Math 340 - December 21, 2021 - Dr. Ebrahimian
Final Exam - Time: 120 minutes
Calculators and notes are not allowed. Completely and clearly justify your answers. Solutions to different problems should go on separate pages and in order. Different parts of a problem may not be related. If something is unclear feel free to ask.

1. (10 pts$)$ Determine if each of the following is a linear mapping. If it is, find its kernel.
(a) $T: \mathbb{P}_{3} \rightarrow \mathbb{R}$ given by $T(f)(t)=f(0)$.
(b) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $T(x, y)=(x, 2 y, x+y)$.
2. (10 pts) Using the Lagrange Multipliers Theorem, find the shortest distance from $(3,4)$ to the points on the circle $x^{2}+y^{2}=100$. (As usual, make sure you justify such a minimum exists.)
3. (10 pts) Prove that for every positive integer n, the set of all points $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ satisfying $\cos x_{1}+\cos x_{2}+\cdots+\cos x_{n}=0$ is closed, but it is not compact.
4. (10 pts) Using the $\epsilon-\delta$ definition of limits prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{2}}=0$.
5. (10 pts) Consider the function $f(x, y, z)=x+2 y+x y z$. Find the directional derivative of f at the origin in the direction of the vector $(1,-2,2)$. (Note that a direction is a unit vector.) What is the maximum directional derivative of f at the origin?
6. (10 pts) Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ are such that each pair of them are linearly independent. Is it true that $\mathbf{u}, \mathbf{v}, \mathbf{w}$ must be linearly independent?
7. (10 pts) Using an appropriate change of variables evaluate $\iint_{D} x^{2}+y^{2} d A$, where D is the region enclosed by the ellipse $4 x^{2}+9 y^{2}=36$. Stop when you get an iterated double integral with constant limits of integration.
8. (10 pts) Let E be the region in \mathbb{R}^{3} that lies inside the sphere $x^{2}+y^{2}+z^{2}+2 z=0$. Evaluate $\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d V$. Evaluate and simplify your final answer.
9. (10 pts) Evaluate $\int_{C} \frac{y}{x^{2}+y^{2}} d x-\frac{x}{x^{2}+y^{2}} d y$, where C is the circle given by $x^{2}+y^{2}=9$ in the $x y$-plane, oriented clockwise. Evaluate and simplify.
10. (10 pts) Use Gauss' Theorem to evaluate $\iint_{\Sigma}\left(\left(7 x y^{6}+e^{z}\right) \mathbf{i}-y^{7} \mathbf{j}+z \mathbf{k}\right) \cdot d \mathbf{S}$, where Σ is the union of the five upper faces of the unit cube $[0,1] \times[0,1] \times[0,1]$ oriented outward from the cube. Evaluate and simplify.
11. (10 bonus pts) Let n be a positive integer and let $M_{n}(\mathbb{R})$ be the vector space of all $n \times n$ matrices with real entries. Define a function $f: M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R})$ by $f(A)=A^{2}$. Find the differential of this function f at a "point" $A \in M_{n}(\mathbb{R})$.

Here we treat matrices of $M_{n}(\mathbb{R})$ as vectors of $\mathbb{R}^{n^{2}}$ by placing the entries of each matrix into components of vectors starting from the upper left corner and moving to the right and down. For example, when $n=2$, the 2×2 matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is identified with the vector $(a, b, c, d) \in \mathbb{R}^{4}$.
(For this problem partial credit will only be given for significant progress towards a solution.)

