → R be a differentiable function, where U is an open subset of Rn. The mapping

L given by L(a) = dfa which assigns to any point a the linear mapping dfa : Rn → R is called a differential

form.

8.2 The Chain Rule

Theorem 8.7 (The Chain Rule). Suppose U and V are open subsets of Rn and Rm, respectively. Suppose

F : U → Rm and G : V → Rk are differentiable at points a ∈ U, and F (a) ∈ V , respectively. Assume

F (U) ⊆ V . Then, the composition H = G ◦ F is differentiable at a and dHa = dGF (a) ◦ dFa. Furthermore,

H ′(a) = G′(F (a))F ′(a).
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Example 8.7. Write down the Chain Rule for functions f = (f1, . . . , fm) : R → Rm, and g : Rm → R.

Example 8.8. Let T : R2 → R2 be the usual polar coordinate mapping defined by T (r, θ) = (r cos θ, r sin θ).

For a function f(x, y) from the cartesian plane R2 to R. Find the partial derivatives of the function

f(r cos θ, r sin θ) with respect to r and θ.

Definition 8.12. Given two points a,b ∈ Rn, the segment L from a to b is the set given by

L = {c ∈ Rn | c = tb+ (1− t)a, where 0 ≤ t ≤ 1}.

Definition 8.13. A subset E of Rn is called connected if for every a,b ∈ E there is a continuous function

φ : [0, 1] → E such that φ(0) = a, and φ(1) = b.

Theorem 8.8 (Intermediate Value Theorem). Suppose E is a connected subset of Rn, and let f : E → R

be a continuous function. Suppose a,b ∈ E are two points and r is a real number between f(a) and f(b).

Then, there is a c ∈ E for which f(c) = r.

Definition 8.14. A function F : U → Rm is called constant iff there is some c ∈ Rm for which F (x) = c

for all x ∈ U .

Theorem 8.9. Let U be an open and connected subset of Rn. A differentiable function F : U → Rm is

constants if and only if F ′(x) = 0 for all x ∈ U .

Theorem 8.10 (Mean Value Theorem). Suppose U is an open subset of Rn, and a,b are two points in U

such that U contains the line segment L from a to b. If f : U → R is differenatible, then there is a point

c ∈ L for which

f(b)− f(a) = f ′(c)(b− a) = ∇f(c) · (b− a).

Example 8.9. Find all second partial derivatives of f(x, y) = x2y + xy lnx.

Theorem 8.11 (Clairaut’s Theorem or Mixed-Partial Theorem). Suppose U is an open subset of Rn. Suppose

f : U → R has continuous first and second partial derivatives. Then for every i, j we have DjDif(a) =

DiDjf(a) for all a ∈ U .

Example 8.10. Let f(x, y), with f : R2 → R, be a function with continuous first and second partial

derivatives, and let g(u, v) = f(Au+Bv,Cu+Dv), where A,B,C,D are constants. Prove that

∂2g

∂u∂v
= AB

∂2f

∂x2
+ CD

∂2f

∂y2
+ (AD +BC)

∂2f

∂x∂y
.

8.3 More Examples

Example 8.11. Find all directional derivatives of each function f below at the given point a.

(a) f(x, y) = x3 + 3xy with a = (0, 1).
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(b) f(x, y, z) =


x4 + y2 + z3

x2 + y2 + z2
if (x, y, z) ̸= (0, 0, 0)

0 otherwise

with a = 0.

(c) f(x, y, z) =
sin(x+ y)

x2 + 1
with a = 0.

Solution. (a) Note that fx(x, y) = 3x2 + 3y and fy(x, y) = 3x are both polynomials and thus continuous.

Therefore, f is continuously differentiable. By Theorem 8.5 its directional derivative at (0, 1) with respect

to v = (a, b) is given by

Dvf(0, 1) = (a, b) · (fx(0, 1), fy(0, 1)) = (a, b) · (3, 0) = 3a.

(b) We will have to use the limit definition of directional derivatives. Let v = (a, b, c) be a nonzero vector.

Dvf(0, 0, 0) = lim
h→0

f((0, 0, 0) + h(a, b, c))− f(0, 0, 0)

h

= lim
h→0

f(ha, hb, hc)

h

= lim
h→0

h4a4 + h2b2 + h3c3

h3(a2 + b2 + c2)

= lim
h→0

h2a4 + b2 + hc3

h(a2 + b2 + c2)

The denominator approaches zero while the numerator approaches b2 as h → 0. Thus, if b ̸= 0 the limit does

not exist as a real number.

If b = 0, then the limit is as follows:

Dvf(0, 0, 0) = lim
h→0

ha4 + c3

a2 + b2 + c2
=

c3

a2 + b2 + c2
.

(c) Similar to part (a), this function is continuously differentiable, since

∂f

∂x
=

cos(x+ y)(x2 + 1)− 2x sin(x+ y)

(x2 + 1)2
,
∂f

∂y
=

cos(x+ y)

x2 + 1
.

Therefore, by Theorem 8.5, f is differentiable and Dvf = v · ∇f . Letting v = (a, b) ∈ R2 we obtain

Dvf(x, y) = a
cos(x+ y)(x2 + 1)− 2x sin(x+ y)

(x2 + 1)2
+ b

cos(x+ y)

x2 + 1
.

Example 8.12. Evaluate D1D2f(x, y) at all points for each of the following functions:

(a) f(x, y) = x2 + xy.

(b) f(x, y) =


xy

x2 + y2
if (x, y) ̸= (0, 0)

0 otherwise
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Solution. (a) We see that D2f(x, y) = x and thus D1D2f(x, y) = 1.

(b) Note that the function is given by
xy

x2 + y2
on the open set R2 − {(0, 0)}. (Recall that finite sets are

closed. See Example 7.9.) Thus, for every (x, y) ̸= (0, 0) we can find the answer by applying the Quotient

Rule:

D2f =
x(x2 + y2)− 2y(xy)

(x2 + y2)2
=

x3 − xy2

(x2 + y2)2
.

We can now apply the Quotient Rule again to find D1D2f at points other than the origin:

D1D2f =
(3x2 − y2)(x2 + y2)2 − 2(x2 + y2)(2x)(x3 − xy2)

(x2 + y2)4
.

For the origin this can be done using the definition of directional derivatives:

D2f(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0

h
= 0.

Similarly we have

D1D2f(0, 0) = lim
h→0

D2f(h, 0)−D2f(0, 0)

h
= lim

h→0

1/h

h
.

This limit is not a real number. Therefore, D1D2f(0, 0) does not exist.

Example 8.13. Suppose F : U → Rm is differentiable, where U is an open subset of Rn with m < n. Prove

that for every a ∈ U , there is a nonzero vector v ∈ Rn for which DvF (a) = 0.

Solution. By Theorem 8.3, DvF (a) = F ′(a)v. We know F ′(a) is an m × n matrix. Since there are n

columns (with n > m), and these columns are all in Rm, by a theorem the columns of F ′(a) are linearly

dependent. Therefore, there is a vector v ∈ Rn for which F ′(a)v = 0. Therefore, DvF (a) = 0.

Example 8.14. Consider the function given by

f(x, y) =


x2y − y3

x2 + y2
if (x, y) ̸= (0, 0)

0 otherwise

(a) Show that f(x, y) is continuous on R2.

(b) Find Duf(0, 0) for every nonzero vector u = (a, b).

(c) Show that f is not differentiable at (0, 0).

Solution. (a) First, note that
x2y − y3

x2 + y2
is a rational function and thus it is continuous at any point (x, y)

that satisfies x2 + y2 ̸= 0. Thus, f is continuous everywhere except possibly at the origin. In order to show

f is continuous at (0, 0) we need to show lim
(x,y)→(0,0)

f(x, y) = f(0, 0). We know f(0, 0) = 0. Therefore, we

need to show lim
(x,y)→(0,0)

f(x, y) = 0.

By the Triangle Inequality and the fact that 0 < x2 + y2 ≤ x2 and 0 < x2 + y2 ≤ y2 we obtain the following

chain of inequalities: ∣∣∣∣x2y − y3

x2 + y2

∣∣∣∣ ≤ ∣∣∣∣ x2y

x2 + y2

∣∣∣∣+ ∣∣∣∣ y3

x2 + y2

∣∣∣∣ ≤ |y|+ |y| = 2|y|.
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Using properties of absolute value, we can rewritten this as

−2|y| ≤ x2y − y3

x2 + y2
≤ 2|y|.

Note that since |y| is continuous, ±2|y| → 0 as (x, y) → (0, 0). Thus, by the Squeeze Theorem f(x, y) → 0 as

(x, y) → (0, 0). Therefore, f is continuous everywhere.

(b) We will use the definition of directional derivatives:

Duf(0, 0) = lim
h→0

f((0, 0) + h(a, b))− f(0, 0)

h
= lim

h→0

f(ha, hb)− 0

h
= lim

h→0

h3a2b− h3b3

h2a2 + h2b2

h
=

a2b− b3

a2 + b2
.

(c) Assume on the contrary f is differentiable at (0, 0). By Corollary 8.1,

Duf(0, 0) = ∇f(0, 0) · v.

By part (b) we have D1f(0, 0) =
12 × 0− 03

12 + 02
= 0, and D2f(0, 0) =

02 × 1− 13

02 + 12
= −1. Therefore, ∇f(0, 0) =

(0,−1). Therefore,

Dvf(0, 0) = (0,−1) · (a, b) = −b.

This contradicts the formula that we found in part (b) for Duf(0, 0).

Example 8.15. Find the maximum and minimum directional derivatives of the function f(x, y) = x3 sin y+

xey at the origin.

Solution. Partial derivatives of this function are

fx = 3x2 sin y + ey, and fy = x3 cos y + xey.

Since both fx, and fy are continuous, f is continuously differentiable. By Theorem 8.5, f is differentiable.

Therefore, by Theorem 8.4 the maximum and minimum directional derivatives of the function is ||∇f(0, 0)|| =
√
12 + 02 = 1 and −||∇f(0, 0)|| = −1, respectively.

Example 8.16. Consider the function f : R2 → R given by

f(x, y) =


xy2

x2 + y2
if (x, y) ̸= (0, 0)

0 otherwise

Prove that Duf(0, 0) exists for all nonzero vectors u ∈ R2, but f is not differentiable at (0, 0)

Solution. Let u = (a, b). We have

Duf(0, 0) = lim
h→0

f((0, 0) + h(a, b))− f(0, 0)

h
.
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This fraction simplifies to

f((0, 0) + h(a, b))− f(0, 0)

h
=

f(ha, hb)− 0

h
=

hah2b2

h2a2 + h2b2

h
=

ab2

a2 + b2
.

Since this is independent of h we obtain

Duf(0, 0) =
ab2

a2 + b2
.

On the contrary assume f were differentiable at (0, 0). By a theorem Duf(0, 0) = ∇f(0, 0) · u. We have the

following:

fx(0, 0) = De1
f(0, 0) =

1 · 02

12 + 02
= 0, and fy(0, 0) = De2

f(0, 0) =
0 · 12

02 + 12
= 0.

Therefore, ∇f(0, 0) = (0, 0). Thus, Duf(0, 0) = 0 for every vector u. However in the previous part we showed

Duf(0, 0) is not always zero. This is a contradiction. Which means f is not differentiable at (0, 0).

Example 8.17. Approximate
√
(3.1)2 + (3.99)2 using tangent plane approximation.

Solution. We see that f : R2 → R defined by f(x, y) =
√
x2 + y2 has partial derivatives

∂f

∂x
= x(x2 + y2)−1/2, and

∂f

∂y
= y(x2 + y2)−1/2

which are both continuous on an open disk about (3, 4). The derivative of f at (3, 4) is (3/5, 4/5). Therefore,

f(x, y) ≈ f(3, 4) + (3/5, 4/5) · (0.1,−0.01) = 5 + 0.3/5− 0.04/5 = 5.052.

Example 8.18. A function f : Rn → R is said to be homogeneous of degree m, where m is a positive integer,

if

f(tx1, . . . , txn) = tmf(x1, . . . , xn), for all t, x1, . . . , xn ∈ R.

Suppose f : Rn → R is differentiable and homogeneous of degree m. Prove that

x1
∂f

∂x1
+ · · ·+ xn

∂f

∂xn
= mf.

Solution. Consider the function f(y1, . . . , yn) with yj = txj for j = 1, . . . , n and assume yj = txj . This

gives the following tree:

f

y1

t x1

· · · yn

t xn

Using the Chain Rule we obtain the following:

∂f

∂t
=

n∑
k=1

Dkf(y1, . . . , yn)
∂yk
∂t

=

n∑
k=1

Dkf(y1, . . . , yn)xk (∗)
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By assumption f(tx1, . . . , txn) = tmf(x1, . . . , xn) and thus

∂f

∂t
= mtm−1f(x1, . . . , xn).

Substituting this into (∗) and setting t = 1 and using the fact that yk = txk we obtain the result.

Example 8.19. Consider the function

f(x, y) =


x2y2

x2 + y2
if (x, y) ̸= (0, 0)

0 if x = y = 0

Prove that fxy = fyx everywhere, even though fxy is not continuous at (0, 0). Compare this with Clairaut’s

Theorem.

Solution. For (x, y) ̸= (0, 0) we have

fx =
2xy2(x2 + y2)− 2x(x2y2)

(x2 + y2)2
=

2xy4

(x2 + y2)2
,

and

fxy =
8xy3(x2 + y2)2 − 2(x2 + y2)2y(2xy4)

(x2 + y2)4
=

8xy3(x2 + y2)− 8xy5

(x2 + y2)3
=

8x3y3

(x2 + y2)3
.

By similarity fyx would be the same at points that are not the origin.

At (0, 0) we have

fx(0, 0) = lim
x→0

f(x, 0)− f(0, 0)

x
= lim

x→0

0− 0

x
= 0.

Using this we obtain

fxy(0, 0) = lim
y→0

fx(0, y)− fx(0, 0)

y
= lim

y→0

0− 0

y
= 0.

By symmetry we have fyx(0, 0) = 0. This shows fxy(0, 0) = fyx(0, 0).

Approaching (0, 0) along the lines of the form y = mx yields

fxy(x,mx) =
x3(mx)3

(x2 +m2x2)3
=

m3

(1 +m2)3
.

Since this value depends on m, by Theorem 6.1 the limit does not exist.

This example shows that the converse of Clairaut’s Theorem is not valid.

Check pages 66-69, examples 1-4 of Advanced Calculus of Several Variables by Edwards.



100 CHAPTER 8. WEEK 8

8.4 Exercises

Exercise 8.1. Prove that the function F : R3 → R2 defined by F (x, y, z) = (xyz, x2+y+z3) is differentiable

everywhere, find its derivative, and its differential at (1, 2,−1). Use that to find the derictional derivative of

this function in the direction (1,−2, 2). (Note that directional derivative in a direction should not depend on

the length of the vector.)

Exercise 8.2. The position of a particle in R3 is given by

r(t) = (cos(t), sin(t), t).

(a) Show that this particle is always located on the cylinder x2 + y2 = 1. Use that to sketch the trajectory of

this particle.

(b) Show the speed of this particle is constant, even though its velocity is not. (Recall that speed is the norm

of velocity.)

(c) Show that the velocity always makes a constant nonzero angle with the z-axis.

(d) Letting t1 = 0, and t2 = 2π, show that r(t2)− r(t1) is vertical.

(e) Conclude that there cannot be any c ∈ (0, 2π) for which r(t2) − r(t1) = r′(c)(t2 − t1). Explain why this

does not contradict the Mean Value Theorem.

Exercise 8.3. Suppose L : Rn → Rm is a linear mapping with matrix A.

(a) Using the definition of derivatives, show that the differential of L is itself. Deduce the derivative of L is

A.

(b) Conversely, prove that if the derivative of a function F : Rn → Rm, satisfying F (0) = 0, is a constant

matrix A, then F is linear.

Exercise 8.4. Consider the function f : R2 → R given by f(x, y) = 3
√

x3 + y3. Prove that Duf(0, 0) exists

for all nonzero vectors u ∈ R2, but f is not differentiable at (0, 0).

Exercise 8.5. Consider the function f : R2 → R given by

f(x, y) =


(x2 + y2) sin

(
1

x2 + y2

)
if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

(a) Prove that fx(0, 0) = fy(0, 0) = 0.

(b) Prove f is differentiable at (0, 0).

(c) Prove fx and fy are not continuous at (0, 0).
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Exercise 8.6. Consider the function f : R2 → R given by

f(x, y) =

x2 sin(1/x) + y2 if x ̸= 0

y2 ifx = 0

(a) Prove that fx and fy exist everywhere.

(b) Prove that fx is not continuous at (0, 0), however fy is continuous everywhere.

(c) Prove that f is differentiable at (0, 0).

Exercise 8.7. Let f : R2 → R be a function with continuous second partials. Define a function g by

g(r, θ) = f(r cos θ, r sin θ). Prove that

||∇f ||2 =

(
∂g

∂r

)2

+
1

r2

(
∂g

∂θ

)2

.

Exercise 8.8. Consider three differentiable functions φ : R → Rn, f : Rn → Rm, and g : Rm → R. If

h = g ◦ f ◦ φ, prove that h′(t) = ∇g(f(φ(t))) ·Dφ′(t)f(φ(t)) for every t ∈ R.

Exercise 8.9. Suppose f(x), g(x) are functions defined over open intervals I, J , and are differentiable at

x0, y0, respectively, Let a, p be two functions defined over I×J by a(x, y) = f(x)+g(y) and p(x, y) = f(x)g(y).

Prove the Clairaut’s Theorem for a and p, at (x0, y0). In other words, show axy(x0, y0) = ayx(x0, y0) and

pxy(x0, y0) = pyx(x0, y0).

Exercise 8.10. Consider the function f : R2 → R given by

f(x, y) =


x3y − xy3

x2 + y2
if (x, y) ̸= (0, 0)

0 otherwise

(a) Find D1f and D2f at all points.

(b) Find D1D2f and D2D1f at all points.

(c) Show that D1D2f(0, 0) ̸= D2D1f(0, 0). How do you reconcile this with the Clairaut’s Theorem?

Exercise 8.11. Suppose U is an open subset of Rn and let a ∈ U . Assume F : U → Rm is differentiable at

a. Prove that F is continuous at a.

Exercise 8.12. Suppose U is an open subset of Rn and f, g : U → R are differentiable. Prove the following:

(a) ∇(f + g) = ∇f +∇g.

(b) ∇(fg) = f∇g + g∇f .

(c) ∇(fn) = nfn−1∇f , for every positive integer n.

Exercise 8.13. Consider the function f : R2 → R given by

f(x, y) =


x3

x2 + y2
if (x, y) ̸= (0, 0)

0 if x = y = 0
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(a) Find fx and fy at all points in R2.

(b) Show that fxx(0, 0) and fxy(0, 0) both exist but fx is not continuous at the origin.

(c) Show fyy(0, 0) and fyx(0, 0) both exist but fy is not continuous at the origin.

(d) Show fxy is not continuous at the origin, however fxy(0, 0) = fyx(0, 0). How do you reconcile this with

the Clairaut’s Theorem?

(e) Prove that f is not differentiable at the origin.

8.5 Challenge Problems

Exercise 8.14. Let n be a positive integer. Identify all vectors of Rn2

with n × n matrices by placing

components of these vectors in the entries of rows of the matrix starting from the upper left corner and

moving to the right and down. Let f : Rn2 → Rn2

be a function defined by f(A) = A2. Find the differential

of this function.

Exercise 8.15. Does there exist a continuous function f : R2 → R for which all directional derivatives at

(0, 0) exist and satisfy Duf(0, 0) = ∇f(0, 0) · u, but f is not differentiable at (0, 0)?

8.6 Summary

• Partial derivative of a function with respect to x can be found by fixing all variables and differentiating

with respect to x.

• When a function has different rules at different values you need to use the limit definition to find its

directional derivatives:

DvF (a) = lim
h→0

F (a+ hv)− F (a)

h
.

• The (i, j) entry of the derivative of (F1, . . . , Fm) is the partial of the Fi with respect to xj .

• To show a function is differentiable we could find all partials of its component functions and show they

are all continuous. Note that if these conditions are satisfied then the function is differentiable, but the

converse is not true.

• If a function is differentiable, then Duf(a) = F ′(a)v.

• To show a function is not differentiable:

– Find all partial derivatives of the component functions.

– Form the Jacobian Matrix.

– Show that this Jacobian matrix fails to satisfy either the limit definition of differentials or the

equality Duf(a) = F ′(a)v.
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• For a function f : U → R, where U ⊆ Rn is open, the differential is often called the gradient and is

denoted by ∇f = (fx1
, fx2

, . . . , fxn
).

• When finding directional derivatives, i.e. rate of change, we need to first normalize the vector.

• The maximum directional derivative of a function f : U → R is ||∇f || and is obtained in the direction

of gradient. The minimum is obtained in the direction of −∇f .

• To evaluate the derivative
∂f

∂t
:

– Draw a tree diagram with f as its top vertex (called the root).

– Place all variables that f depend on in the next row.

– Draw edges from f to the variables that f depend on.

– Repeat this process for all variables in the second row of the tree. Continue until you end up with

the dependent variables.

– For each path starting with f and ending at t write a product of derivatives along that path.

– Add up all the products formed in the previous step. That is equal to
∂f

dt
.

• If the derivative of a function over an open and connected set is zero, then the function is constant.

• The Mean Value Theorem also holds for functions f : U → R:

f(b)− f(a) = ∇f(c) · (b− a).

• Caliraut’s Theorem states that when dealing with partial derivatives, the order does not matter as long

as all partials are continuous. For example D1D2f = D2D1f , if they are both continuous.
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Chapter 9

Week 9

9.1 Critical Points in Two Dimensions

In this section we would like to classify critical points of a function f : R2 → R. Recall that if a point is a

local extremum, then it must be a critical point. Let’s first look at a simple case when

f(x, y) = ax2 + 2bxy + cy2, where a, b, c are constants.

Such a function is called a quadratic form.

We note that (0, 0) is a critical point of this function, and f(0, 0) = 0. So, the question is: Under what

conditions on a, b, c can we guarantee that f(x, y) ≥ 0 for points (x, y) near the origin?

Completing the square we obtain the following

f(x, y) =
(ax+ by)2 + (ac− b2)y2

a
.

This gives the following:

• If a > 0, and ac− b2 > 0, then f(x, y) has a local (and absolute) minimum at (0, 0).

• If a < 0, and ac− b2 > 0, then f(x, y) has a local (and absolute) maximum at (0, 0).

• If ac− b2 < 0, then f(x, y) has neither a local minimum nor a local maximum at (0, 0).

Definition 9.1. A quadratic form is a function f : Rn → R given by

f(x1, . . . , xn) =

n∑
i=1

n∑
j=1

aijxixj , where aij ∈ R is a constant.

Definition 9.2. A quadratic form f(x) is called positive-definite (resp., negative-definite) if f(x) > 0

(resp., f(x) < 0) for all 0 ̸= x ∈ Rn. It is called nondefinite if it has both positive and negative values.

The above discussion gives us the following theorem:

Theorem 9.1. The quadratic form f(x, y) = ax2 + 2bxy + cy2 is

105
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• positive-definite if a > 0, and ac− b2 > 0.

• negative-definite if a < 0, and ac− b2 > 0.

• nondefinite if ac− b2 < 0.

Example 9.1. Determine and classify all critical points of f(x, y) = x2 − y2.

Definition 9.3. A critical point a of a function f : R2 → R is called a saddle point if every open ball

containing a contains points x, and y for which f(x) < f(a) < f(y).

Theorem 9.2 (Second Partials Test). Let f : U → R be twice continuously differentiable, where U is an

open subset of R2. Suppose a ∈ U is a critical point of f . Let

∆ =
∂2f

∂x2
(a) · ∂

2f

∂y2
(a)−

(
∂2f

∂x∂y
(a)

)2

Then f has

• a local minimum at a if ∆ > 0, and
∂2f

∂x2
(a) > 0.

• a local maximum at a if ∆ > 0, and
∂2f

∂x2
(a) < 0.

• a saddle point at a if ∆ < 0.

Note that if ∆ = 0, the above test is inconclusive.

Example 9.2. Classify all critical points of f(x, y) = xy + 2x− y.

To understand quadratic forms on n variables, note that for a quadratic form f(x1, . . . , xn) we have

f(cx1, . . . , cxn) = c2f(x1, . . . , xn).

Thus, in order to understand if the origin is a local maximum or minimum we need to understand f over the

unit sphere x2
1 + · · ·+ x2

n = 1.

9.2 Lagrange Multipliers

Theorem 9.3. Let S be a subset of Rn. Assume f is a differentiable real-valued function defined on some

open set containing S, and f has a local maximum (or a local minimum) on S at a, then the gradient vector

∇f(a) is orthogonal to all tangent lines to all curves on S that pass through a. In other words, if φ : R → S

is a differentiable curve with φ(0) = a then ∇f(a) is orthogonal to φ′(0).

Example 9.3. Find the maximum and minimum values of f(x, y) = xy subject to the constraint x2+y2 = 1.

Example 9.4. Find the equation of the plane tangent to the surface x2 + 2y2 + 3z2 = 6 at (1,−1, 1).

Definition 9.4. A k-dimensional manifold (or a k-manifold) M is a subset of Rn for which for every

point a ∈ M there is an open subset U of Rn containing a for which U ∩M “looks like” the k-dimensional

space Rk. (Yes, this is not a rigorous definition!)
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Example 9.5. A sphere in R3 is a 2-dimensional manifold.

Theorem 9.4. If M is a k-dimensional manifold in Rn and a ∈ M , then M has a k-dimensional tangent

plane at a. In other words all lines tangent to curves on M at a that pass through a form the translation of

a k-dimensional subspace of Rn.

Theorem 9.5. Suppose g : Rn → R is continuously differentiable. If M is the set of all points x with both

g(x) = 0 and ∇g(x) ̸= 0, then M is an (n − 1)-manifold. Given a ∈ M , the gradient vector ∇g(a) is

orthogonal to the tangent plane to M at a.

Theorem 9.6 (Lagrange Multipliers Theorem, Simplified Version). Suppose g : Rn → R is continuously

differentiable, and let M be the set of all points x ∈ Rn that both g(x) = 0, and ∇g(x) ̸= 0. Suppose

f : Rn → R is differentiable. Assume f attains a local maximum or minimum on M at a point a ∈ M , then

∇f(a) = λ∇g(a) for some scalar λ.

Example 9.6. Find the maximum and minimum values of f(x, y, z) = x + 3y + z under the constraint

x2 + y2 + z2 = 1.

Theorem 9.7 (Lagrange Multipliers Theorem). Suppose G = (G1, . . . , Gm) : Rn → Rm is continuously

differentiable, and denote by M the set of all points x ∈ Rn such that G(x) = 0, and also the gradient

vectors ∇G1(a), . . . ,∇Gm(a) are linearly independent. If the differentiable function f : Rn → R attains a

local minimum or maximum on M at a ∈ M , then ∇f(a) is a linear combination of ∇G1(a), . . . ,∇Gm(a).

Example 9.7. Find the highest and lowest points of the ellipse of intersection of the cylinder x2 + y2 = 1

and the plane x+ y + z = 1.

9.3 More Examples

Example 9.8. Find all critical points of f(x, y, z) = x3 + y2 + z2 + 3xyz.

Solution. The critical points satisfy the system below:
fx = 3x2 + 3yz = 0 ⇒ x2 + yz = 0

fy = 2y + 3xz = 0 ⇒ y = −3xz/2

fz = 2z + 3xy = 0

Substituting y = −3xz/2 into the last equation we obtain 2z + 3x(−3xz/2) = 0, which implies z = 0 or

x = ±2/3. We will take three cases.

Case I. z = 0. The first and second equations yield x = y = 0. This gives the point (0, 0, 0).

Case II. x = 2/3. Substituting into the second equation we obtain 2y + 2z = 0, which implies z = −y.

The first equation yields 4/9 − y2 = 0, which gives y = ±2/3. Therefore, we obtain the critical points
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(2/3, 2/3,−2/3) and (2/3,−2/3, 2/3).

Case III. x = −2/3. The second equation gives us y = z, and the first equation yields 4/9 + y2 = 0, which

is impossible.

Example 9.9. Find and classify all critical points of each function:

(a) f(x, y) = x2 + y2 + xy + 2x− 2y.

(b) f(x, y) = x4 + x2 + y4.

Solution. (a) First, we will find all critical points: fx = 2x+ y+2, fy = 2y+x− 2. This gives the following

system of equations: 2x+ y + 2 = 0

2y + x− 2 = 0

This yields x = −2, y = 2. We will now use the Second Partials Test. fxx = 2, fxy = 1, fyy = 2. This gives

∆ = 4− 12 = 3 which is positive. Since fxx = 2 is also positive, (−2, 2) is a local minimum.

(b) fx = 4x3 + 2x, fy = 4y3. The critical points satisfy the system4x3 + 2x = 0 ⇒ x(4x2 + 2) = 0 ⇒ x = 0.

4y3 = 0 ⇒ y = 0.

The Second Partials Test gives fxx = 12x2 + 2, fxy = 0, fyy = 12y2. This gives us ∆(0, 0) = 2× 0− 02 = 0.

Therefore, the Second Partials Test is inconclusive.

Note that f(0, 0) = 0 and f(x, y) = x4 + x2 + y4 ≥ 0 since perfect squares are nonnegative. Therefore, (0, 0)

is a local (and absolute) minimum.

Example 9.10. Find the plane or hyper-plane tangent to each manifold at the given point. Assume the

given set is a manifold.

(a) x2
1 + 3x2

2 + x2
3 = 2 at (1, 0,−1).

(b) x4
1 + 4x2 sin(x1x3) + x2

3 + 3x2
4 = 4 at (0, 0, 1,−1).

Solution. First, note that both functions are continuously differentiable.

(a) The vector orthogonal to the tangent plane at the point (1, 0,−1) is the gradient vector if it is not zero:

(2x1, 6x2, 2x3) = (2, 0,−2).
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Thus, if (x1, x2, x3) is on this plane, then

(x1 − 1, x2 − 0, x3 + 1) · (2, 0,−2) = 0.

Thus, the equation of the plane is x1 − 1− x3 − 1 = 0.

(b) Similarly the orthogonal vector to the hyperplane tangent to this is the gradient vector

(4x3
1 + 4x2x3 cos(x1x3), 4 sin(x1x3), 4x2x1 cos(x1x3) + 2x3, 6x4) = (0, 0, 2,−6).

Thus, the equation of the hyperplane is

(x1, x2, x3 − 1, x4 + 1) · (0, 0, 2,−6) = 0.

The equation simplifies to x3 − 3x4 − 4 = 0.

Example 9.11. In each case below, find the maximum and minimum values of the given function subject

to the given constraint or show they do not exist:

(a) f(x, y) = x3 + 2y2 given that x2 + 3y2 = 1.

(b) f(x, y) = 3x4 + 4y4 with the constraint x2 + y2 = 1.

(c) f(x, y, z) = sinx+ sin y + sin z subject to x+ y + z = π.

(d) f(x, y, z) = x2 + 2y2 + z2 given 3x+ 2y + z = 1.

Solution. (a) The function f is a polynomial and thus it is continuous. The constraint gives us an ellipse

which is closed and bounded (See Example 7.10.) Thus, by the Extreme Value Theorem, f attains its

maximum and minimum values given the constraint. By the Lagrange Multiplier’s Theorem these extreme

points must satisfy either of the following:

(3x2, 4y) = λ(2x, 6y), or (2x, 6y) = (0, 0).

The second equality can not hold, since otherwise we will have x = y = 0 which does not lie on the ellipse

x2 + 3y2 = 1.

The first equality gives us the following system:
3x2 = 2λx

4y = 6λy

x2 + 3y2 = 1

The first equation can be written as x(3x− 2λ) = 0. Thus, x = 0 or 3x = 2λ. We will take two cases:

Case I: x = 0. The third equation yields 3y2 = 1 or y = ±1/
√
3. This gives us f(0,±1/

√
3) = 2/3.

Case II: 3x = 2λ. Substituting this into the second equation we obtain 4y = 9xy. Thus, y = 0 or x = 4/9.

These give us the following four points:

(±1, 0), and (4/9,±
√

65/243).
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We not evaluate the function f at these points

f(±1, 0) = ±1, and f(4/9,±
√

65/243) = 64/729 + 130/243 = 322/726.

Comparing these values we see the maximum is 1 and the minimum is −1.

(b) Similar to above, the contraint gives us a circle that is closed and bounded. Therefore, by the Extreme

Value Theorem, the maximum and minimum values exist. We will now use the Lagrange Multipliers Theorem.

At an extreme point we have one of the following:

(12x3, 16y3) = λ(2x, 2y) or (2x, 2y) = (0, 0).

The second equality does not hold, since otherwise, we will obtain x = y = 0 which does not lie on the circle

x2 + y2 = 1.

The first equality yileds the following system:
12x3 = 2λx

16y3 = 2λy

x2 + y2 = 1

If x = 0 or y = 0 then we obtain the points (0,±1) and (±1, 0). The functional values at these points are

f(0,±1) = 4, and f(±1, 0) = 3.

If neither x nor y is zero, we obtain: λ = 6x2 and λ = 8y2. Combining this with x2 + y2 = 1 we conclude

λ

6
+

λ

8
= 1 ⇒ λ = 24/7.

From here we obtain the following four points

(±2/
√
7,±

√
3/7).

The functional values for these four points are

f(±2/
√
7,±

√
3/7) = 12/7.

Comparing these we conclude that the absolute maximum of this function is 4 and the absolute minimum is

12/7.

(c) Note that the plane x+y+z = π is closed, since it is the inverse image g−1({π}) with g(x, y, z) = x+y+z,

and g is a continuous function, and {π} is closed. This plane is not bounded so we cannot simply invoke

the Extreme Value Theorem. In order to resolve this issue we will replace x by x + 2πn for some integer n

to make sure x ∈ [0, 2π] and do the same with y. This would change x to x + 2nπ and y to y + 2mπ and

z to z − 2nπ − 2mπ. This does not change the sum cosx + cos y + cos z. In other words, we can assume
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x, y ∈ [0, 2π]. Since z = π − x − y, we have −3π ≤ z ≤ π. In other words, we can focus on the rectanglular

cube [0, 2π] × [0, 2π] × [−3π, π]. Since this region is bounded and closed, and f is continuous, the function

does have absolute maximum and minimum values. Invoking the Lagrange Multipliers Theorem, the extreme

points must satisfy one of the following:

(cosx, cos y, cos z) = λ(1, 1, 1) or (1, 1, 1) = 0.

The second equality is impossible. Therefore, we must have cosx = cos y = cos z. This implies y = x or 2π−x.

Since x+ y + z = π we must have z = π − 2x or z = −π. Therefore, we have two possibilities:

Case I: y = x, z = π − 2x. Since cos z = cosx we must have

cos(π − 2x) = cosx ⇒ x = 2nπ ± (π − 2x) ⇒ x =
(2n+ 1)π

3
or (1− 2n)π.

This yields, the following:

x = y = z =
π

3
, or x = y = π, z = −π, or x = y =

5π

3
, z =

−7π

3

The values of f at these points are
3
√
3

2
, 0, and −3

√
3

2
, respectively.

Case II: y = 2π − x. This yields, z = −π. In this case we have

f(x, 2π − x,−π) = sinx+ sin(2π − x) + sin(−π) = sinx− sinx+ 0 = 0.

Comparing the values that we found we conclude that the maximum and minimum values are 3
√
3/2 and

−3
√
3/2, respectively.

(d) Everything is similar to parts (a) and (b), except since 3x + 2y + z = 1 does not determine a bounded

region we cannot invoke the Extreme Value Theorem. Note that we can make x as large as we would like.

For example for every x the point (x, x,−5x+ 1) lies on the plane 3x+ 2y + z = 1. However

f(x, x,−5x+ 1) = x2 + 2x2 + (−5x+ 1)2 ≥ 3x2.

This means f does not have a maximum value, as 3x2 could be arbitrarily large.

Now, note that (0, 0, 1) satisfies the constraint and f(0, 0, 1) = 1. If |x| ≥ 1 or |y| ≥ 1 or |z| ≥ 1, then

f(x, y, z) ≥ 1 = f(0, 0, 1). This means if there is a minimum for f the minimum must satisfy

|x|, |y|, |z| ≤ 1.

The cube given above is closed and bounded. (Why?) Thus, we may invoke the Extreme Value Theorem for

f applied to the intersection of this cube and the plane 3x+ 2y + z = 1. The rest is similar to parts (a), (b)

and (c).

Example 9.12. Find the minimum distance from the origin to the points of the surface x2+2x+y2+3z2 = 1

or show no minimum exists.
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Solution. The distance from the origin to a point (x, y, z) is
√
x2 + y2 + z2. In order to minimize this, it is

enough to minimize f(x, y, z) = x2+y2+ z2 subject to x2+2x+y2+3z2 = 1. The constraint can be written

as (x+1)2 + y2 +3z2 = 2. This means (x+1)2, y2, 3z2 ≤ 2. Thus, |x| ≤ |x+1|+ | − 1| ≤
√
2+ 1 < 3. Using

these we conclude that if (x, y, z) satisfies the given constraint, then

x2 + y2 + z2 ≤ 9 + 2 +
2

3
< 12 ⇒ (x, y, z) ∈ B√

12(0, 0, 0).

Therefore, the constraint gives us a bounded subset of R3. This subset is also closed, as it is the same as

g−1({1}), where g(x, y, z) = x2 + 2x + y2 + 3z2 is continuous and {1} is closed in R. Then we will use the

Lagrange Multipliers Theorem to find the minimum distance.

If ∇f = (2x, 2y, 2z) = 0, then x = y = z = 0, which does not satisfy the constraint. Therefore, it is always

the case that ∇f ̸= 0 under the given constraint. By the Lagrange Multipliers Theorem, the minimum must

satisfy ∇f = λ∇g. This yields the following system:



2x = λ(2x+ 2)

2y = λ(2y) ⇒ λ = 1 or y = 0

2z = λ(6z) ⇒ λ = 1/3 or z = 0

x2 + 2x+ y2 + 3z2 = 1

Case I. λ = 1. Substituting this into the first equation, we obtain 2x = 2x+ 2, which is a contradiction.

Case II. y = 0 and λ = 1/3. The first equation yields, 2x = 2x/3 + 2/3. Therefore, x = 1/2. Substituting

into the last equation we obtain z2 = −1/4, which is impossible.

Case III. y = 0 and z = 0, which yields x = ±
√
2 − 1. Therefore, the shortest distance is

√
(
√
2− 1)2 =

√
2− 1.

Example 9.13. Find the minimum distance from the point (0, 0, 1) to the points on the surface S given by

z = 2x2 + y2 or show no minimum exists.

Solution. We are trying to minimize f(x, y, z) = x2 + y2 + (z − 1)2 subject to the constraint g(x, y, z) =

z − 2x2 + y2 = 0. Note that f is continuous and g(x, y, z) = 0 is closed as this surface is g−1({0}). This

surface is not bounded, however. We will show we can ignore points on this surface that are “far away”. To

do this, note that (0, 0, 0) is on the given surface and f(0, 0, 0) = 1. If |x| ≥ 1 or |y| ≥ 1 or |z| ≥ 2, then

x2 ≥ 1 or y2 ≥ 1 or (z − 1)2 ≥ 1. This implies,

f(x, y, z) ≥ 1 = f(0, 0, 0).

Therefore, if the absolute minimum exists it must satisfy |x|, |y| ≤ 1 and |z| ≤ 2. Now, we can invoke the

Extreme Value Theorem to show such an absolute minimum exists. Note that the set of all points satisfying
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|x| ≤ 1 is closed, because it is the same as π−1
1 ([0, 1]), where π1(x, y, z) = x is continuous, and [0, 1] is closed

in R. Similarly, the set of all points satisfying |y| ≤ 1 and the set of all points satisfying |z| ≤ 2 are also

closed. Since the intersection of finitely many closed sets is closed, the set E consisting of all points satisfying

|x| ≤ 1 and |y| ≤ 1 and |z| ≤ 2 is closed. Therefore, S ∩ E is closed. By the Extreme Value Theorem, f

attains a minimum value over S∩E. Let this minimum value be f(a). Since 0 ∈ S∩E, we have f(0) ≥ f(a).

We already proves f(x) ≥ f(0) for all x ∈ E ∩ S. Thus, f(a) is an absolute minimum value. We will now

find a using the Lagrange Multipliers Theorem.

If ∇f = 0, then x = y = z − 1 = 0. However, this point is not on the given surface S. Thus, ∇f ̸= 0 for all

points on S. Therefore, ∇f = λ∇g. This yields the following system:

2x = λ(−4x) ⇒ λ = −1/2 or x = 0

2y = λ(2y) ⇒ λ = 1 or y = 0

2(z − 1) = λ

z = 2x2 + y2

Case I. λ = −1/2 and y = 0. Substituting into the third equation we obtain z = 3/4. The last equation

yields x = ±
√
3/
√
8. We see that f(±

√
3/
√
8, 0, 3/4) = 3/8 + 1/16 = 7/16.

Case II. x = 0 and λ = 1. The third equation yields z = 3/2. The last equation gives us y = ±
√
3/
√
2. We

see that f(0,±
√
3/
√
2, 3/2) = 3/2 + 1/4 = 7/4.

Case III. x = y = 0. The last equation yields z = 0. We have f(0, 0, 0) = 1.

Comparing the values found above, we conclude that the minimum of f is 7/16. Thus, the minimum distance

is

√
7

4
.

9.4 Exercises

Exercise 9.1. Find the points on the xy-plane on the ellipse x2/9 + y2/4 = 1 that are closest and farthest

to the point (1, 0), or show no such points exist.

Exercise 9.2. Find the plane tangent to the surface x3 + 2y2z + cos(xyz) = 2 at point (1,−1, 0).

Exercise 9.3. Find and classify all critical points of f(x, y) = x3 + 3xy2 − 3xy.

Exercise 9.4. Find two points on the line x + y = 10 and the ellipse x2 + 2y2 = 1 which are closest. You

need to show this minimum distance exists.

Hint: You need to use the Lagrange Multipliers Theorem. Since there are two points on different curves, we

need four variables. Thus, this is a problem in R4. The constraints are x+ y = 10 and z2 + 2t2 = 1. We are
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trying to minimize f(x, y, z, t) = (x − z)2 + (y − t)2. To show the absolute minimum exists first show that

both sets x + y = 10 and z2 + 2t2 = 1 are closed subsets of R4. These sets are unfortunately not bounded.

However you can make them bounded by taking the intersection of these sets with a ball Br(0) in R4. That

way you can show the minimum exists inside a ball (as long as the radius of the ball is large enough so the

ball does intersect the constraints.) Then show that if x is “large” or y is “large” (e.g. |x| ≥ 100 or |y| ≥ 100),

then f(x, y, z, t) is more than f(5, 5, 1, 0).) This means the minimum inside the set satisfying |x|, |y| < 100

is the same as the minimum inside R4. Take a look at Example 9.11 part (d).

Exercise 9.5. Consider the function f(x, y) = x3 + y3.

(a) Find all critical points of f .

(b) Explain why the Second Partials Test is inconclusive.

(c) Determine if each critical point is a local minimum, a local maximum or a saddle point.

Exercise 9.6. Consider the surface given by x3 + x2 + y2 − 2y + z2 = 3. Find all points on this surface

where the tangent plane is parallel to the xy-plane.

Exercise 9.7. Show that among all triangles whose perimeters is a fixed positive real number p the equalilat-

eral triangle has the largest area.

Hint: Use the Heron’s Formula from Euclidean Plane Geometry.

Exercise 9.8. Suppose x1, . . . , xn, a1, . . . , an are real numbers for which x2
1+· · ·+x2

n = 1. Using the Lagrange

Multipliers Theorem prove that

(a1x1 + · · ·+ anxn)
2 ≤ (a21 + · · ·+ a2n).

Using the above to prove the Cauchy-Schwarz inequality for the standard inner product on Rn.

(a1b1 + · · ·+ anbn)
2 ≤ (a21 + · · ·+ a2n) · (b21 + · · ·+ b2n).

Exercise 9.9. Find the minimum and maximum values of x2 − y2 on the ellipse 4x2 + 9y2 = 13, or show

they do not exist.

Exercise 9.10. Find and classify all critical points of (x2 + y2)ex
2−y2

.

Exercise 9.11. Consider the plane x + 2y + 3z = 4. Find the point on this plane closest to the origin or

show no such point exist.

Exercise 9.12. Find the points of the ellipsoid x2 + 2y2 + 3z2 = 1 which are closest to and farthest from

the plane x+ y + z = 10, or show no such points exist.
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9.4.1 Summary

• To find the maximum and minimum values of a function f given the constraint g = 0, you should

invoke the Lagrange Multipliers Theorem as follows:

– Check f and g are continuously differentiable. (It is enough for f to be differentiable, if that works

better.)

– If you are trying to find absolute maximum and minimum values, then show these values exist

using the Extreme Value Theorem.

– Find all points a for which ∇g(a) = 0.

– Solve the system ∇f = λ∇g, and g = 0.

– Compare the values of function f at all points found in the previous two steps.

• To find maximum and minimum values of f given multiple constraints g1 = · · · = gm = 0 follow

the steps above, except you would need to find all points a for which ∇g1(a), . . . ,∇gm(a) are linearly

dependent instead of finding those for which ∇g(a) = 0. Also, the equation ∇f = λ∇g would become

∇f = λ1∇g1 + · · ·+ λm∇gm.
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Chapter 10

Week 10

10.1 Classification of Critical Points

The Second Partials Test for a function f : R2 → R allows us to determine if a critical point is a local

minimum, a local maximum, or a saddle point. Now, we will turn our focus to functions f : Rn → R.

Definition 10.1. A matrix A is called symmetric if AT = A. In other words, the (i, j) entry of A is the

same as its (j, i) entry for all i, j.

Note that any quadratic form q(x1, . . . , xn) =
∑

1≤i≤j≤n

aijxixj can be written as q(x) = xTAx for a symmetric

matrix A, where x is a column vector, and the (i, j) entry of A is aij/2 or aji/2 depending on whether i < j

or j < i, and the (i, i) entry of A is aii.

Example 10.1. Write down the quadratic form below in the form q(x) = xTAx.

q(x, y, z) = x2 + 2y2 − z2 + 3xy + xz − yz.

Definition 10.2. Given a symmetric n×n matrix A the quadratic form q(x) = xTAx is called the quadratic

form associated with A. We also say A is the matrix associated with q. The linear transformation given by

L(x) = Ax is called the linear transformation associated with q.

Note that 0 is a critical point of q. Also, for a quadratic form q, a scalar c, and a vector x we have

q(cx) = c2q(x). Therefore, to determine if 0 is a local minimum or maximum we need to determine the

maximum and minimum of q over the unit sphere given by ||x|| = 1. This can be done using the Lagrange

Multipliers.

Theorem 10.1. Let q be a quadratic form associated with the n × n symmetric matrix A. If q attains its

maximum or minimum value on the unit sphere in Rn at a point v (with ||v|| = 1), then Av = λv for some

λ ∈ R.

Definition 10.3. Given a square matrix A, we say a nonzero vector v is an eigenvector of A if there is

λ ∈ R for which Av = λv. The number lambda is called an eigenvalue of A, and the pair (v, λ) is called

an eigenpair of A.

117
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Note that if (v, λ) is an eigenpair of a matrix A associated to a quadratic form q, then q(v) = λ||v||2.

Theorem 10.2. A real number λ is an eigenvalue of a square matrix A if and only if det(A − λI) = 0,

where I is the identity matrix.

Example 10.2. Find the maximum and minimum values of q(x, y) = 3x2+2y2−2xy subject to the condition

that x2 + y2 = 1.

Corollary 10.1. Let A be the matrix associated with a quadratic form q. Then, the maximum and minimum

values of q(x) where x is on the unit sphere is the largest and smallest real root λ of the equation det(A−λI) =

0.

Example 10.3. Consider the quadratic form q(x, y, z) = 2x2 + 4xy − y2 + z2. Find the maximum and

minimum value of this quadratic form over the unit sphere. Determine whether 0 is a local maximum, local

minimum, or a saddle point.

Definition 10.4. Let A be an n × n matrix. For every k ≤ n we denote the determinant of the upper

left-hand k × k submatrix of A is denoted by ∆k.

Definition 10.5. We say a quadratic form q on Rn is positive-definite if q(x) > 0 for all nonzero x ∈ Rn.

We say q is negative-definite if q(x) < 0 for all nonzero x ∈ Rn. If q is neither positive-definite nor

negative-definite we say q is nondefinite.

Theorem 10.3. Let q(x) = xTAx be a quadratic form whose matrix A is invertible (i.e. detA ̸= 0). Then,

q is

• positive-definite if and only if ∆k > 0 for all k.

• negative-definite if and only if (−1)k∆k > 0 for all k.

• nondefinite if and only if neither of the previous two conditions is satisfied.

To classify a critical point a of a function f we approximate the function f with a quadratic form and then

determine if this quadratic form is positive-definite, negative-definite, or nondefinite.

Definition 10.6. Let U be an open subset of Rn. Suppose f : U → R is a function with continuous first,

second and third partial derivatives. The Hessian matrix of f at a point a ∈ U is the n× n matrix whose

(i, j) entry is DiDjf(a). The determinant of this matrix is called the Hessian determinant of f at a.

Theorem 10.4. Let U be an open subset of Rn. Suppose f : U → R is a function with continuous first,

second and third partial derivatives, and let a ∈ U be a critical point of f . Suppose the Hessian determinant

of f at a is nonzero. Then,

• If the Hessian matrix of f at a is positive-definite, then f has a local minimum at a.

• If the Hessian matrix of f at a is negative-definite, then f has a local maximum at a.
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• If the Hessian matrix of f at a is nondefinite, then f has a saddle point at a.

Example 10.4. Consider the function

f(x, y, z) = 2x2 + 5y2 + 2z2 + 2xz + x4 + sin(y4).

Prove (0, 0, 0) is a critical point of f , and classify this critical point.

10.2 More Examples

Example 10.5. Prove that for every three numbers x, y, z we have

2x2 + 5y2 + 10z2 ≥ 4xy + 2xz − 6yz.

Solution. The matrix associated to the quadratic form 2x2 + 5y2 + 10z2 − 4xy − 2xz + 6yz is
2 −2 −1

−2 5 3

−1 3 10

 .

We will use Theorem 10.3.

∆1 = 2,∆2 = det

 2 −2

−2 5

 = 10− 4 = 6.

∆3 =


2 −2 −1

−2 5 3

−1 3 10

 = 2(50− 9) + 2(−20 + 3)− 1(−6 + 5) = 49.

Since ∆1,∆2,∆3 are all positive, (and ∆3 ̸= 0) the quadratic form is positive-definite and thus,

2x2 + 5y2 + 10z2 − 4xy − 2xz + 6yz ≥ 0,

for all x, y, z. This completes the proof.

Example 10.6. Prove that the eigenvalues of an upper triangular matrix is its diagonal entries.

Solution. Consider the upper triangular matrix A whose diagonal entries are a1, . . . , an. The matrix A−λI

is also upper triangular with diagonal entries a1 − λ, . . . , an − λ. By an exercise,

det(A− λI) = (a1 − λ) · · · (an − λ).

The roots of this polynomial are a1, . . . , an. This completes the proof.

Example 10.7. Classify 0 as a minimum, maximum or a saddle point of each quadratic form:

(a) f(x, y, z) = x2 + y2 + 2z2 − xy − yz.
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(b) f(x, y, z) = −x2 − 2y2 + z2 + 4xy + 6zy.

Solution. a. The matrix associated to this quadratic form is
1 −1/2 0

−1/2 1 −1/2

0 −1/2 2

 .

We will use Theorem 10.3:

∆1 = 1,∆2 = 1− 1/4 = 3/4, and ∆3 = 5/4.

Since ∆1,∆2,∆3 are all positive, 0 is a local (and absolute) minimum.

b. The matrix associated to this quadratic form is
−1 2 0

2 −2 3

0 3 1

 .

We will again use Theorem 10.3:

∆1 = −1,∆2 = −2,∆3 = 7.

Since ∆1 and ∆2 are both negative, and ∆3 is nonzero, 0 is a saddle point.

Example 10.8. Find and classify all critical points of the function:

f(x, y, z) = x3 + xy2 + x2 + y2 + 3z2.

Solution. To find the critical points we need to solve the following system:
fx = 3x2 + y2 + 2x = 0

fy = 2xy + 2y = 0 ⇒ 2y(x+ 1) = 0 ⇒ x = −1 or y = 0

fz = 6z = 0 ⇒ z = 0

If x = −1, the first equation yields y2 + 1 = 0, which has no roots.

If y = 0, the first equation yields 3x2 + 2x = 0 which implies x = 0 or x = −2/3. Therefore, we obtain two

critical points (0, 0, 0) and (−2/3, 0, 0).

The Hessian matrix is 
6x+ 2 2y 0

2y 2x+ 2 0

0 0 6


Evaluating this at (0, 0, 0) gives us the matrix 

2 0 0

0 2 0

0 0 6


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The eigenvalues of this matrix are 2, 2, 6 which are all positive. Therefore, 0 is a local minimum.

At (−2/3, 0, 0) the Hessian matrix becomes 
−2 0 0

0 2/3 0

0 0 6


The eigenvalues are −2, 2/3, 6. Since one is negative and two are positive, 0 is a saddle point.

More examples from Edwards:

Pages 145-156, Examples 1-5

10.3 Exercises

Exercise 10.1. Classify 0 as a local minimum, local maximum or a saddle point of the following quadratic

form, in two ways:

f(x, y, z) = x2 − y2 − z2 + 4xy + 6xz

(a) Using an appropriate Theorem.

(b) By evaluating e-values.

Exercise 10.2. Consider the function

f(x, y, z) = x2 + 4y2 + z2 + 2xz + (x2 − y2 + z2) cos(xyz).

Prove that (0, 0, 0) is a critical point of f and classify this critical point.

Exercise 10.3. Prove that for all real numbers x, y, z we have

3x2 + 2y2 + 6z2 + 2xy + 2xz + 6yz ≥ 0.

From Edwards’ Book: p. 159: 8.6

10.4 Summary

• To determine if a quadratic form is positive-definite, negative-definite, or nondefinite:

– Form the matrix associated with the quadratic form.

– Find all eigenvalues of A.

– If all eigenvalues are positive, then the quadratic form is positive-definite. If all eigenvalues are

negative, then the quadratic form is negative-definite. If there are both positive and negative

e-values, the form is nondefinite.
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– If finding the e-values is not easy you could also do the following:

∗ Make sure detA ̸= 0, or this method does not work.

∗ Evaluate each ∆k, the determinants of k × k minors.

∗ If ∆k > 0 for all k, then the form is positive-definite.

∗ If (−1)k∆k > 0 for all k, then the form is negative-definite.

∗ Otherwise, the form is nondefinite.

• To find out if a critical point is a local maximum, local minimum or a saddle point:

– Find the Hessian matrix at the critical point.

– Check the determinant of the Hessian matrix is nonzero.

– Determine if the quadratic form associated with this matrix is positive-definite, negative-definite

or nondefinite.

– Positive-definite implies we have a local minimum.

– Negative-definite implies we have a local maximum.

– Nondefinite implies there is a saddle point.



Chapter 11

Week 11

11.1 Area and Volume

Consider a solid E in R3 that lies between the planes x = a and x = b. Suppose the cross-sectional area of

this solid at x is given by A(x). Then the volume of this solid is

∫ b

a

A(x) dx.

Now assume E lies above a rectangle R = [a, b] × [c, d], and below the graph z = f(x, y). We see that

A(x) =

∫ d

c

f(x, y) dy. This means

Volume of E =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx.

Example 11.1. Find the volume of the solid bounded above by the surface z = xy that lies above the

rectangle in the xy-plane given by 0 ≤ x ≤ 1 and 1 ≤ y ≤ 2.

If the region R is bounded but is not a rectangle, we place R inside a rectangle S and define f(x, y) = 0 for

every (x, y) that lies in S, but does not lie in R.

Let’s see this with an example.

Example 11.2. Let R be the triangle in the xy-plane whose vertices are (0, 0), (1, 0), and (1, 1). Evaluate

the volume of the solid bounded above by the plane z = x+ y, that lies above the region R.

We will come back to this later.

11.1.1 Double Integrals

Definition 11.1. Let f(x, y) be a function over the rectangle R = [a, b] × [c, d]. A partition of R is a

collection of rectangles Rij = [xi−1, xi] × [yj−1, yj ] for which a = x0 < x1 < · · · < xn−1 < xn = b is a

partition of [a, b], and c = y0 < y1 < · · · < yn−1 < yn = d is a partition of [c, d]. Let cij be a point in the

rectangle Rij . Then the quantity
n∑

i,j=1

f(cij)∆Aij ,

123
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where ∆Aij = ∆xi∆yj is the area of the rectangle Rij is called a Riemann sum of f on R corresponding to

this partition of R. f is called integrable on R provided the limit of the Riemann sums as (∆xi,∆yj) → (0, 0)

exists and is a real number. The limit of these Riemann sums is denoted by
x

R

f(x, y) dA.

Remark. The above definition can be written more mathematically using ϵ− δ definition of limits:

∀ ϵ > 0 ∃ δ > 0 such that, if
√
∆x2

i +∆y2j < δ ∀ i, j, then |
n∑

i,j=1

f(cij)∆Aij − L| < ϵ.

The value L is the double integral
x

R

f(x, y) dA.

Theorem 11.1. Let f be a continuous function on a closed rectangle R, then f is integrable.

Definition 11.2. Let X be a subset of R2. We say X has zero area if for every ϵ > 0 there is a sequence

of closed rectangles R1, R2, . . . for which X ⊆
∞⋃

n=1
Rn and the sum of areas of Rn’s is less than ϵ.

Theorem 11.2. Let f be a function that is bounded over a rectangle R for which the points of discontinuity

of f in R has zero area. Then f is integrable over R.

Theorem 11.3 (Fubini’s Theorem). Let f(x, y) be a bounded function on R = [a, b]× [c, d], and let S be the

set of all points of discontinuity of f on R. Assume S has zero area, and suppose every line parallel to the

x- and y-axes intersects S in finitely many points. Then,

x

R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy.

Theorem 11.4 (Properties of the Integrals). Suppose f and g are integrable functions over a rectangle R,

and c is a constant. Then,

• f + g is integrable, and
x

R

(f + g) dA =
x

R

f dA+
x

R

g dA.

• cf is integrable, and
x

R

cf dA = c
x

R

f dA.

• If f ≤ g over R, then
x

R

f dA ≤
x

R

g dA.

• |f | is integrable over R, and |
x

R

f dA| ≤
x

R

|f | dA.

Definition 11.3. A region D in R2 is called elementary if it can be described in one of the following ways:

Type I:

D = {(x, y) | a ≤ x ≤ b, δ1(x) ≤ y ≤ δ2(x)},

where δ1, δ2 are continuous over [a, b].

Type II:

D = {(x, y) | γ1(y) ≤ x ≤ γ2(y), c ≤ y ≤ d},

where γ1, γ2 are continuous over [c, d].
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Theorem 11.5 (Fubini’s Theorem). Let D be an elementary region in R2, and f a continuous function on

D.

• If D is of type I as described above, then

x

D

f dA =

∫ b

a

∫ δ2(x)

δ1(x)

f(x, y) dy dx.

• If D is of type II as described above, then

x

D

f dA =

∫ d

c

∫ γ2(y)

γ1(y)

f(x, y) dx dy.

Example 11.3. Suppose D is the region enclosed by y = x2 and y =
√
x. Evaluate

x

D

(xy + y2) dA.

Remark: Let R be a region in R2. If δ(x, y) is the density of a thin metal surface placed at R, then the

total mass of this surface is
x

R

δ(x, y) dA. When δ(x, y) = 1, then we get the area of R.

11.1.2 Changing the Order of Integration

Sometimes we can use double integrals to evaluate iterated double integrals, i.e. integrals of form
∫ ∫

f(x, y) dx dy

or
∫ ∫

f(x, y) dy dx.

Example 11.4. Evaluate

∫ 1

0

∫ 1

x

ey
2

dy dx.

11.1.3 Triple Integrals

Similar to double integrals we start defining triple integrals over boxes.

Definition 11.4. Let f(x, y, z) be a function over the closed box B = [a, b]× [c, d]× [p, q]. A partition of

B is a collection of boxes Bijk = [xi−1, xi]× [yj−1, yj ]× [zk−1, zk] for which

a = x0 < x1 < · · · < xn−1 < xn = b is a partition of [a, b],

c = y0 < y1 < · · · < yn−1 < yn = d is a partition of [c, d], and

p = z0 < z1 < · · · < zn−1 < zn = q is a partition of [p, q].

Let cijk be a point in the box Bijk. Then the quantity

n∑
i,j,k=1

f(cijk)∆Vijk,

where ∆Vijk = ∆xi∆yj∆zk is the volume of the box Bijk is called a Riemann sum of f on B corre-

sponding to this partition of B. f is called integrable on B provided the limit of the Riemann sums as

(∆xi,∆yj ,∆zk) → (0, 0, 0) exists and is a real number. The limit of these Riemann sums is denoted by
y

B

f(x, y, z) dV .
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Definition 11.5. A subset X of R3 is said to have zero volume if for every ϵ > 0, there are boxes B1, B2, . . .

for which X ⊆
∞⋃

n=1
Bn and the sum of volumes of Bn’s is less than ϵ.

Theorem 11.6 (Fubini’s Theorem). Let f be a bounded function on the box B = [a, b] × [c, d] × [p, q].

Assume the set S of discontinuities of f in B has zero volume. If every line parallel to the x−, y−, and

z−axes intersect S at finitely many points, then

y

B

f dV =

∫ b

a

∫ d

c

∫ q

p

f(x, y, z) dz dy dx.

Similarly we can change the order of integration.

Similar to regions in R2 we define elementary solids in R3 as follows:

Definition 11.6. We say that a solid E in R3 is an elementary solid if it is of one of the following forms:

Type I:

E = {(x, y, z) | α1(x, y) ≤ z ≤ α2(x, y), β1(x) ≤ y ≤ β2(x), a ≤ x ≤ b}

or

E = {(x, y, z) | α1(x, y) ≤ z ≤ α2(x, y), β1(y) ≤ x ≤ β2(y), c ≤ y ≤ d}.

Type II:

E = {(x, y, z) | α1(y, z) ≤ x ≤ α2(y, z), β1(z) ≤ y ≤ β2(z), p ≤ z ≤ q}

or

E = {(x, y, z) | α1(y, z) ≤ x ≤ α2(y, z), β1(y) ≤ z ≤ β2(y), c ≤ y ≤ d}.

Type III:

E = {(x, y, z) | α1(x, z) ≤ y ≤ α2(x, z), β1(z) ≤ x ≤ β2(z), p ≤ z ≤ q}

or

E = {(x, y, z) | α1(x, z) ≤ y ≤ α2(x, z), β1(x) ≤ z ≤ β2(x), a ≤ x ≤ b}.

Similar to double integrals we define triple integral of a function f over a bounded solid E by placing E into

a box B, and defining f to be zero outside of E. Then defining
y

E

f dV by
y

B

f dV .

Remark: Let E be a region in R3. If δ(x, y, z) is the density of a solid placed at E, then the total mass of

this solid is
y

E

δ(x, y, z) dV . When δ(x, y, z) = 1, then we get the volume of E.

Example 11.5. Evaluate the volume of the solid that lies in the first octant (i.e. x, y, z > 0), and inside the

cylinders x2 + y2 = 1 and y2 + z2 = 1.

Example 11.6. Find the volume of the solid that lies above the surface z = x2 + y2 and below the plane

z = 1.
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11.2 More Examples

Example 11.7. Prove that an open subset of R2 cannot have zero area.

Solution. Suppose U is an open subset of R2. Then, there is a ball Br(a) that lies inside U . If U ⊆
∞⋃

n=1
Rn,

where Rn’s are rectangles, then the sum of areas of Rn’s must be at least the area of Br(a) which is πr2.

Therefore, ϵ = πr2 which is a positive real number does not satisfy the definition of zero area. This means

U does not have zero area.

Example 11.8. Let D = [0, 1]× [0, 1]. Evaluate

x

D

xexy dA,

once by turning dA into dx dy and once by changing it to dy dx. Which one is easier to evaluate?

Solution. First, we will try integrating with respect to x and then with respect to y.

x

D

xexy dA =

∫ 1

0

∫ 1

0

xexy dx dy

=

∫ 1

0

xexy

y
− exy

y2

∣∣∣∣∣
x=1

x=0

dy by integration by parts

=

∫ 1

0

(
ey

y
− ey

y2
− 0 +

1

y2

)
dy by integration by parts for

ey

y

=
ey

y
− 1

y

∣∣∣∣∣
1

0

=
e− 1

1
− lim

t→0+

et − 1

t

= e− 1− 1 = e− 2.
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The other method gives us
x

D

xexy dA =

∫ 1

0

∫ 1

0

xexy dy dx

=

∫ 1

0

exy

∣∣∣∣∣
y=1

y=0

dx

=

∫ 1

0

(ex − 1) dx

= ex − x

∣∣∣∣∣
1

0

= e− 1− 1 + 0 = e− 2.

The second method is significantly simpler.

Example 11.9. Let R = [0, 1]× [0,∞) be a vertical strip. Evaluate
x

R

(2xy−x2y2)e−xy dA once by writing

dA as dx dy and once by writing it as dy dx. Does this contradict the Fubini’s Theorem?

Solution.∫ 1

0

(2xy − x2y2)e−xy dx = x2ye−xy

∣∣∣∣∣
x=1

x=0

by integration by parts with dv = 2xy dx, u = e−xy

= ye−y.

Therefore, ∫ ∞

0

∫ 1

0

(2xy − x2y2)e−xy dx dy =

∫ ∞

0

ye−y dy

= −ye−y − e−y

∣∣∣∣∣
∞

0

by integration by parts

=

= 1

Similar to above we have:

∫ ∞

0

(2xy − x2y2)e−xy dy = xy2e−xy

∣∣∣∣∣
x=∞

x=0

.

For every positive y the function xy2e−xy approaches zero as x → ∞. For y = 0 the function xy2e−xy is

identically zero. Therefore the above definite integral is zero. Thus∫ 1

0

∫ ∞

0

(2xy − x2y2)e−xy dy dx = 0

This does not contradict the Fubini’s Theorem because the Fubini’s Theorem applies to bounded regions

only. This region is not bounded. In fact such an integral has not been defined here.
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More examples from Colley:

Pages 311-313, Examples 1-3.

Pages 317-327, Examples 1-8.

Pages 340-347, Examples 1-6.

Problems for Practice:

Page 333: 16, 20, 26, 28, 39, 40.

Page 337: 7, 12, 15, 17.

Page 348: 7, 12, 14, 20, 29.

11.2.1 Summary

• To evaluate a double integral
x

D

f(x, y) dA:

– Sketch the graph of D.

– Identify if the region D is an elementary region. If it is not break it up into different regions that

are elementary.

– For each elementary region set up a double integral of the form

∫ right

left

∫ top

bottom

f(x, y) dy dx.

– Note that the order could be swapped. Make sure the outer limits are always constant while the

inner limits could depend on the outer variable.

• The area of a region D in R2 is equal to
x

D

1 dA.

• The total mass of a thin metal with density δ(x, y) located at the regionD in R2 is given by
x

D

δ(x, y) dA.

• To evaluate an iterated double integral it is often helpful to write it as a double integral over a region

in R2 and then swap the order of integration using the Fubini’s Theorem.

• To evaluate a triple integral:

– Sketch a graph of the solid.

– Identify if the solid is elementary. If it is not break it into elementary solids.

– Sketch the projection of the solid into the appropriate coordinate plane.
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Chapter 12

Week 12

12.1 Change of Variables

Suppose T : R2 → R2 is a continuously differentiable function, and D is a region in R2. We would like to

find a relation between
x

D

f dA and
x

T (D)

f dA. Let T (x, y) = (u, v). This means we would like to find a

relation between dx dy and du dv.

Example 12.1. Suppose T : R2 → R2 is a linear transformation, and D is a parallelogram formed by vectors

u and v from the origin in R2. Prove that Area of T (D) = |detT | Area of D.

Example 12.2. Consider the transformation T (r, θ) = (r cos θ, r sin θ). Find a relation between the area of

R and T (R) if R is a rectangle given by 0 ≤ r ≤ a, and α ≤ θ ≤ β, where a is a positive constant, and

0 ≤ α < β ≤ 2π are constants.

Definition 12.1. Let T : R2 → R2 be a continuously differentiable function given by T (u, v) = (x(u, v), y(u, v)).

The Jacobian of T is given by
∂(x, y)

∂(u, v)
= det

 ∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v


Theorem 12.1 (Change of Variables Theorem). Let T : R2 → R2 be a continuously differentiable function

given by T (u, v) = (x(u, v), y(u, v)). Suppose D and T (D) are elementary regions in the uv- and xy-planes,

respectively. Then
x

T (D)

f(x, y) dA =
x

D

f(u, v)

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ dA.

This is often summarizes as dx dy =

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv.

Note that dx dy = r dr dθ. This is called double integrals in polar coordinates.

Example 12.3. Evaluate
x

R

xy dA, where R is:

(a) the parallelogram whose vertices are (0, 0), (1, 1), (1, 2), and (2, 3).

131
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(b) the region in the first quadrant bounded by the lines y = x, y = 2x and the hyperbolas yx = 1, and

yx = 2.

To every point P in R3 we assign a triple (r, θ, z), called the cylindrical coordinates of P , where (r, θ)

are the polar coordinates of the point (x, y). Similarly we assign a triple (ρ, φ, θ), called the spherical

coordinates of P , where ρ is the distance to the origin, φ is the angle that the vector
−−→
OP makes with the

positive direction of the z-axis, and θ is the same angle as in the polar coordinates of (x, y). We have the

following useful formulas:

x = r cos θ, y = r sin θ.

r = ρ sinφ, x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

dx dy = r dr dθ, and dx dy dz = ρ2 sinφ dρ dφ dθ.

Example 12.4. Evaluate the volume of a sphere of radius a.

Example 12.5. Find the volume of the solid that lies inside both the cylinder r = 1, and the sphere ρ = 2

12.2 Applications of Integration

Definition 12.2. The average value of a function f over a region D ⊆ R2 is given by favg =

x

D

f(x, y) dA

Area of D
.

The average value of a function f over a solid E ⊆ R3 is given by favg =

y

E

f(x, y, z) dV

Volume of E
.

Example 12.6. Find the average value of the function f(x, y, z) = z over the solid E, where E is the solid

that lies inside the surface given by x2 + y2 + z2 = 2z, and above the surface given by z =
√
x2 + y2.

Definition 12.3. A point mass is a mass concentrated at a single point The moment of a point mass m

located at point x on the number line with respect to the origin is mx.

Suppose masses m1, . . . ,mn are located at points x1, . . . , xn on the number line. The total moment of

these point masses with respect to the origin is defined as
n∑

i=1

mixi.

Definition 12.4. The center of mass of a finite number of point masses on a number line is a point such

that if the total masses were concentrated there, then the total moment of the point masses would be the

same as the moment of the mass located at the center of mass.

Definition 12.5. The moment of a point mass m located at (x, y) with respect to the x−axis is given by

my. Similarly the moment with respect to the y−axis and total moment are defined. Center of mass is also

similarly defined to be a point for which if the total mass were concentrated there, then the total moment

of the point masses with respect to both x− and y− axes would be the same as the moment of the mass

located at the center of mass with respect to the corresponding axis.
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Definition 12.6. The moments of point masses m1, . . . ,mn located at (x1, y1), . . . , (xn, yn) with respect to

the x− and y− axes are

Mx =

n∑
i=1

miyi, and My =

n∑
i=1

mixi.

Similarly for point masses in R3 moments with respect to x−, y−, and z−axes are defined.

Theorem 12.2. The center of mass of point masses m1, . . . ,mn located at (x1, y1), . . . , (xn, yn) is (x, y),

where

x =

n∑
i=1

mixi

n∑
i=1

mi

, and y =

n∑
i=1

miyi

n∑
i=1

mi

.

Theorem 12.3. Suppose an object is located at the region D inside R2. Suppose δ(x, y) is the density of

this object at point (x, y). Then

• The total mass of this object is
x

D

δ(x, y) dA.

• The total moments of this object with respect to the x− and y−axes are
x

D

yδ(x, y) dA, and
x

D

xδ(x, y) dA,

respectively.

• The center of mass (x, y) is given by x =

x

D

xδ(x, y) dA

x

D

δ(x, y) dA
, y =

x

D

yδ(x, y) dA

x

D

δ(x, y) dA

Similar results hold for solids in R3.

Example 12.7. Find the center of mass of a hemisphere of radius a.

Example 12.8. An object is located in the first octant and below the plane x + y + z = 3. Suppose the

mass density of this object is given by the distance to the origin. Find the center of mass of this object.

12.3 Scalar Line Integrals

Suppose a wire is located at a curve with a parametrization x : [a, b] → R2. Let δ(x, y) be the density (i.e.

mass/length) of this curve at (x, y). If we partition this curve into pieces with length ∆si, then the total

mass can be approximated by
n∑

i=1

δ(x(ti))∆si,

where x(ti) is on the i-th piece of the wire. As ∆si approaches zero we obtain an integral that is denoted

by

∫
x

δ(x, y) ds. Note that the arc length can be evaluated using the integral

∫
||x′(t)|| dt and thus we can

substitute ds by ||x′(t)|| dt.

Definition 12.7. Consider a curve parametrized by x : [a, b] → Rn. The scalar line integral of a real-

valued function f over this curve is given by

∫
x

f ds =

∫ b

a

f(x(t))||x′(t)|| dt.

Example 12.9. Find the total mass of a wire located at the unit circle x2 + y2 = 1 whose density is given

by δ(x, y) = x2.
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12.4 Vector Line Integrals

Recall that the work done by a constant force F with displacement vector D is given by F ·D.

Definition 12.8. A vector field is a function F : D → Rn, where D is a subset of Rn.

Definition 12.9. Suppose D is a subset of Rn that contains the image of a path given by x : [a, b] → Rn.

The vector line integral of a vector field F : D → Rn over x is∫
x

F · ds =
∫ b

a

F(x(t)) · x′(t) dt.

Example 12.10. Find the work done by the force F(x, y, z) = (x, y3, 2z3) along the curve given by x(t) =

(t, t2, t) from (0, 0, 0) to (1, 1, 1).

When F(x, y, z) = M(x, y, z)i+N(x, y, z)j+ P (x, y, z)k, we write∫
x

F · ds =

∫
x

M(x, y, z) dx+N(x, y, z) dy + P (x, y, z) dz.

Definition 12.10. A function x : [a, b] → Rn is said to be piecewise continuously differentiable if x is

continuous, and the interval [a, b] can be partitioned into finitely many intervals a = t0 < t1 < · · · < tn = b,

for which x is continuously differentiable on each interval (ti, ti+1).

Definition 12.11. Let x : [a, b] → Rn be a piecewise continuously differentiable path. We say another

piecewise continuously differentiable path y : [c, d] → Rn is a reparametrization of x if there is a bijective

continuously differentiable function u : [c, d] → [a, b] whose inverse is also continuously differentiable such

that y = x ◦ u. If y(c) = x(a), and y(d) = x(b), then we say y is orientation-preserving. If y(c) = x(b),

and y(d) = x(a), then we say y is orientation-reversing

Example 12.11. y : [0, 1] → R3 given by y(t) = (t, 2t, 3t) is a reparametrization of x : [2, 4] → R3 given by

x(t) = (0.5t− 1, t− 2, 3t/2− 3).

Theorem 12.4. Suppose f : U → R is a continuous function over an open subset U of Rn. Suppose x is a

path whose image is inside U . If y is a reparametrization of x, then∫
y

f ds =

∫
x

f ds.

Theorem 12.5. Suppose F : U → Rn is a continuous vector field over an open subset U of Rn. Suppose

x is a piecewise continuously differentiable path whose image is inside U . If y is an orientation-preserving

reparametrization of x, then

∫
y

F · ds =
∫
x

F · ds. If y is orientation-reversing, then

∫
y

F · ds = −
∫
x

F · ds.

Theorem 12.6. Let C be a curve given by a parametrization x : [a, b] → Rn. Suppose c ∈ (a, b) and the

restriction of x to intervals [a, c] and [c, b] divides C into two curves C1 and C2. Then for every vector field

F and every scalar function f we have∫
C

F · ds =

∫
C1

F · ds+

∫
C2

F · ds, and

∫
C

f ds =

∫
C1

f ds+

∫
C2

f ds.
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12.5 Green’s Theorem

Definition 12.12. A piecewise continuously differentiable path x : [a, b] → Rn is said to be closed if

x(a) = x(b). It is said to be simple if x is one-to-one except possibly x(a) may be equal to x(b). If x is

one-to-one except possibly at finitely many points of [a, b] we say its image is a curve C, in which case x is

said to be a parametrization of C. We say C is closed or simple if it has a parametrization that has the

corresponding property.

Theorem 12.7 (Green’s Theorem). Let D be a closed bounded region in R2, whose boundary ∂D consists

of finitely many simple, closed, piecewise continuously differentiable curves. Suppose ∂D is oriented in such

a way that D lies on the left as one traverses ∂D. Let F = M i+N j be a continuously differentiable vector

field on D. Then ∫
∂D

M dx+N dy =
x

D

(
∂N

∂x
− ∂M

∂y

)
dA

Notation. We often write

∮
C

instead of

∫
C

to indicate C is a union of finitely many closed curves.

Example 12.12. Evaluate

∮
C

(x2 − y2) dx + (x2 + y2) dy, where C is the boundary of the square whose

vertices are (0, 0), (1, 0), (1, 1), and (0, 1) oriented clockwise.

Example 12.13. Evaluate the area of the region enclosed by the ellipse
x2

a2
+

y2

b2
= 1, where a, b are positive

constants.

Theorem 12.8. Let C be a simple closed curve in R2, and D be the closed region bounded by C. Suppose

M(x, y) and N(x, y) are continuously differentiable functions over D for which
∂N

∂x
− ∂M

∂y
= 1. Then

Area of D =

∮
C

M dx+N dy,

where C oriented counterclockwise. In particular

Area of D =

∮
C

x dy = −
∮
C

y dx =
1

2

∮
C

x dy − y dx.

For more examples check Colley’s pages 349-369 examples 1-18, and sections 5.6, 6.1 and 6.2

12.6 More Examples

Example 12.14. Evaluate

∫
C

−y

x2 + y2
dx +

x

x2 + y2
dy, where C is the unit circle centered at the origin

oriented clockwise.

Solution. First, we parametrize C. x = cos t, y = sin t, where t ranges from 2π to 0. The vector integral is∫
C

−y

x2 + y2
dx+

x

x2 + y2
dy =

∫ 0

2π

− sin t

cos2 t+ sin2 t
(− sin t) +

cos t

cos2 t+ sin2 t
cos t dt

=

∫ 0

2π

1 dt = −2π.
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12.7 Exercises

Exercise 12.1. In this problem you will evaluate

∫ ∞

−∞
e−x2

dx. Note that this integral can be shown to

converge using the Comparison Test. This implies

∫ ∞

−∞
e−x2

dx = lim
r→∞

∫ r

−r

e−x2

dx. (You may assume all

of these!)

(a) For a positive constant r let Dr be the disk given by x2 + y2 ≤ r2. Evaluate
x

Dr

e−x2−y2

dA. Deduce

lim
r→∞

x

Dr

e−x2−y2

dA = π

(b) Let Sr be the square centered at (0, 0) with vertices (r, r), (r,−r), (−r, r), and (−r,−r). Prove that
x

Sr

e−x2−y2

dA =

(∫ r

−r

e−x2

dx

)2

.

(c) Prove that
x

Dr

e−x2−y2

dA ≤
x

Sr

e−x2−y2

dA ≤
x

D2r

e−x2−y2

dA. Use this to evaluate

∫ ∞

−∞
e−x2

dx.

Exercise 12.2. Let C be the curve of intersection of the plane x+ y + z = 1 and the cylinder x2 + y2 = 2.

Suppose a wire is located at C whose mass density is given by x2 + y2 + z2. Write a single integral that

evaluates the total mass of this wire. Do not evaluate!

12.8 Summary

• To integrate using spherical coordinates:

– Find the closest and farthest points inside the solid to the origin. This often depends on φ and θ.

– Find the smallest and largest values of φ when θ is given. These values could depend on θ.

– Find the smallest and largest values of θ over the entire solid. These values must be constant.

– Remember to replace dA by ρ2 sinφ dρ dφ dθ.

– Other orders of ρ, φ, θ might be easier to deal with. If so, apply the same basic strategy.

• When changing coordinates, use appropriate change of variables that change the region into an elemen-

tary region. Remember to include the absolute value of the Jacobian.

• The total mass of a solid located at E with mass density δ(x, y, z) is
y

E

δ(x, y, z) dV .

• The coordinates of center of mass of an object located at region E in R3 are evaluated by

x =

y

E

xδ(x, y, z) dV

y

E

δ(x, y, z) dV
,
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and similar for y, z and regions in R2.

• The average value of a function f(x, y, z) over a region E in R3 is

y

E

f(x, y, z) dV

y

E

dV
.
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Chapter 13

Week 13

13.1 Conservative Vector Fields

Definition 13.1. A vector field F is said to have path-independent line integrals if∫
C1

F · ds =

∫
C2

F · ds

for any two simple piecewise continuously differentiable curves C1, C2 lying in the domain of F that have the

same initial and terminal points.

Example 13.1. Check if each of the following vector fields has path-independent line integrals.

(a) xyi+ yj.

(b) xi+ yj.

Theorem 13.1. A vector field F has path-independent line integrals if and only if

∮
C

F · ds = 0 for every

simple, piecewise continuously differentiable, closed curve C in the domain of F.

Definition 13.2. A continuous vector field F is said to be conservative if F = ∇f for some continuously

differentiable real-valued function f . We call f a potential function of F.

Theorem 13.2 (Fundamental Theorem of Line Integrals). Suppose F is a continuous vector field over an

open connected subset U of Rn. Then F is conservative on U , if and only if F has path-independent line

integrals over curves in U . Furthermore, if C is a piecewise continuously differentiable curve in U from point

A to point B and F = ∇f . Then ∫
C

F · ds = f(B)− f(A).

Example 13.2. Evaluate

∫
C

(x2 + 2) dx + (y − 1) dy, where C is a continuously differentiable curve from

(1, 0) to (2, 1).

Definition 13.3. A region U in R2 or R3 is called simply connected if it is connected and every simple

closed curve in U can be continuously shrunk to a point while remaining in U . In other words, if x : [a, b] → U

139
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is a parametrization of a simple closed curve, then there is a continuous function φ : [a, b] × [0, 1] → U for

which φ(t, 0) = x(t) for all t, and φ(t, 1) is constant.

Definition 13.4. Let u = (u1, u2, u3),v = (v1, v2, v3) be two vectors in R3. The cross product u × v is

defined as

u× v = det


i j k

u1 u2 u3

v1 v2 v3

 .

Theorem 13.3 (Properties of Cross Products). For every three vectors u,v,w ∈ R3 and every scalar c ∈ R

we have the following:

(a) u× v is orthogonal to both u and v.

(b) v × u = −(u× v).

(c) u× (v +w) = u× v + u×w.

(d) (v +w)× u = v × u+w × u.

(e) ||u× v|| = ||u|| ||v|| sin θ, where θ is the angle between u and v.

Definition 13.5. Let F(x, y, z) = M(x, y, z)i+N(x, y, z)j+ P (x, y, z)k be a vector field in R3 or F(x, y) =

M(x, y)i+N(x, y)j be a vector field in R2. In the three dimensional case, the curl of F denoted by curl F

is defined as

curl F = det


i j k

∂
∂x

∂
∂y

∂
∂z

M N P

 .

In the two-dimensional case, the curl is similarly defined with P = 0.

Theorem 13.4. Suppose U is a simply connected region in R2 or R3. Let F be a continuously differentiable

vector field on U . Then, F = ∇f for some real-valued function f if and only if curl F = 0 on U .

Example 13.3. Without evaluating a potential function, show that the vector field

F(x, y, z) = (3x2 + y sin(xy))i+ (2y + x sin(xy))j+ (2z + 1)k

is conservative. Evaluate

∫
C

F · ds, where C is the curve given by x(t) = (t2, et, 2t) from (0, 1, 0) to (1, e, 2).

13.2 Parametrized Surfaces

Definition 13.6. Let D be a subset of R2 that consists of an open connected set along with some or all of

its boundary. A parametrized surface in R3 is a continuous function X : D → R3 that is one-to-one on D

except possibly along ∂D. We say X(D) is a surface parametrized by X.

Example 13.4. Find parametrizations for the unit sphere x2 + y2 + z2 = 1, and the cylinder x2 + y2 = 1.
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Definition 13.7. Let X : D → R3 given by X(s, t) be a parametrization of the surface S = X(D). An

s-coordinate curve at t = t0 is the curve given by s 7→ X(s, t0). Similarly, t-coordinate curves are defined.

Example 13.5. Find a parametrization of a torus. Use that to find its coordinate curves.

We know that partial derivatives Xt and Xs give us vectors that are tangent to the coordinate curves. There-

fore, to find the vector normal to both coordinate vectors we need to evaluate Xs ×Xt.

Definition 13.8. The parametrized surface S = X(D) is said to be smooth at X(s0, t0) if X is continuously

differenatible on an open ball around (s0, t0) and the vector

N(s0, t0) = Xs(s0, t0)×Xt(s0, t0)

is nonzero. If S is smooth at every point, then we say X is a smooth parametrization of S. The vector

N(s0, t0) is called the standard normal vector arising from X.

Definition 13.9. A piecewise smooth parametrized surface is the union of images of finitely many

parametrized surface Xi : Di → R3, where

• Each Di is a region in R2 consisting of a connected open set, possibly together with some or all of its

boundary points.

• Each Xi is continuously differentiable.

• Each Xi is one-to-one except possibly on the boundary of Di.

• Each Xi(Di) is smooth except possibly at finitely many points or points of its boundary.

Example 13.6. Find a piecewise smooth parametrization of the surface of a unit cube.

Theorem 13.5. Suppose X(s, t) with X : D → R3 is a piecewise smooth parametrization of a surface S.

Then the area of S is evaluate by
x

D

||Xs ×Xt|| dA.

Example 13.7. Find the surface area of a sphere of radius a.

Remark. When a surface is given by z = f(x, y), we may use the parametrization X(x, y) = (x, y, f(x, y)).

In that case

Xx ×Xy = (−fx,−fy, 1).

13.3 Scalar and Vector Surface Integrals

Definition 13.10. Let D ⊆ R2 be a bounded region. Let X : D → R3 be a piecewise smooth parametrized

surface. Let f be a continuous real-valued function whose domain contains S = X(D). Then the scalar

surface integral of f along X denoted by
x

X

fdS is given by

x

X

fdS =
x

D

f(X(s, t)) ||N(s, t)|| dA.



142 CHAPTER 13. WEEK 13

Example 13.8. Suppose S is part of the paraboloid z = x2 + y2 − 4 that lies below the xy-plane. Evaluate

the surface integral of z + 4 over S.

Definition 13.11. Let D ⊆ R2 be a bounded region. Let X : D → R3 be a piecewise smooth parametrized

surface. Let F(x, y, z) be a continuous vector field whose domain contains S = X(D). Then the vector

surface integral of F along X denoted by
x

X

F · dS is given by

x

X

F · dS =
x

D

F(X(s, t)) ·N(s, t) dA.

Example 13.9. Find the surface integral of the vector field xi + yj − zk along the unit sphere. Use a

parametrization whose normal vector points outwards.

Definition 13.12. Let D1, D2 be two regions in R2; X1 : D1 → R3, and X2 : D2 → R3 be two parametrized

surfaces. We sayX2 is a reparametrization ofX1 if there is a bijectionH : D2 → D1 such thatX2 = X1◦H.

if X1 and X2 are piecewise smooth and H and H−1 are continously differenatible we say X2 is a smooth

reparametrization of X1.

Theorem 13.6. Suppose X2 : D2 → R3 is a smooth reparametrization of X1 : D → R3 as in the above

definition. Then for every continuous scalar function f we have

x

X2

f dS =
x

X1

f dS.

Definition 13.13. A smooth, connected surface S is called orientable if it is possible to define a unit

normal vector at each point of S so that these normal vectors vary continuously over S. In other words,

there is a continous function φ : S → R3 for which ||φ(u)|| = 1 for all u ∈ S.

Definition 13.14. Let X2 : D2 → R3 be a smooth reparametrization of X1 : D1 → R3. We say X2

is orientation-preserving if the normal vectors corresponding to X1 and X2 are in the same direction.

Otherwise we say X2 is orientation-reversing.

Theorem 13.7. Suppose X2 : D2 → R3 is a smooth reparametrization of X1 : D → R3. Then for every

continuous vector field F (x, y, z) we have

x

X2

F (x, y, z) · dS =
x

X1

F (x, y, z) · dS,

if X2 is orientation-preserving, and

x

X2

F (x, y, z) · dS = −
x

X1

F (x, y, z) · dS,

if X2 is orientation-reversing.

Since the above definition shows the surface integrals only depend on the orientation and not the particular

parametrization we often replace a parametrization X by the surface S.
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Theorem 13.8. Let X1 : D1 → R3 and X2 : D2 → R3 be two piecewise smooth parametrized surfaces for

which the only intersection points of them is on their boundary points. Then for every continuous scalar

function f and every continous vector field F we have

x

X1∪X2

f dS =
x

X1

f dS +
x

X2

f dS,

and
x

X1∪X2

F (x, y, z) · dS =
x

X1

F (x, y, z) · dS+
x

X2

F (x, y, z) · dS.

Example 13.10. Let Σ be part of the cylinder r = 1 that lies between z = 0 and z = 1 along with the disks

x2 + y2 ≤ 1 in the planes z = 0 and z = 1 oriented outward from the cylinder. Evaluate
x

Σ

(x2i+ zj) · dS.
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Chapter 14

Week 14

14.1 Stokes’ and Gauss’ Theorem

Definition 14.1. Let S be a bounded piecewise smooth oriented surface in R3. Let C ′ be a simple closed

curve lying on S. Let n a unit normal vector that indicates an orientation of S. Use n and the right hand

rule to obtain an orientation of C ′. We say this orientation of C ′ is induced from that of S or that C ′ is

oriented consistently with S. Now suppose the boundary of S, denoted by ∂S, consists of finitely many

piecewise continuously differentiable, simple closed curves. Then we say ∂S is oriented consistently with S

if each of its simple closed pieces is oriented consistently with S.

Theorem 14.1. Let S be a bounded, piecewise smooth, oriented surface in R3. Suppose ∂S consists of finitely

many piecewise continuously differentiable, simple, closed curves each of which is oriented consistently with

S. Let F be a continuously differentiable vector field whose domain includes S. Then

x

S

curl F · dS =

∮
∂S

F · ds.

Example 14.1. Let S be part of the plane x + 2y + 3z = 6 that lies in the first octant. Let C be the

boundary of S oriented counterclockwise when viewed from above. Evaluate

∫
C

x2 dx+ y2z dy + z2 dz.

Example 14.2. Let S be part of the cone z =
√

x2 + y2 that lies below the plane z = 2. Let C be the

boundary of S oriented clockwise when viewed from above. Evaluate

∫
C

sinx dx+ xyz3 dy + ez
2

dz.

Example 14.3. Deduce Green’s Theorem from Stokes’ Theorem.

Example 14.4. Let S be the surface formed by part of the cylinder x2 + y2 = 1 with 0 ≤ z ≤ 2 together

with the disk x2 + y2 ≤ 1 in the xy-plane. Consider the orientation of S with normal vectors outwards from

the cylinder. Evaluate
x

S

curl (−yi+ xj+ x2k) · dS using Stokes’ Theorem.

Definition 14.2. For a vector field F = P i+Qj+Rk we define div F =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
.
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Theorem 14.2 (Gauss’ Theorem). Let D be a bounded region whose boundary ∂D consists of finitely many

piecewise smooth closed orientable surfaces, each of which is oriented by unit normal vectors away from D.

Let F be a continuously differentiable vector field whose domain contains D. Then

x

∂D

F · dS =
y

D

div F dV .

Example 14.5. Let Σ be the unit sphere centered at the origin oriented away from the ball. Evaluate
x

Σ

((ez
2

+ sin(y2) + x)i+ z3j+ zk) · dS

Example 14.6. Find the volume of an ellipsoid given by
x2

a2
+

y2

b2
+

z2

c2
= 1, where a, b, c are positive real

numbers.

14.2 Understanding Curl and Divergence

Theorem 14.3. Let P be a point in R3, and F be a vector field that is continuously differentiable on a open

ball centered at P . Let Sa denote the sphere of radius a centered at P , oriented outward. Then

div F(P ) = lim
a→0+

3

4πa3

x

Sa

F · dS.

Theorem 14.4. Let P be a point in R3, and F be a vector field that is continuously differentiable on a open

ball centered at P . Suppose n is a unit vector from P . Let Ca denote the circle of radius a centered at P

that lines in the plane perpendicular to the vector n. Then, the component of curl F in the direction of n is

n · curl F(P ) = lim
a→0+

1

πa2

∫
Ca

F · ds,

where Ca is oriented with the right hand rule with respect to n.

The integral
x

Σ

F · dS is often called the flux integral or the flux of F across Σ.

Given a fluid flow, suppose v(x, y, z) is the velocity of a fluid flow at point (x, y, z) and δ(x, y, z) is the mass

density of this fluid at (x, y, z). The total mass of this fluid through a surface Σ in the direction of the unit

normal vector n per unit time is approximately

v(x, y, z)δ(x, y, z) · n(Area of Σ).

Therefore the flux integral
x

Σ

δ v · dS evaluates the total mass of fluid through Σ in the direction of n per

second.

Definition 14.3. The Laplace of a scalar function f : Rn → R that has second partial derivatives is defined

by

∇2f =
∂2f

∂x2
1

+ · · ·+ ∂2f

∂x2
n

.
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Theorem 14.5 (Green’s First and Second Formulas). Let E be a solid in R3 bounded by a piecewise smooth

surface ∂E oriented outward from E. Let f, g be scalar functions that have continuous second partial deriva-

tives over E. Then:

(a)
y

E

∇f · ∇g dV +
y

E

f∇2g dV =
x

∂E

f∇g · dS.

(b)
y

E

(f∇2g − g∇2f) dV =
x

∂E

(f∇g − g∇f) · dS.

Theorem 14.6. Let E be a solid in R3 bounded by a piecewise smooth surface ∂E oriented outward from E.

Fix a point r in the interior of E, and let f be a scalar function that has continuous second partial derivatives

over E. Then:

f(r) = − 1

4π

y

E

∇2f(x)

||r− x||
dV +

1

4π

x

∂E

(
−f(x)∇

(
1

||r− x||

)
+

∇f(x)

||r− x||

)
· dS.

The above formula allows us to recover f from ∇2f .

Theorem 14.7. Suppose E is a solid in R3, and φ = ∇2f over E for some twice continuously differentiable

function f . Then

f(r) = − 1

4π

y

E

φ(x)

||r− x||
dV + g(r),

where g(r) satisfied ∇2
rg(r) = 0.

14.3 Summary

• Vector fields assign vectors in Rn to points of Rn. Examples: gravitational force, velocity of a fluid

flow, electric field, and ∇f .

• To simplify things, we use the symbol ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ).

• For a vector field F = (P,Q,R), we define its divergence as div F = ∇ · F = Px +Qy +Rz. Note that

divergence is a scalar function and gives the fluid flow out of a point. If it is positive, the point is a

source and if it is negative the point is a sink.

• curl F = ∇× F. Note that curl is a vector field and is the axis of rotation of the fluid flow.

• A vector field of the form ∇f is called conservative.

• For a conservative vector field F, we have curl F = 0. Furthermore if curl F = 0 over a simply

connected region, then F is conservative. In which case F = ∇f and f is called a potential function of

F.

• To find a potential function for a conservative vector field, write down all the equations, integrate one,

substitute into the next, and continue integrating until you find a potential function.

Line Integrals
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1. Given a thin wire located at curve C whose density (i.e. mass/length) at point (x, y, z) is given by

f(x, y, z), its mass is evaluated by
∫
C
f ds. To evaluate this integral:

• Parametrize C as r(t) with a ≤ t ≤ b.

•
∫
C
f ds =

∫ b

a
f(r(t)) ||r′(t)|| dt.

• Note that
∫
C
f ds does not depend on the orientation of C. (Mass is independent of orientation!)

2.
∫
C
F · ds gives the work done by F over C. Given F = (P,Q,R), this integral may also be denoted by∫

C
P dx+Q dy+R dz. Note that changing the orientation of C, changes the sign of the line integral.

There are four different methods that may help in evaluating this line integral:

• Using the definition: Given the parametrization x(t) with t = a to t = b, we have
∫
C
F · ds =∫ b

a
F(x(t)) ·x′(t) dt. Note that a corresponds to the initial point and b corresponds to the terminal

point of C. In other words, the orientation matters and a may be larger than b.

• The Fundamental Theorem of Line Integrals: If F = ∇f , then
∫
C
F · ds = f(terminal point) −

f(initial point).

• The Green’s Theorem: Assume D is a plane region with C as its boundary. An orientation for

C is called positive if D lies on the left when walking along C in that direction. Assuming C is

positively oriented, we have
∫
C

P dx+Q dy =
s

D
(Qx − Py) dA. This is very useful if P and Q

are too complex but Px − Qy is simple. This can only be used when P and Q have continuous

first order partial derivatives over D.

• The Stokes’ Theorem: This is a 3-D version of the Green’s Theorem. Given an oriented surface Σ

with boundary C, an orientation of C is called positive (or induced) if orientation of C matches

the orientation of Σ using the right hand rule. In which case we have
∫
C
F · ds =

s
Σ
curl F · dS.

Surface Integrals

3. Given a thin sheet located at the surface Σ whose density (i.e. mass/area) at point (x, y, z) is given by

f(x, y, z), its mass is evaluated by
s

Σ
f dS. To evaluate this integral:

• Parametrize Σ as X(u, v) with (u, v) in a region R.

•
s

Σ
f dS =

s
R
f(X(u, v)) ||Xu ×Xv|| dA.

• Note that
s

Σ
f dS does not depend on the orientation of Σ. (Mass is independent of orientation!)

4. Given a vector field F over a surface Σ,
s

Σ
F · dS (or

s
Σ
F · n dS) gives the total flow of F through Σ

in the direction of n. There are three ways of evaluating this flux integral:

• Using the definition: Given a parametrization X(u, v) of Σ, with (u, v) in D,

x

Σ

F · dS =
x

D

F(X(u, v)) · (Xu ×Xv) dA.

Make sure the orientation of Σ matches Xu ×Xv. If it does not, multiply by a negative sign.
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• The Stokes’ Theorem: If the vector field is of the form curl F, you may use the Stokes’ Theorem

using appropriate orientations of C and Σ:
s

Σ
curl F · dS =

∫
C
F · ds. Note that if Σ and Σ1 have

the same boundary with matching orientations,
s

Σ
curl F · dS =

s
Σ1

curl F · dS.

• The Gauss’ Theorem: If the surface Σ is closed you may use the Guass’ Theorem: With outward

orientation
s

Σ
F · dS =

t
E
div F dV , where Σ is the boundary of the solid E.

Remark. If the surface Σ is given by z = f(x, y), you may use the parametrization X(x, y) = (x, y, f(x, y)),

which gives Xx ×Xy = (−fx,−fy, 1). This reduces some of the computation above.

For a sphere centered at the origin, X(ϕ, θ) = (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ). This gives Xϕ × rθ =

ρ sinϕ X(ϕ, θ), and ||Xϕ × rθ|| = ρ2 sinϕ.
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