Math 341 - May 18, 2019 - Dr. Ebrahimian

Final Exam - Time: 120 minutes
Calculators and notes are not allowed. Completely and clearly justify your answers. Solutions to different problems should go on separate pages and in order. Different parts of a problem may not be related. If something is unclear feel free to ask.

1. (10 pts) Let V be a vector space over \mathbb{C} and let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis for V. For every two vectors $u=\sum_{j=1}^{n} c_{j} v_{j} \in V$ and $w=\sum_{j=1}^{n} d_{j} v_{j} \in V$, define $\langle u, w\rangle=\sum_{j=1}^{n} c_{j} \bar{d}_{j}$. Prove $\langle u, w\rangle$ is an inner product for V.
2. Solve each IVP. Your answers may be implicit.

2a. (5 pts$) \frac{d y}{d t}=\frac{y}{y+t}, y(1)=1$.
2b. (5 pts) $\frac{d y}{d t}+y=e^{t}, y(0)=0$.

3a. (5 pts) Suppose $p(t)$ and $q(t)$ are functions that are continuous over \mathbb{R}. Assume y_{1} and y_{2} are nonzero solutions to the equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, for which $y_{1}(0)=y_{2}(0)=0$. Prove that there is a constant c for which $y_{1}(t)=c y_{2}(t)$ for all $t \in \mathbb{R}$.
3b. (5 pts) Suppose $\binom{t}{t+1}$ and $\binom{t-1}{t}$ are solutions to the 2-dimensional linear system $\frac{d \mathbf{x}}{d t}=A(t) \mathbf{x}$. Find $A(t)$. Write your final answer as one matrix and simplify your final answer.
4. (10 pts) Suppose $\phi_{1}(t)=e^{t}+e^{t^{2}}, \phi_{2}(t)=2 e^{t}+e^{t^{2}}$, and $\phi_{3}(t)=e^{-t}+e^{t^{2}}$ are solutions to the differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$. Solve the initial value problem:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t), y(0)=0, y^{\prime}(0)=2
$$

5a. (5 pts) Find the Laplace $\mathbf{X}(s)$ of the solution to the IVP: $\frac{d \mathbf{x}}{d t}=A \mathbf{x}+\binom{t}{\sin t}, \mathbf{x}(0)=\binom{0}{1}$, where

$$
A=\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right)
$$

You do not need to find $\mathbf{x}(t)$. You do not need to perform any of the matrix operations or simplify your answer.
5b. (5 pts) Find the inverse Laplace of $\frac{2}{s^{2}-1}$.

More problems on the back!

6. (10 pts) Consider the equation $(t-1) y^{\prime \prime}-t y^{\prime}+y=0$. Given that one solution to this equation is $y=e^{t}$, find a general solution to this equation. (Guessing is not acceptable.)
7. Consider the 2-dimensional system $\frac{d \mathbf{x}}{d t}=A \mathbf{x}$, where

$$
A=\left(\begin{array}{ll}
2 & 2 \\
3 & 1
\end{array}\right)
$$

7a. (5 pts) Determine if $\mathbf{0}$ is a stable or unstable solution using a theorem.
7 b . (5 pts) Prove your answer in part (a) using the definition of stability.
8. (10 pts) Using the Poincaré-Bendixson Theorem prove that the equation $\ddot{z}+\left[\ln \left(z^{2}+2 \dot{z}^{2}\right)\right] \dot{z}+z=0$ has a nontrivial periodic solution.
9. (10 pts) Prove that if a solution $(x(t), y(t))$ to the system $\frac{d x}{d t}=1+x^{3}, \frac{d y}{d t}=1+x y^{2}$ satisfies $x(0) \neq y(0)$, then for all t in the domain of this solution we have $x(t) \neq y(t)$.
10. Consider the system $\frac{d x}{d t}=e^{y}-1, \frac{d y}{d t}=\sin (x+y)$.

10a. (2 pts) Find all stationary solutions of this system.
10b. (4 pts) Determine the stability of each stationary solution.
10c. (4 pts) Draw a phase plane portrait near each stationary solution.
11. (10 bonus points) Suppose $A(t)$ is a square matrix for which $A(t)$ and $[A(t)]^{-1}$ are both infinitely many times differentiable for every $t \in \mathbb{R}$. Assume in addition that $A^{\prime \prime}(t)=A^{\prime}(t)[A(t)]^{-1} A^{\prime}(t)$ for all $t \in \mathbb{R}$. Prove that there are constant square matrices B and C for which $A(t)=e^{t B} C$.

