$$
\begin{gathered}
\text { Math } 341 \text { - Final Exam - May 15, } 2021 \\
\text { Dr. Ebrahimian }
\end{gathered}
$$

- Show all work completely. Everything must be fully justified.
- For each problem you must upload a different file containing ONLY the solution to that problem. Do NOT upload the same gigantic file for all the problems! Make sure your submission is legible and vertical.
- Notes are allowed. You should work on the problems alone.
- You have 120 minutes to work on the problems. You must start uploading your solutions at the 135 minute mark, at the latest.

1. (10 pts) Suppose a square matrix A satisfies $A^{3}=4 A$. Prove that A is diagonalizable.

Hint: You may want to use the Jordan form.
2. Solve each of the following equations. Your answers may be implicit:
(a) $(10 \mathrm{pts}) \frac{d y}{d t}=(y-2 t)^{2}+1$.
(b) $(10 \mathrm{pts})\left(x e^{x y}+1\right) \frac{d y}{d x}+\left(y e^{x y}+2 x\right)=0$.
3. Consider the initial value problem

$$
\frac{d y}{d t}=1-\cos y, y(0)=\pi
$$

(a) (10 pts) Find the first three Picard iterates (i.e. y_{0}, y_{1}, and y_{2}).
(b) (10 pts) Prove there is a unique solution to this initial value problem defined for all $t \geq 0$.
4. (15 pts) Using the method of Laplace transforms find the solution to the initial value problem

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
2 & 1 \\
0 & -1
\end{array}\right) \mathbf{x}+\binom{1}{0}, \mathbf{x}(0)=\binom{0}{0}
$$

5. Consider the system

$$
\frac{d x}{d t}=x^{2} y-x, \frac{d y}{d t}=x-y
$$

(a) (10 pts) Find all stationary solutions of this system.
(b) (10 pts) Determine if each stationary solution is stable, asymptotically stable or unstable.
6. (15 pts) Using Poincare-Bendixon Theorem prove that the equation

$$
6 z^{\prime \prime}+z^{\prime}\left(z^{2}+3 z^{\prime 2}-1\right)+2 z=0
$$

has a non-trivial (i.e. non-stationary) periodic solution.
7. (10 bonus points) Prove that if A, B are square matrices of the same size for which $A+B=A B$, then $A B=B A$.
(Partial credit will only be given for significant progress towards a solution.)

