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Notations

• ∈ belongs to.

• ∀ for all.

• ∃ there exists or for some.

• Im f , the image of function f .

• N, the set of nonnegative integers.

• Z+, the set of positive integers.

• Q, the set of rational numbers.

• R, the set of real numbers.

• A ⊆ B, set A is a subset of set B.

• A ⫋ B, set A is a proper subset of set B.

• A ∪B, the union of sets A and B.

• A ∩B, the intersection of sets A and B.

• A\B, the difference set of B from A.

•
n⋃

i=1

Ai, the union of sets A1, A2, . . . , An.

•
n⋂

i=1

Ai, the intersection of sets A1, A2, . . . , An.

• A1 ×A2 × · · · ×An, the Cartesian product of sets A1, A2, . . . , An.

• ∅, the empty set.

• f−1(T ), the inverse image or pre-image of set T under function f .

• f(S), the image of set S under function f.

• Pn, the vector space of all polynomials of degree not exceeding n and coefficients in F.

• P, the vector space of all polynomials with coefficients in F.

• C[a, b], the vector space of all continuous functions from [a, b] to R.

• spanS, the subspace spanned by the set S.

• dimV , the dimension of vector space V .

• A−1, the inverse of a matrix or a function.
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• detA, the determinant of a square matrix A.

• Sn, the set consisting of all permutations of {1, 2, . . . , n}.

• A, the complex conjugate of A.

• AT , the transpose of a matrix A.

• A∗, the adjoint of a matrix or linear transformation.
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Week 1

1.1 Vector Spaces

Throughout these notes F denoted either the field of real numbers or complex numbers.

Throughout these notes list refers to an unordered collection of objects, where repetition is allowed. So, the

three lists 1, 1, 2 and 1, 2, 1 and 2, 1, 1 are all the same, but they are all different from both 1, 2, 2 and 1, 2.

Definition 1.1. Let V be a set of elements, called vectors. Suppose +, called vector addition, and ·,

called scalar multiplication, are two functions for which + assigns a vector v + w to every two vectors

v,w ∈ V and · assign a vector c · v to every c ∈ F and every v ∈ V . We say V is a vector space over F iff

the following properties are satisfied:

(I) (Closure) For every two vectors x,y ∈ V , and every c ∈ F, both x+ y and c · x are in V.

(II) (Associativity) For every x,y, z ∈ V , and every a, b ∈ F, we have x + (y + z) = (x + y) + z, and

a · (b · x) = (ab) · x.

(III) (Commutativity) For every x,y ∈ V , we have x+ y = y + x.

(IV) (Additive Identity) There is a vector e ∈ V for which, for every x ∈ V we have x+ e = x.

(V) (Additive Inverse) For every x ∈ V , there is an element y ∈ V for which x+ y = e.

(VI) (Distributivity) For every a, b ∈ F and every x,y ∈ V , we have (a + b) · x = a · x + b · x, and

a · (x+ y) = a · x+ a · y.

(VII) (Multiplicative Identity) For every x ∈ V we have 1 · x = x.

When F = R, we say V is a real vector space and when F = C, we say V is a complex vector space.

For simplicity c · x is often denoted by cx. Elements of F are called scalars.

Example 1.1. The following are examples of vector spaces:

9



10 CHAPTER 1. WEEK 1

(a) Fn, the set of n-tuples with entries in F along with the standard componentwise vector addition and

scalar multiplication.

(b) Pn = {a0 + a1t+ · · ·+ ant
n | a0, a1, . . . , an ∈ F}, the set of polynomials of degree not exceeding n, with

the usual polynomial addition and scalar multiplication:

(a0 + a1t+ · · ·+ ant
n) + (b0 + b1t+ · · ·+ bnt

n) = (a0 + b0) + (a1 + b1)t+ · · ·+ (an + bn)t
n

c(a0 + a1t+ · · ·+ ant
n) = ca1 + ca1t+ · · ·+ cant

n.

To emphasize the field F we often denoted Pn by Pn(F).

(c) P =
∞⋃

n=1
Pn, the set of all polynomials with coefficients in F along with the usual polynomial addition

and scalar multiplication. To emphasize the field F we often denoted P by P(F).

(d) Mm×n(F), the set of m×n matrices with entries in F along with the standard entrywise matrix addition

and scalar multiplication.

(e) C[D], the set of continuous functions f : D → R, where D is a given nonempty subset of R, along with

the standard addition and scalar multiplication is a real vector space.

Theorem 1.1. Let V be a vector space. Then,

(a) the additive identity is unique.

(b) the additive inverse of every vector is unique.

Remark 1.1. The additive identity of a vector space V is denoted by 0V , or 0 if there is no ambiguity. The

additive inverse of every vector v is denoted by −v. The vector u− v denotes the sum of vectors u and −v

is called the difference of v from u.

1.2 Linear Independence, Generating, and Bases

Definition 1.2. Let V be a vector space. A vector w ∈ V is said to be a linear combination of a list of

vectors v1, . . . ,vn ∈ V , iff there are scalar c1, . . . , cn for which

w = c1v1 + · · ·+ cnvn.

The only linear combination of a list of no vectors is the zero vector. The linear combination above is said

to be trivial iff c1 = · · · = cn = 0.

Definition 1.3. A list of vectors v1, . . . ,vn in a vector space V is called a basis for V iff every vector w ∈ V

can uniquely be written as a linear combination of v1, . . . ,vn.

Definition 1.4. A list of vectors v1, . . . ,vn in V is said to be generating or spanning iff every vector in

V can be represented as a linear combination of v1, . . . ,vn.
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Definition 1.5. A list of vectors v1, . . . ,vn is said to be linearly independent iff their only linear com-

bination that is 0 is the trivial one. Otherwise, we say they are linearly dependent.

Theorem 1.2. A list of vectors v1, . . . ,vn is linearly dependent if and only if one of the vj’s is a linear

combination of the others.

Theorem 1.3. A list of vectors v1,v2, . . . ,vn in a vector space V form a basis if and only if they are linearly

independent and generating.

Theorem 1.4. Any finite1 generating list of vectors in a vector space contains a basis.

1.3 Linear Transformations

Definition 1.6. Let V,W be two vector spaces over the same field F. A function T : V → W is said to be

linear iff both of the following are satisfied:

(a) (Additivity) For every u,v ∈ V , we have T (u+ v) = T (u) + T (v), and

(b) (Homogenenity) For every v ∈ V and every c ∈ F, we have T (cv) = cT (v).

Note that this definition requires V and W to be vector spaces over the same field F.

Theorem 1.5. Suppose V,W are vector spaces over the same field F, and T : V → W is a function. The

following are equivalent:

(a) T is linear.

(b) For every a, b ∈ F and every u,v ∈ V , we have T (au+ bv) = aT (u) + bT (v).

(c) For every a ∈ F and every u,v ∈ V , we have T (u+ av) = T (u) + aT (v).

Example 1.2. The following are linear transformations.

(a) D : P→ P given by D(f(t)) = f ′(t).

(b) T : Pn(R)→ R given by T (f(t)) =

∫ 1

0

f(t) dt.

(c) Rotation about the origin in R2.

Theorem 1.6. Let V,W be vector spaces over the same field F. Consider L(V,W ), the set of all linear

transformations T : V →W . Define the following addition and scalar multiplication for every T, S ∈ L(V,W )

and every c ∈ F.

(T + S)(v) = T (v) + S(v), and (cT )(v) = cT (v), for all v ∈ V.

L(V,W ) equipped with these two operations is a vector space over F.
1The finiteness can be dropped if we assume the Axiom of Choice.
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1.4 Matrix Multiplication

Theorem 1.7. Suppose T : V → W and S : W → U are linear transformations. Then, S ◦ T : V → U is

linear.

There is a close relation between linear transformations and matrices.

Definition 1.7. A matrix is an arrangement of objects in a rectangular array with a finite number of

columns and rows. A matrix with m rows and n columns is said to be an m × n matrix. The set of m × n

matrices with entries from a field F is denoted by Mm×n(F). The entry in the j-th row and k-th column of a

matrix A is often denoted by ajk, and is called the (j, k) entry of A. This is often written as A = (ajk)m×n,

or A = (ajk), to indicate A is an m×n matrix whose (j, k) entry is ajk. The transpose of an m×n matrix

A, denoted by AT , is an n×m matrix whose (j, k) entry is akj for all j = 1, . . . , n and k = 1, . . . ,m. When

the number of rows and the number of columns of a matrix are the same, we say the matrix is a square

matrix. A matrix A is called symmetric iff AT = A. It is called antisymmetric or skew symmetric iff

AT = −A.

Note that symmetric and antisymmetric matrices are square matrices.

Definition 1.8. Let A ∈ Mm×n(F) and v ∈ Fn be a column vector. The product Av is an m × 1 vector

that is obtain by taking a linear combination of columns of A with scalars from entries of v. In other words,

if a1, . . . ,an are columns of A from left to right, and c1, . . . , cn are entries of v from top to bottom, then

Av = c1a1 + · · · cnan.

Theorem 1.8. Let L : Fn → Fm be a linear transformation. Then, there is a unique A ∈ Mm×n(F) for

which L(v) = Av for all v ∈ Fn. Furthermore, for every A ∈ Mm×n(F), the function L : Fn → Fm defined

by L(v) = Av is linear.

Definition 1.9. Let A ∈ Mm×n(F) and B ∈ Mn×k(F). The product AB is an m × k matrix whose j-th

column Abj , where bj is the j-th column of B.

Remark 1.2. Let A = (ajk) ∈Mm×n(F) and B = (bjk) ∈Mn×p(F). If AB = (cjk), then cjk =
n∑

ℓ=1

ajℓbℓk.

Remark 1.3. Note that in general AB ̸= BA. For example if A is a 2 × 3 matrix and B is a 3 × 3 matrix,

then AB is well-defined, but BA is not. If A =

 1 0

0 0

 and B =

 0 1

0 0

, then

AB =

 0 1

0 0

 ̸= BA =

 0 0

0 0

 .

Theorem 1.9 (Properties of Matrix Multiplication). For every three matrices A,B,C:

(a) (Associativity) (AB)C = A(BC) and α(AB) = (αA)B = A(αB).

(b) (Distributivity) A(B + C) = AB +AC and (B + C)A = BA+ CA.



1.5. EXAMPLES 13

(c) (AB)T = BTAT .

In each case, we assume the sizes of matrices are so that one side of the equality is well-defined. Then, the

other side will automatically be well-defined and the equality holds.

Definition 1.10. The trace of an n×nmatrix A = (ajj), denote by trA or tr (A), is defined as trA =
n∑

j=1

ajj .

Example 1.3. tr : Mn(F)→ F is a linear transformation.

Example 1.4. Suppose A ∈Mm×n(F) and B ∈Mn×m(F). Prove that tr (AB) = tr (BA).

Definition 1.11. The diagonal of an n×n matrix A = (aij)n×n is the list of all entries of the form akk with

k = 1, . . . , n. An entry of the form ajk with j ̸= k is called an off-diagonal entry. A is called diagonal iff

all of its off-diagonal entries are zero. A is called upper triangular (resp., lower triangular) iff ajk = 0

for all 1 ≤ k < j ≤ n (resp., 1 ≤ j < k ≤ n).

Theorem 1.10 (Block Multiplication). Suppose matrices A and B are given as block matrices below

A =

 A11 A12

A21 A22

 , B =

 B11 B12

B21 B22.

 ,

where Ajk, Bjk are themselves matrices. Assuming all appropriate multiplications and additions are defined

we have

AB =

 A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22


Similar result holds for block matrices with a larger number of blocks.

1.5 Examples

Example 1.5 (“Zero” does not mean zero). Consider the set F2 along with the following two operations:

(x, y)⊕ (z, t) = (x+ z − 1, y + t− 2), and c · (x, y) = (cx− c+ 1, cy − 2c+ 2), for all x, y ∈ F

Prove that F2 along with the above vector addition and scalar multiplication is a vector space. What is the

zero of this vector space? What is the additive inverse of (x, y)?

Solution. The given vector addition can be written as u⊕v = u+v−e, for every u,v ∈ F2, where e = (1, 2).

Here, + and − are the usual vector addition and subtraction of F2. We also see that c · u = cu− ce+ e for

every u ∈ F2. We will now show ⊕ and · satisfy all properties of a vector space.

Let u,v,w ∈ F2 and a, b ∈ F.

Closure: The vectors u + v − e and au − ae + e are in F2, since F2 is closed under the standard vector

addition and scalar multiplication.
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Associativity:

(u⊕ v)⊕w = (u+ v − e)⊕w

= (u+ v − e) +w − e

= u+ v +w − 2e

On the other hand,

u⊕ (v ⊕w) = u⊕ (v +w − e)

= u+ (v +w − e)− e

= u+ v +w − 2e

Therefore, (u⊕ v)⊕w = u⊕ (v ⊕w).

We also see:

(ab) · u = (ab)u− (ab)e+ e, and

a · (b · u) = a · (bu− be+ e) = a(bu− be+ e)− ae+ e = a(bu)− a(be) + ae− ae+ e = (ab)u− (ab)e+ e.

Thus, (ab) · u = a · (b · u).

Commutativity: u⊕v = u+v−e and v⊕u = v+u−e. Since the standard vector addition is commutative

u⊕ v = v ⊕ u.

Additive Identity: We need to find a vector x for which x⊕ u = u for every vector u. This is equivalent

to x+ u− e = u, which is equivalent to x = e. Thus, e is the additive identity of F2.

Additive Inverse: v is an additive inverse of u if and only if u⊕v = e. This is equivalent to u+v−e = e,

i.e. v = −u+ 2e. Thus, the additive inverse of u is −u+ 2e.

Distributivity: (a+ b) · u = (a+ b)u− (a+ b)e+ e = au+ bu− ae− be+ e.

a · u⊕ b · u = a · u+ b · u− e

= au− ae+ e+ bu− be+ e− e

= au+ bu− ae− be+ e

Therefore, (a+ b) · u = a · u⊕ b · u.

a · (u⊕ v) = a(u⊕ v)− ae+ e = a(u+ v − e)− ae+ e = au+ av − 2ae+ e

a · u⊕ a · v = a · u+ a · v − e

= au− ae+ e+ av − ae+ e− e

= au+ av − 2ae+ e

Therefore, a · (u⊕ v) = a · u⊕ a · v.
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Multiplicative Identity: 1 ·u = 1u− 1e+ e = u− e+ e = u. Therefore, F2 along with ⊕ and · is a vector

space.

Note that the additive identity of F2 (i.e. its “zero”) is e = (1, 2). The additive inverse of (x, y) is −(x, y) +

2(1, 2) = (−x+ 2,−y + 4).

Example 1.6. Prove that for every scalar c we have c0 = 0.

Solution. Since 0 is the additive identity we have 0 + 0 = 0. Using the distributive property we obtain

c0+ c0 = c0. Adding the additive inverse of c0 to both sides we conclude c0+ 0 = 0. Therefore, c0 = 0, as

desired.

Example 1.7. Prove that if for a scalar c and a vector v we have cv = 0, then c = 0 or v = 0.

Solution. Suppose cv = 0, but c ̸= 0. Then
1

c
(cv) =

1

c
0 = 0. By associativity, and multiplicative identity

we have
1

c
(cv) = (

1

c
c)v = 1v = v. Therefore, v = 0, as desired.

Example 1.8. Prove part (a) of Theorem 1.1.

Solution. Suppose 0 and 0′ are additive identities of a vector space V . We have the following:

0+ 0′ = 0 Since 0′ is an additive identity

0+ 0′ = 0′ Since 0 is an additive identity

⇒ 0 = 0′

This completes the proof.

Example 1.9. Let V be a vector space. Prove that for every vector v ∈ V , we have (−1)v = −v.

Solution. We note that

v + (−1)v = 1v + (−1)v Multiplicative identity

= (1 + (−1))v Distributive property

= 0v = 0 An exercise

Therefore, by adding −v to both sides of v + (−1)v = 0 we conclude (−1)v = −v, as desired.

Definition 1.12. For every nonempty set S, the vector space of all functions f : S → F is denoted by

F(S,F).

Example 1.10. Find a basis for F({1, 2, . . . , n},F).

Scratch: We see that each function f : {1, 2, . . . , n} → F is determined by f(1), f(2), . . . , f(n). We need to

find n functions that generate all functions. We can do that by choosing functions that are 1 at one value
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and zero for all other values.

Solution. Let V = F({1, 2, . . . , n},F). For every i, define fi : {1, 2, . . . , n} → F by fi(i) = 1, and fi(j) = 0

for all j ̸= i.

Linear independence: Suppose c1f1 + c2f2 + · · · + cnfn = 0 for some c1, c2, . . . , cn ∈ R. Evaluating both

sides at i we obtain cifi(i) = 0, and thus ci = 0, which completes the proof.

Generating: Let f ∈ V and let g = f(1)f1 + f(2)f2 + · · ·+ f(n)fn. We see that g(i) = f(i)fi(i) = f(i) for

all i. Therefore, f = g. This means f is a linear combination of f1, f2, . . . , fn.

Example 1.11. Prove that every set of vectors that contains the vector 0 is linearly dependent.

Solution. Let S be a set of vectors containing 0. We see that 10 = 0 and the coefficient 1 is nonzero.

Therefore the set S is linearly dependent.

Example 1.12. Let v1, . . . ,vm ∈ Fn be linearly independent. Consider arbitrary vectors w1, . . . ,wm ∈ Fk

and form the vectors x1 = (v1,w1), . . . ,xm = (vm,wm) ∈ Fn+k formed by placing each wj next to vj .

Prove that x1, . . . ,xm are linearly independent.

Solution. Let c1, . . . , cm ∈ F be scalars for which

c1x1 + · · ·+ cmxm = 0.

Using the way xj ’s are created we have

c1(v1,w1)+ · · ·+ cm(vm,wm) = 0⇒ (c1x1+ · · ·+ cmvm, c1w1+ · · ·+ cmwm) = 0⇒ c1x1+ · · ·+ cmvm = 0.

Since v1, . . . ,vm are linearly independent we obtain c1 = · · · = cm = 0, and hence x1, . . . ,xm are linearly

independent.

Example 1.13. Let V,W be vector spaces over F. Assume v1, . . . ,vn form a basis for V , and letw1, . . . ,wn ∈

W . Prove that T : V →W defined by

T (c1v1 + c2v2 + · · ·+ cnvn) = c1w1 + c2w2 + · · ·+ cnwn, for all c1, c2, . . . , cn ∈ F

is a linear transformation.

Solution. Suppose x,y ∈ V , and c ∈ F. Since v1, . . . ,vn form a basis for V , there are scalars aj , bj ∈ F for

which x =
n∑

j=1

ajvj and y =
n∑

j=1

bjvj . Since x+ cy =
n∑

j=1

(aj + cbj)vj , we have

T (x+ cy) =

n∑
j=1

(aj + cbj)wj =

n∑
j=1

ajwj +

n∑
j=1

cbjwj = T (x) + cT (y).

Therefore, T is linear.
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Example 1.14. Let V,W be vector spaces over F, and let v1,v2, . . . ,vn be a basis for V . Assume S, T :

V →W are linear transformations. Prove that S = T if and only if S(vj) = T (vj) for j = 1, . . . , n.

Solution. ⇒: If S = T , then S(vj) = T (vj), as desired.

⇐: Suppose S(vj) = T (vj) for j = 1, . . . , n. Let v ∈ V . Since v1,v2, . . . ,vn is a basis for V , there are

scalars c1, c2, . . . , cn for which v =
n∑

j=1

cjvj . By linearity of S and T , and the fact that S(vj) = T (vj) we

have

S(v) = S(

n∑
j=1

cjvj) =

n∑
j=1

cjS(vj) =

n∑
j=1

cjT (vj) = T (

n∑
j=1

cjvj) = T (v).

Therefore, S = T, as desired.

Example 1.15. Suppose T : F2 → F3 is a linear transformation for which T (1, 2) = (1, 0, 1) and T (2, 1) =

(1, 1, 0). Find the matrix A for which T (v) = Av for all v ∈ F2.

Solution. We need to find T (e1) and T (e2). We see

(1, 0) =
2

3
(2, 1)− 1

3
(1, 2), and (0, 1) =

2

3
(1, 2)− 1

3
(2, 1).

By linearity of T we have

T (e1) =
2

3
T (2, 1)− 1

3
T (1, 2) =

2

3
(1, 1, 0)− 1

3
(1, 0, 1) = (1/3, 2/3,−1/3),

and

T (e2) =
2

3
T (1, 2)− 1

3
T (2, 1) =

2

3
(1, 0, 1)− 1

3
(1, 1, 0) = (1/3,−1/3, 2/3).

Therefore, by a theorem the matrix A is given by

A =


1
3

1
3

2
3

−1
3

−1
3

2
3



Example 1.16. Let T : V → W be a linear transformation of vector spaces over F. Prove that for every

c1, . . . , cn ∈ F and v1, . . . ,vn ∈ V we have

T (c1v1 + · · ·+ cnvn) = c1T (v1) + · · ·+ cnT (vn).

Solution. We prove this by induction on n.

Basis step. The equality T (c1v1) = c1T (v1) follows from homogeneity.
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Inductive Step. Suppose the given equality holds for a positive integer n and let c1, . . . , cn+1 ∈ F,

v1, . . . ,vn+1 ∈ V . We have the following:

T (
n+1∑
i=1

civi) = T (
n∑

i=1

civi) + T (cn+1vn+1) by additivity

=
n∑

i=1

ciT (vi) + T (cn+1vn+1) by inductive hypothesis

=
n∑

i=1

ciT (vi) + cn+1T (vn+1) by homogeneity

=
n+1∑
i=1

ciT (vi)

This completes the proof.

Example 1.17. Prove that for every linear transformation T : V →W we have T (0) = 0.

Solution. We see the following:

T (0) = T (0+ 0) Since 0 is the additive identity

= T (0) + T (0) By additivity of T

Adding −T (0) to both sides, we conclude T (0) = 0, as desired.

1.6 Exercises

Exercise 1.1. Prove part (b) of Theorem 1.1.

Exercise 1.2. Prove that if v is a vector and c is a scalar, then 0v = 0 and c0 = 0.

Exercise 1.3. Let V be a vector space over F. Prove that for every a, b ∈ F and every u,v ∈ V we have:

(a) −(−u) = u.

(b) a(u− v) = au− av.

(c) −(u+ v) = −u− v.

(d) (a− b)u = au− bv.

Exercise 1.4. Prove that if for a vector v and a scalar c we have cv = 0, then c = 0 or v = 0.

Exercise 1.5. Let S be a nonempty set. Consider the set V = F(S,F) consisting of all functions f : S → F

equipped with the addition and scalar multiplication defined below for all f, g ∈ V and c ∈ F:

(f + g)(x) = f(x) + g(x), and (cf)(x) = cf(x).

Using the definition, prove that V is a vector space.

Exercise 1.6. Given a vector v in a vector space V , define a vector addition and a scalar multiplication

that turns V into a vector space, where v is the zero of this new vector space.
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Hint: See Example 1.5.

Exercise 1.7. Using the fact that (XY )ij =
∑

XiℓYℓj, prove that for every three matrices A,B,C we have

(AB)C = A(BC). Assume all the products are well-defined.

Exercise 1.8. Write down a basis for Mn(F).

Exercise 1.9. Suppose a list of vectors v1, . . . ,vn is linearly independent but not generating. Prove that

if vn+1 is a vector that cannot be written as a linear combination of v1, . . . ,vn, then v1, . . . ,vn,vn+1 are

linearly independent.

Exercise 1.10. Suppose u,v,w are linearly dependent vectors. Prove that u+v, v+w and w+u are also

linearly dependent.

Exercise 1.11. Construct a nonzero matrix A for which A2 = 0.

Exercise 1.12. Determine if each of the following is a linear transformation:

(a) T : F2 → F3 defined by T (x, y, z) = (2x+ y, z − y + x).

(b) L : Mm×n(F)→Mn×m(F) defined by L(A) = AT .

Exercise 1.13. Find a basis for C, once as a real vector space and once as a complex vector space.

Exercise 1.14. Let T : C → C be defined by T (a + bi) = 2a + (3b − a)i for every a, b ∈ R. Is T a linear

transformation when C is considered a complex vector space? How about when C is considered a real vector

space?

Exercise 1.15. Prove that L : Mm×n(F)→Mn×m(F) defined by L(A) = AT is a linear transformation.

Exercise 1.16. Suppose v1,v2, . . . ,vn are linearly independent vectors in a vector space V . Let w ∈ V .

Prove that the vectors v1 −w,v2 −w, . . . ,vn −w are linearly dependent if and only if w =
n∑

j=1

cjvj, where,

n∑
j=1

cj = 1.

Exercise 1.17. Using the definition, determine if each of the following is a vector space.

(a) The set consisting of all polynomials on variable t with degree 3, along with the usual polynomial addition

and scalar multiplication.

(b) The set consisting of all 2× 2 matrices

 a b

c d

 that satisfy a+ b = c+ d.

(c) The set of all functions f : R → R that are continuous but not differentiable along with the standard

function addition and scalar multiplication.

Exercise 1.18. Suppose vectors v1, . . . ,vn,w in a vector space are linearly independent. Prove that for

every scalar c, the vectors cw + v1, cw + v2, . . . , cw + vn are linearly independent as well.
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Exercise 1.19. Determine if each statement is true or false.

(a) Closure of V under addition states: x,y ∈ V if and only if x+ y ∈ V .

(b) By definition of a vector space, 0v = 0.

(c) The set of all quadratic polynomials of the form at2 + bt+ c, with a, b, c ∈ R and a ̸= 0, is a real vector

space.

(d) The set of functions f : R→ R of the form f(x) = c1x+ c2 sinx is a real vector space.

(e) Every vector space is nonempty.

Exercise 1.20. Suppose A ∈ Mm×n(C) satisfies Ax ∈ Rm for every column vector x ∈ Rn. Prove A ∈

Mm×n(R).

Exercise 1.21. Suppose A ∈Mm×n(C) satisfies Ax ∈ Rm for every column vector x ∈ Cn. Prove A = 0.

Exercise 1.22. Prove vectors v1, . . . ,vn are linearly independent if and only if v1 ̸= 0 and for every j,

1 ≤ j < n, the vector vj is not a linear combination of v1, . . . ,vj−1.

Exercise 1.23. Suppose L : V → W is a linear transformation. Suppose v1, . . . ,vn ∈ V are such that

T (v1), . . . , T (vn) are linearly independent. Prove v1, . . . ,vn ∈ V are linearly independent. Is the converse

true?

1.7 Challenge Problems

Exercise 1.24. Prove that if an n × n matrix A commutes with every n × n matrix, then A is a diagonal

matrix all of whose diagonal entries are the same:

A =



c 0 · · · 0 0

0 c · · · 0 0
...

...
. . .

...
...

0 0 · · · c 0

0 0 · · · 0 c


.

Exercise 1.25. Suppose V is a nonempty set of elements, called vectors. Assume V is equipped with a vector

addition and a scalar multiplication, and that V is closed under both operations. The following list includes

all properties of a vector space.

(a) Associativity of Addition (b) Scalar multiplication is associative

(c) Commutativity of Addition (d) Additive Identity

(e) Additive Inverse (f) Additive Inverse

(g) Distributivity of Scalar multiplication over scalar addition (h) Multiplicative Identity

(i) Distributivity of Scalar multiplication over vector addition

For each of these properties, either provide an example of a set that satisfies all of the other properties but

that specific property, or show that property follows form the rest of the properties.
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2.1 Review of Inverse Functions

All sets in this section are arbitrary. In other words, we do not assume sets are vector spaces or functions

are linear transformations of vector spaces.

Definition 2.1. Let A be an arbitrary nonempty set. The function IA : A→ A defined by IA(x) = x for all

x ∈ A is called the identity function of A. Given a function f : A→ B, we say g : B → A is a left inverse

for f iff g ◦ f = IA. If such a function g exists we say f is left invertible. We say h : B → A is a right

inverse for f iff f ◦ h = IB . If such a function h exists we say f is right invertible. We say f is invertible

iff it has a left and a right inverse.

Theorem 2.1. Let f : A→ B be a function between arbitrary sets. Then,

(a) f is left invertible if and only if f is one-to-one.

(b) f is right invertible if and only if f is onto.

(c) f is invertible if and only if for every b ∈ B, the equation f(x) = b has a unique solution x ∈ A.

Theorem 2.2. Suppose f : A → B is right and left invertible (i.e. invertible). Then, f has a unique left

inverse, a unique right inverse and these two inverses are equal.

Remark 2.1. The left and right inverse of an invertible function f is denoted by f−1.

Theorem 2.3. Suppose f : A→ B and g : B → C are invertible functions of arbitrary sets. Then, g ◦ f is

invertible and (g ◦ f)−1 = f−1 ◦ g−1. Furthermore, f−1 : B → A is invertible and (f−1)−1 = f .

21
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2.2 Inverse Functions and Linear Transformations

Definition 2.2. An n × n matrix is called the identity matrix, denoted by In or I, iff all of its main

diagonal entries are 1 and the rest of its entries are all zero.

I =



1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 1


Theorem 2.4. Suppose L : V →W is a linear transformation of vector spaces. If L is invertible, then L−1

is linear.

Definition 2.3. An invertible linear transformation of vector spaces is called an isomorphism. If there is

an isomorphism L : X → Y , the we say X and Y are isomorphic. This is written as X ∼= Y .

Example 2.1. The linear transformation Rθ : R2 → R2 defined by rotation about the origin with angle θ is

invertible with R−1
θ = R−θ.

Recall that all linear transformations L : Fn → Fm are given by L(v) = Av, where A ∈Mm×n(F). We say L

is the linear transformation corresponding to the matrix A.

Definition 2.4. We say a matrix is left invertible (resp. right invertible, invertible) iff its corresponding

linear transformation is left invertible (resp. right invertible, invertible).

Definition 2.5. Given a matrix A ∈ Mm×n(F), we say B ∈ Mn×m(F) is a left inverse (resp. right

inverse) of A iff BA = Im (resp. AB = In).

Theorem 2.5. A matrix is left invertible (resp. right invertible) if and only if it has a left inverse (resp.

right inverse). If a matrix is invertible, then the left and right inverse are equal and unique.

Remark 2.2. The inverse of a matrix A, if it exists, is denoted by A−1.

Example 2.2. Find all left and right inverses of the matrix (1 2 − 1)

Theorem 2.6. Suppose A,B are invertible matrices for which AB is well-defined. Then,

(a) AB is invertible, and (AB)−1 = B−1A−1.

(b) AT is invertible and (AT )−1 = (A−1)T .

(c) A−1 is invertible and (A−1)−1 = A.

Theorem 2.7. Suppose L : V →W is a linear transformtion. Then, the following are equivalent.

(a) L is an isomorphism.
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(b) If v1, . . . ,vn form a basis for V , then L(v1), . . . , L(vn) form a basis for W.

(c) L(v1), . . . , L(vn) form a basis for W for some basis v1, . . . ,vn of V .

Example 2.3. L : Fn+1 → Pn defined by L(a0, a1, . . . , an) = a0 + a1t+ · · ·+ ant
n is an isomorphism.

Theorem 2.8. An m× n matrix A is invertible if and only if its columns form a basis for Fm.

2.3 Subspaces

Definition 2.6. Let V be a vector space over F. A subset W of V is called a subspace of W iff W along

with the vector addition and scalar multiplication of V is itself a vector space.

Theorem 2.9 (Subspace Criterion). A subset W of a vector space V is a subspace of V if and only if W

satisfies the following:

(a) 0V ∈W .

(b) For every x,y ∈W and every c ∈ F, we have x+y, cx ∈W . [We say W is closed under vector addition

and scalar multiplication.]

Corollary 2.1. If W is a subspace of V , then 0W = 0V .

Example 2.4. The following are examples of subspaces:

(a) For every vector space V , the sets {0} and V are subspaces of V .

(b) For every subset A of a vector space V , the set “spanA” consisting of all vectors that are linear combi-

nations of some vectors of A, is a subspace of V .

(c) Given a linear transformation L : V →W of vector spaces, KerL = {v ∈ V | L(v) = 0} is a subspace of

V .

(d) The image of every linear transformation L : V →W is a subspace of W .

(e) Given a positive integer n and an open interval I, the set Cn[I] consisting of all n times differentiable

functions f : I → R whose n-th derivative f (n) : I → R is continuous is a subspace of C[I].

(f) Given an open interval I, the set C∞[I] consisting of all infinitely differentiable functions f : I → R is a

subspace of Cn[I] for every positive integer n.

Remark 2.3. The subspace {0}, containing only the zero vector, is called the trivial subspace of V .
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2.4 Systems of Linear Equations

Consider a system of linear equations 

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

am1x1 + · · ·+ amnxn = bm

Here, aij ’s and bj ’s are known scalars in F, and x1, . . . , xn are unknown variables. This system can be written

in two other ways that are often useful:
a11 · · · a1n
...

...
...

am1 · · · amn


︸ ︷︷ ︸

Coefficient matrix


x1

...

xn

 =


b1
...

bm



or

x1a1 + · · ·+ xnan = b,

where aj =


a1j
...

amj

 and b =


b1
...

bm

.

Keeping all the known scalars in one place we can just work with the augmented matrix seen below:


a11 · · · a1n b1
...

...
...

...

am1 · · · amn bm



2.5 Examples

Example 2.5. Let S and T be two subsets of a vector space V . Prove that spanS = spanT if and only if

S ⊆ spanT and T ⊆ spanS.

Solution. Suppose spanS = spanT . By definition of span, S ⊆ spanS = spanT . Similarly T ⊆ spanT =

spanS, as desired.

Now, suppose S ⊆ spanT, and T ⊆ spanS.

Every element v ∈ spanT is of the form v = c1v1+ · · ·+ cnvn for some v1,v2, . . . ,vn ∈ T . Since T ⊆ spanS

and spanS is a subspace, v ∈ spanS. Therefore, spanT ⊆ spanS. Similarly spanS ⊆ spanT . This implies

spanS = spanT, as desired.
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Example 2.6. Let V be a vector space. Suppose v1, . . . ,vn are linearly independent vectors of V and

w1,w2, . . . ,wm are also linearly independent vectors of V . Prove that v1, . . . ,vn,w1, . . . ,wm are linearly

independent if and only if

span {v1, . . . ,vn} ∩ span {w1, . . . ,wm} = {0}.

Solution. For simplicity, let U = span {v1, . . . ,vn}, and W = span {w1, . . . ,wm}.

⇒: Suppose v1, . . . ,vn,w1, . . . ,wm are linearly independent and x ∈ U ∩W . Thus x =
n∑

i=1

aivi =
m∑
j=1

bjwj ,

for some ai, bj ∈ R. Therefore,
n∑

i=1

aivi−
m∑
j=1

bjwj = 0. Since v1, . . . ,vn,w1, . . . ,wm are linearly independent,

we must have ai = bj = 0 and thus x = 0. On the other hand 0 is in any subspace. Therefore, U ∩W = {0}.

⇐: Now assume U ∩W = {0}. Suppose
n∑

i=1

aivi+
m∑
j=1

bjwj = 0. This implies
n∑

i=1

aivi = −
m∑
j=1

bjwj ∈ U ∩W,

which implies
n∑

i=1

aivi = −
m∑
j=1

bjwj = 0. Since v1, . . . ,vn and w1, . . . ,wm are linear independent we must

have ai = bj = 0 for all i, j. This completes the proof.

Example 2.7. Consider the linear transformation T : R2 → R3 given by T (x, y) = (2x+ y, 0, x− y). Find

all linear transformations that are left or right inverse of T .

Solution. S : R3 → R2 is a left inverse of T iff S ◦T (x, y) = (x, y). This is equivalent to S(2x+y, 0, x−y) =

(x, y). Setting a = 2x+ y, b = x− y and solving for x, y we obtain x = (a+ b)/3, y = (a− 2b)/3. Therefore,

S(a, 0, b) = (a+b
3 , a−2b

3 ). Since S is linear, we will have

S(a, c, b) = cS(0, 1, 0) + (
a+ b

3
,
a− 2b

3
).

Now, if we let v ∈ R2 and define S : R3 → R2 by

S(a, c, b) = cv + (
a+ b

3
,
a− 2b

3
) (∗)

Then, S is linear (why?) and is a left inverse of T . So, all left inverses of T are of the form (∗).

Note that (0, 1, 0) is not in the range of T . Thus, T is not onto. By Theorem 2.1, T does not have a right

inverse.

Example 2.8. Give an example of two invertible matrices A,B for which A+B is not invertible.

Solution. Let A = I be the identity matrix, and B = −I. We know A2 = B2 = I, but A+B = 0 does not

have an inverse.

Example 2.9. Give an example of non-invertible matrices A,B, for which A+B is invertible.
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Solution. A =

 1 0

0 0

 and B =

 0 0

0 1

 is one such example. (Prove these work!)

Example 2.10. Suppose X is a subspace of a vector space V . Let x ∈ X and y be a vector in V that is

not in X. Prove that for every nonzero scalar c ∈ F, the vector x+ cy does not belong to X.

Solution. On the contrary assume x+ cy ∈ X. Since X is closed under addition and scalar multiplication,

(x+ cy)−x ∈ X. Therefore, cy ∈ X. Since X is closed under scalar multiplication, 1
c cy ∈ X. Thus, y ∈ X,

which is a contradiction.

Example 2.11. Suppose A,B are matrices for which A and AB are both invertible. Prove that B is also

invertible.

Solution. We have B = IB = (A−1A)B = A−1(AB). Note that by assumption, both A−1 and AB are

invertible. Thus, by Theorem2.6, their product B is also invertible.

Example 2.12. Suppose for two nonzero matrices A,B we have AB = 0. Can A have a right inverse? How

about a left inverse?

Solution. A could have a right inverse. For example letting A = (1 0) and B = (0 1)T we see that AB = (0),

and that AAT = (1). So, AT is a right inverse of A.

A cannot have a left inverse. Suppose on the contrary CA = I for some matrix C. Then CAB = C0 = 0.

On the other hand CAB = IB = B. Thus, B = 0, which is a contradiction.

Example 2.13. Let X and Y are subspaces of a vector space V . Prove that X + Y defined below is a

subpace of V .

X + Y = {x+ y | x ∈ X, and y ∈ Y }.

Solution. We wil use the Subspace Criterion.

Since X and Y are subspaces, we have 0 ∈ X and 0 ∈ Y . Thus 0 = 0+ 0 ∈ X + Y .

Suppose u,v ∈ X + Y and c ∈ F. By definition, u = x1 + y1 and v = x2 + y2 for some vectors x1,x2 ∈ X

and y1,y2 ∈ Y . We have

u+ v = (x1 + x2) + (y1 + y2), and cu = cx1 + cy1.

Since X and Y are subspaces, they are closed under vector addition and scalar multiplication. Thus, x1 +

x2, cx1 ∈ X and y1 + y2, cy1 ∈ Y . Thus, by definition, u+ v, cu ∈ X + Y
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Example 2.14. Prove that the second condition in the Subspace Criterion can be replaced by

“For every x,y ∈W and c ∈ F, we have x+ cy ∈W.”

Solution. Suppose W satisfies the first condition of the Subspace Criterion and the given condition above.

We will show W satisfies the Subspace Criterion.

First, note that by assumption 0 ∈ W . Let x,y ∈ W and c ∈ F. Since 0 ∈ W , by given assumption,

0+ cx ∈W . Thus, cx ∈W . Therefore, W is closed under scalar multiplication. By assumption, we can also

see that x+ y = x+ 1y ∈W . Thus, W is closed under vector addition. Therefore, W is a subspace of V .

On the other hand if W is a subspace of V , it clearly satisfies the given condition above, by definition of a

vector space.

2.6 Exercises

Exercise 2.1. Prove that the set of n× n symmetric matrices is a subspace of Mn(F). Prove that the set of

antisymmetric matrices is a subspace of Mn(F).

Exercise 2.2. Prove Theorem 2.7.

Exercise 2.3. Suppose for two matrices A,B, the product AB is invertible. Prove that A is right invertible

and B is left invertible. By an example show that A and B may not be invertible.

Exercise 2.4. Is there a 2× 2 matrix A for which A+B is invertible for every 2× 2 matrix B?

Exercise 2.5. Prove that the inverse of an invertible symetric matrix is also symmetric.

Exercise 2.6. Find all right and left inverses of the 3× 1 matrix (3 2 − 1)T .

Exercise 2.7. Let T : V → W be a linear transformation between vector spaces V and W . Suppose X is a

subspace of V . Prove that the image of X under T , defined below, is a subspace of W :

T (X) = {T (x) | x ∈ X}.

Exercise 2.8. Let T : V → W be a linear transformation between vector spaces V and W . Suppose Y is a

subspace of W . Prove that the pre-image of Y under T , defined below, is a subspace of V :

T−1(Y ) = {v ∈ V | T (v) ∈ Y }.

Exercise 2.9. What is the smallest subspace of M3(F) matrices that contains all upper triangular and all

symmetric matrices? What is the largest subspace that is contained in both?
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Exercise 2.10. In the Subspace Criterion we assume 0 ∈ W . This condition seems to follow from the fact

that W is closed under scalar multiplication, since 0x = 0 ∈ W . Given that, can we drop the condition that

0 ∈W?

Exercise 2.11. Give an example of each of the following:

(a) A vector space V , a subset W of V that contains the zero vector and is closed under vector addition, but

W is not a subspace of V .

(b) A vector space V , a subset W of V that contains the zero vector and is closed under scalar multiplication,

but W is not a subspace of V .

Exercise 2.12. Prove that the relation “∼=” between vector spaces is an equivalence relation. In other words,

prove that for every three vector spacex X,Y, Z over a field F we have the following:

(a) X ∼= X.

(b) If X ∼= Y , then Y ∼= X.

(c) If X ∼= Y and Y ∼= Z, then X ∼= Z.

Exercise 2.13. Suppose f : A → B is a function between arbitrary sets. Prove that if f has a unique left

inverse, or a unique right inverse, then it is invertible. Deduce that if A ∈Mm×n(F) has a unique left inverse

or a unique right inverse, then A is invertible.

Exercise 2.14. Prove that a linear transformation L : V →W is one-to-one if and only if L−1(0) = {0}.

Exercise 2.15. Determine if each statement is true or false.

(a) Suppose W is a subspace of a vector space V . If for two vectors u,v ∈ V we have u + v ∈ W , then

u,v ∈W .

(b) Any system of linear equations with more variables than equations has a nontrivial solution.

(c) The solution sets to Ax = b and Ax = c are either identical or disjoint.

Exercise 2.16. Prove every square matrix A can uniquely be written as A = B+C, where B is a symmetric

matrix and C is an antisymmetric matrix.

Exercise 2.17. Determine if each of the following implies W is a subspace of V .

(a) 0 ∈W and cx+ (1− c)y ∈W for every x,y ∈W and every c ∈ F.

(b) If x,y ∈W and c ∈ F, then x+ cy ∈W.

(c) 0 ∈W and cx− cy ∈W for every x,y ∈W and every c ∈ F,

Exercise 2.18. Suppose V is a subset of Rn that is also a subspace of the complex vector space Cn. Prove

S = {0}.
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Exercise 2.19. Suppose W is a subspace of V satisfying the following:

“For every x,y ∈ V , if x+ y ∈W , then x ∈W or y ∈W .”

Prove W = V.

Exercise 2.20. Let V be the subset of P consisting of all even polynomials, i.e. polynomials of the form

a0 + a1t
2 + a1t

4 + · · ·+ ant
2n, where n is a positive integer and a0, a1, . . . , an ∈ F are scalars. Prove V is a

proper subspace of P that is isomorphic to P.

Exercise 2.21. Suppose W1 ⊆ W2 ⊆ W3 ⊆ · · · is an infinite sequence of subspaces of a vector space V .

Prove
∞⋃

n=1
Wn is a subspace of V .

2.7 Challenge Problems

Exercise 2.22. Prove that if a vector space V is a union of n of its subspaces W1, . . .Wn, then Wj = V for

some j.
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Week 3

3.1 Echelon Form and Reduced Echelon Form

In order to solve a system of linear equations Ax = b, we form the augmented matrix (A|b). We then apply

the following three row operations to obtain a matrix is echelon form.

• Row Addition: Adding a scalar multiple of a row to another row.

• Row Interchange: Interchanging two rows.

• Row Multiplication: Multiplying a row by a nonzero number.

Definition 3.1. A matrix is in echelon form iff it satisfies all of the following:

• All zero rows are at the bottom.

• The entries below the first nonzero entry of each row are all zero.

• The leading nonzero entry of each row is to the left of the leading nonzero entry of all rows below it.

Every leading nonzero entry of a row of a matrix in echelon form is called a pivot entry. The column of

every pivot entry is called a pivot column. Every variable corresponding to a nonpivot column is called a

free variable.

If in addition to the above, we also have the following two conditions:

• the first nonzero entry of each row is 1, and

• these 1’s are the only nonzero entry of their column.

Then, we say the matrix is in reduced (row) echelon form.

Assume we apply these row operations to a matrix A. Each row operation can be seen as multiplying A

by an invertible matrix from the left. Let e1, e2, . . . , en be the standard basis for Rn. In other words, ej is

the vector whose j-th component is 1, and all of whose other components are zero. Suppose rows of A are

31
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a1, . . . ,an from top to bottom. Then, the matrix obtained by adding cak to aj is given by EA, where E is

the matrix obtain from the identity matrix, by adding c times its k-th row to its j-th row:

E =



e1
...

ej + cek
...

en


← j-th row

The matrix obtained by interchanging aj and ak is EA, where E is obtained from the identity matrix by

interchanging its j-th and k-th row.

E =



e1
...

ej
...

ek
...

en



← k-th row

← j-th row

The matrix obtained by scaling j-th row of A by a nonzero scalar c is EA, where E is the matrix obtained

by scaling the j-th row of the identity matrix by the nonzero scalar c.

E =



e1
...

c ej
...

en


← j-th row

Definition 3.2. Each of the above matrices E is called an elementary matrix. An elementary matrix is

called a row interchange elementary matrix (resp. a row multiplication elementary matrix; a row replacement

elementary matrix) if it corresponds to the appropriate row operation.

Remark 3.1. They are all invertible. Therefore, the equations Ax = b and EAx = Eb have the same solution

set.

Theorem 3.1. Every matrix can be turned into a matrix in reduced echelon form. This matrix in reduced

echelon form is unique.

Definition 3.3. Given a matrix A ∈Mm×n(F) and a column vector b ∈ Fm, an equation Ax = b is called

inconsistent iff it has no solution x ∈ Fn.

Theorem 3.2. Consider the linear system Ax = b.
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(a) This system is inconsistent if and only if the last column is a pivot column.

(b) The solution to Ax = 0 is unique if and only if there are no free variables.

Theorem 3.3. Consider column vectors v1, . . . ,vm ∈ Fn and the matrix A = (v1 · · ·vm) ∈Mn×m(F).

(a) v1, . . . ,vm are linearly independent if and only if every column of A is a pivot column.

(b) v1, . . . ,vm are generating if and only if there is a pivot entry in every row of A.

(c) v1, . . . ,vm form a basis for Fn if and only if there is a pivot entry in every row and every column of A.

Theorem 3.4. (a) Any linear independent set of vectors of Fn contains at most n vectors.

(b) Any generating set of vectors of Fn contains at least n vectors.

(c) Every basis of Fn contains precisely n vectors.

Theorem 3.5. Any two bases for a vector space V have the same number of elements.

Theorem 3.6. A matrix is invertible iff there is a pivot entry in every row and every column of its echelon

form. Consequently every invertible matrix must be a square matrix.

Theorem 3.7. Suppose a square matrix has a right or left inverse. Then, it is invertible.

3.2 Evaluating the Inverse of a Matrix

By Theorem 3.6 a matrix A ∈ Mn(F) is invertible iff there is a pivot entry in every row and every column

of an echelon form Ae of A. Since the number of rows and columns of A are the same, the entries on the

main diagonal of A are all pivot entries. Reducing this further to obtain the reduced echelon form of A, we

obtain the identity matrix iff A is invertible. In other words, A is invertible iff its reduced echelon form is

the identity matrix.

Assume A is invertible. Since each row operation corresponds to a multiplication by an elementary matrix

from the left, we obtain the following for some elementary matrices E1, . . . , Em:

Em · · ·E1A = I ⇒ A−1 = Em · · ·E1 and A = E−1
1 · · ·E−1

m

If we start with the augmented matrix (A|I) and apply row operations we obtain the following:

(A|I)→ (E1A|E1)→ (E2E1A|E2E1)→ · · · (Em · · ·E1A|Em · · ·E1) = (I|A−1)

In other words, to obtain the inverse of a square matrix A:

• Form the augmented matrix (A|I).
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• Apply row operations until you obtain (I|B). (If one of the columns of A is not a pivot column, then

A is not invertible.)

• Conclude that B = A−1.

Example 3.1. Evaluate the inverse of A.

A =


1 3 3

1 4 3

1 3 4


Theorem 3.8. Suppose V is a vector space with a basis of size n. Then:

(a) Any linearly independent set in V has at most n elements.

(b) Any generating set in V has at least n elements.

(c) Any basis of V has precisely n elements.

Definition 3.4. For a vector space V , we define its dimension, denoted by dimV , to be the size of a basis

of V . If V has no finite basis we write dimV =∞.

Even though many of the topics discussed in this class can be generalized to infinite-dimensional vector

spaces, we will assume every vector space is finite-dimensional, unless otherwise stated.

Theorem 3.9. Let V be a (finite-dimensional) vector space. Any linearly independent set of vectors can be

completed to a basis.

Theorem 3.10. Suppose V is a vector space with dimV = n < ∞. Then the dimension of every subspace

W of V does not exceed n. Furthermore, if dimV = dimW , then V = W.

3.3 General Solutions to Linear Systems

Given A ∈ Mm×n(F) and a column vector b ∈ Fm we are interested in solutions x ∈ Fn to Ax = b. When

b = 0, we say the system Ax = 0 is homogeneous.

Theorem 3.11. Let H be the set of solutions to the homogeneous system Ax = 0, and xp be a particular

solution to Ax = b (i.e. Axp = b). Then, the set of solutions to Ax = b is given by

{xp + xh | xh ∈ H}.

Example 3.2. Find a system of linear equations Ax = b whose solution set is given by

x =


1 + 2s

−1− s

2 + s

 , with s ∈ F.
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3.4 Examples

Example 3.3. Prove that if V is a vector space of dimension n ≥ 2, then V can be written as the union of

its proper subspaces.

Solution. Let W be the union of all proper subspaces of V . Since every element of W is also in V , we have

W ⊆ V. Let v ∈ V . The dimension of the subspace X = span{v} is at most one and since dimV ≥ 2, X is

a proper subspace of V . Therefore, v ∈W . Thus, V ⊆W , which implies V = W, as desired.

Example 3.4. Find a system of linear equations on three variables x1, x2, x3 whose general solution is given

as 
x1 = 3t+ 2

x2 = −t+ 1

x3 = t− 2

Here, t is a free variable.

Solution. Since the general solution to the corresponding homogeneous system is x1 = 3t, x2 = −t, x3 = t

which has one free variable, the reduced echelon form must have two pivot column. So, we may assume the

reduce echelon form is of the following form: 1 0 a

0 1 b

 (∗)

Multiplying this matrix with (3 − 1 1)T and setting that equal to the zero vector we obtain 3 + a = 0 and

−1 + b = 0. Thus, the corresponding homogeneous system isx1 − 3x3 = 0

x2 + x3 = 0

Now, we will need to make sure x1 = 2, x2 = 1, x3 = −2 is a solution to the system. Multiplying the above

matrix (∗) with (2 1 − 2)T we obtain (8 − 1 0). Thus, one such system is given asx1 − 3x3 = 8

x2 + x3 = −1

Example 3.5. Prove the inverse of every elementary matrix is also an elementary matrix.

Solution. We will prove this for all three different types of elementary matrices.
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Assume E is a row addition elementary matrix. Suppose E adds c times the k-th row to the j-th row.

This means the j-th row of E is ej + cek, and its ℓ-th row is eℓ for every ℓ ̸= j. Consider the elementary

matrix D that adds −c times the k-th row to the j-th row. When multiplying DE, the j-th row becomes

(ej + cek) − cek = ej , and the rest of the rows remain unchanged. Thus DE = I. So, E has a left inverse,

and since it is a square matrix, by a theorem, it is invertible. Thus D = E−1.

Assume E is a row exchange elementary matrix. Suppose E swaps the k-th and j-th rows. This means the

k-th row of E is ej , the j-th row of E is ek and its ℓ-th row is eℓ for every ℓ ̸= j.k. The matrix EE is

obtained by swapping the k-th and j-th rows of E. Thus, EE = I, which means E is its own inverse.

Assume E is a row scaling elementary matrix. Assume E multiplies the j-th row by a nonzero scalar c. The

j-th row of E is cej and its k-th row is ek for every k ̸= j. Let D be the elementary matrix that multiplies the

j-th row by a factor of c−1. We see that DE = I. Therefore, by the argument made above, E is invertible,

and thus D = E−1.

Example 3.6. Using row operations find the inverse of the following matrix
1 3 3

1 4 3

1 3 4

 .

Solution. Let A be the given matrix. We will row reduce the matrix (A|I).


1 3 3 1 0 0

1 4 3 0 1 0

1 3 4 0 0 1

 R2−R1,R3−R1−−−−−−−−−−→


1 3 3 1 0 0

0 1 0 −1 1 0

0 0 1 −1 0 1



R1−3R2−−−−−→


1 0 3 4 −3 0

0 1 0 −1 1 0

0 0 1 −1 0 1

 R1−3R3−−−−−→


1 0 0 7 −3 −3

0 1 0 −1 1 0

0 0 1 −1 0 1


Therefore, the inverse of the given matrix is

7 −3 −3

−1 1 0

−1 0 1



Example 3.7. Suppose A,B are two matrices for which AB and BA are both invertible. Prove that A and

B must be of the same size.
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Solution. Suppose sizes of A and B are m × n and n ×m, respectively. On the contrary assume m ̸= n.

WLOG we may assume n < m. Since columns of B are in Fn and B has m columns, and m > n, by

a theorem, columns of B are linearly dependent. Therefore, there is a nonzero vector v ∈ Fm for which

Bv = 0. Multiplying both sides by A from the left, we obtain ABv = 0. Multiplying by (AB)−1 we obtain

v = 0, which is a contradiction. Therefore, m = n, as desired.

Example 3.8. Determine (with full justification) if each statement is true or false for all matrices A,B with

A being an invertible matrix. Assume the product AB is defined.

(a) If all columns of a matrixB are linearly independent, then all columns ofAB are also linearly independent.

(b) If all rows of a matrix B are linearly independent, then all rows of AB are also linearly independent.

Solution. Note that in order to show the columns of a matrix X are linearly independent, we need to show

if for a vector v we have Xv = 0, then v = 0.

(a) This is true. Suppose ABv = 0 for a vector v. Since A is invertible, A−1ABv = A−10 = 0. Therefore,

Bv = 0. Since columns of B are linearly independent, we must have v = 0.

(b) This is true. We will work with the transpose of AB and use its columns, instead. Suppose (AB)Tv = 0.

We know (AB)T = BTAT . Thus, BTATv = 0. Since columns of BT (which are rows of B) are linearly

independent, we must have ATv = 0. Since A is invertible, so is AT , and thus v = 0, as desired.

Example 3.9. Prove that if a system of linear equations Ax = b has more than one solution, then it has

infinitely many solutions.

Solution. Let xp be a solution to Ax = b. By Theorem 3.11, the solution set to this system is given by

A = {xp + xh | xh ∈ H},

where H is the solution set to the homogeneous system Ax = 0. Since A has at least two elements, H contains

a nontrivial element y. Since Ay = 0, for every c ∈ F we have A(cy) = cAy = 0. Therefore, cy ∈ H. Since

y ̸= 0, for every two distinct scalars a, b we have ay ̸= by. Thus, xp + ay ̸= xp + by. Therefore, there are

infinitely many vectors of the form xp + cy in A, which means A is an infinite set.

Example 3.10. Can 4 vectors in P4 be linearly independent? Can they be generating?

Solution. First, note that 1, t, t2, t3 are four linearly independent polynomials in P4. So, the answer to the

first question is yes!

By an example, {1, t, t2, t3, t4} is a basis for P4. Therefore, dimP4 = 5. Thus, no four polynomials can be

generating by Theorem 3.8(b).
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3.5 Exercises

Exercise 3.1. Determine which of the following vectors form a basis for the appropriate Fn.

(a) (1, 0, 1), (1, 1, 2), (−1,−2,−3).

(b) (1, 0), (2, 3), (1, 1).

(c) (1, 0, 0), (0, 1, 1), (0, 1, 2).

Exercise 3.2. Show that a matrix A has a left inverse if and only if Ax = 0 has a unique solution for x.

Exercise 3.3. Find the inverse of each matrix or show the matrix is not invertible.


4 3 −1

1 1 0

1 1 1

 ,


1 1 2

0 1 3

2 1 0

 ,



1 0 0 · · · 0 0

0 2 0 · · · 0 0

0 0 3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · n− 1 0

0 0 0 · · · 0 n


.

Exercise 3.4. Determine (with full justification) if each statement is true or false for all matrices A,B with

B being an invertible matrix. Assume the product AB is defined.

(a) If all columns of a matrix A span Fn, then all columns of AB also span Fn.

(b) If all rows of a matrix A are linearly independent, then all rows of AB are also linearly independent.

Exercise 3.5. Suppose for a square matrix A, we know A2 is invertible. Prove that A is also invertible.

Exercise 3.6. Find a system of linear equations whose solution is given by

x1 = 2 + 3t+ s, x2 = 5− t− s, x3 = t, with r, s ∈ R.

Exercise 3.7. Let n be a positive integer. Suppose fj ∈ Pn is a nonzero polynomial of degree j for j =

0, 1, . . . , n. Prove that {f0, f1, . . . , fn} is a basis for Pn.

Exercise 3.8. Suppose A,B are square matrices for which AB is invertible. Prove that both A and B are

invertible.

Definition 3.5. A hyperplane in Fn is a subspace of dimension n− 1.

Exercise 3.9. Suppose (a1, . . . , an) ∈ Fn is a given nonzero vector. Prove the set of all (x1, . . . , xn) ∈ Fn

given by a1x1 + · · ·+ anxn = 0 is an (n− 1)-dimensional subspace of Fn.

Exercise 3.10. Suppose X,Y are subspaces of a vector space V for which dimX + dimY > dimV . Prove

X ∩ Y ̸= {0}.
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Exercise 3.11. Suppose A ∈ Mm×n(R). Since R is a subset of C, we can also consider A as a matrix in

Mm×n(C). Prove that dimKerA is the same whether A is assumed to be a matrix in Mm×n(R) or a matrix

in Mm×n(C). Do the same for dimColA.

Exercise 3.12. Let V and W be finite dimensional vector spaces of dimensions m and n, respectively. Prove

that the dimension of L(V,W ) is mn.

Exercise 3.13. Suppose V and W are vector spaces over the same field F. Prove that their Cartesian product

V ×W along with vector addition and scalar multiplication defined below is also a vector space:

(v1,w1) + (v2,w2) = (v1 + v2,w1 +w2), and c(v1,w1) = (cv1, cw1) for all v1,v2 ∈ V,w1,w2 ∈W.

Prove that if both V and W are finite dimensional, then dim(V ×W ) = dimV = dimW .

Exercise 3.14. Suppose V is an n-dimensional complex vector space. Prove that if we restrict the set of

scalars to the real numbers, V with the same vector addition and scalar multiplication is a real vector space

with dimension 2n.

3.6 Challenge Problems

Exercise 3.15. Prove that the subspace of C[R] generated by sin t, sin(2t), sin(3t), . . . is infinite dimensional.

Exercise 3.16. If we allow only rational numbers to be scalars we can turn R into a vector space over Q,

i.e. the vectors are real numbers and scalars are rational numbers. Prove that R is an infinite dimensional

vector space over Q.



40 CHAPTER 3. WEEK 3



Week 4

4.1 Fundamental Subspaces of a Matrix

Definition 4.1. Given a linear transformation L : V →W , we define its kernel or null space by:

KerL = NullL = {v ∈ V | }.

The range or image of L is defined as

RanL = L(V ) = {L(v) | v ∈ V }.

Given a matrix A, the kernel or null space of A, denoted by Ker (A) = Null (A) is defined to be the kernel of

the linear transformation associated to A. The range or image of A is the range of the linear transformation

associated with A.

Note that Ran(A) is sometimes denoted by Col (A). The range of AT is called the row space of A and is

denoted by Row (A).

The four vector spaces Ker (A),Ker (AT ),Col (A), and Row (A) are called four fundamental subspaces cor-

responding to a matrix A.

Theorem 4.1. Let A be a matrix, and Ae be a matrix in echelon form obtained from A by performing row

operations. Then,

(a) The nonzero rows of Ae form a basis for the Row (A).

(b) The pivot columns of A form a basis for Col (A).

Definition 4.2. The rank of a matrix is the dimension of its column space.

Theorem 4.2. For every matrix A, we have rankA = rankAT .

Theorem 4.3 (Rank-Nullity Theorem). Let L : V → W be a linear transformation of finite-dimensional

vector spaces. Then,

dimKerL+ dimL(V ) = dimV.

41
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Furthermore, if A ∈Mm×n(F), then

dimKerA+ rankA = n.

Definition 4.3. The nullity of a matrix is the dimension of its null space.

Theorem 4.4. Suppose A ∈Mm×n(F). Then, the equation Ax = b has a solution for every b ∈ Fm if and

only if the equation ATx = 0 has a unique solution.

Theorem 3.9 indicates that every set of linear independent vectors can be completed to a basis, however

its proof did not give us a clear algorithm as to how we can do that. What we discussed above gives us a

clear algorithm for how that can be done. First, we will consider the case where the vector space is Fn. In

order to complete linear independent vectors v1, . . . ,vm ∈ Fn to a basis, we create a matrix whose rows are

v1, . . . ,vm. We row reduce this matrix and insert appropriate elements of the standard basis to obtain a

square matrix in standard form. Since rows form a basis for Fn, the original vectors v1, . . . ,vm along with

the newly added vectors from the standard basis form a basis for Fn.

To replicate this for a (finite-dimensional) vector space V , first write down an isomorphism between V and

Fn, where n = dimV . Then, repeat the process above and use the fact that under isomorphisms every basis

is mapped to a basis.

4.2 Representation of Transformations in Arbitrary Bases

Definition 4.4. An ordered basis for a vector space is a basis with a specified order. In other words, an

ordered basis for a vector space V is an n-tuple B = (b1, . . . ,bn), where b1, . . . ,bn form a basis for V .

Definition 4.5. Suppose V is a vector space with an ordered basis B = (b1, . . . ,bn). We know every vector

v ∈ V has a unique representation as v =
n∑

j=1

cjbj . The coefficients c1, . . . , cn are called coordinates of v

in basis B. This is written as

[v]B =


c1

c2
...

cn

 .

Theorem 4.5. Let B be an ordered basis for an n-dimensional vector space V . Then, L : V → Fn defined

by L(v) = [v]B is an isomorphism.

Theorem 4.6. Let A = (a1, . . . ,an) and B be ordered bases for vector spaces V and W , respectively.

Suppose T : V →W be a linear transformation. Then, there is a unique matrix A for which [T (v]B = A[v]A.

Furthermore, this matrix is given by

A = ([T (a1)]B · · ·T (an)]B)

Definition 4.6. The unique matrix A in the theorem above is called the matrix of T relative to ordered

bases A and B. This matrix is denoted by [T ]BA.
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Theorem 4.7. Suppose T : V → W and S : W → U are linear transformations between vector spaces on

the same field F. Let A,B, and C be ordered bases for vector spaces V,W , and U , respectively. Then,

[S ◦ T ]CA = [S]CB[T ]BA

Corollary 4.1. Suppose T : V → W is an isomorphism between vector spaces. Let A and B be ordered

bases for V and W , respectively. Then,

[T−1]AB = [T ]−1
BA.

Definition 4.7. Given a vector space V and two ordered bases A and B of V , the matrix [IV ]BA is called

the change of coordinate matrix from A to B.

Example 4.1. Find the change of basis matrix from the basis A = (1+t, t−1) to the basis B = (2−3t, 1−3t)

for P1. Assume A and B are bases for P1.

Definition 4.8. Two square matrices A and B of the same size are said to be similar iff there is an invertible

matrix P for which A = PBP−1.

Theorem 4.8. Suppose A and B are two ordered bases for a vector space V and T : V → V is a linear

transformation. Then [T ]BB and [T ]AA are similar matrices.

4.3 Examples

Example 4.2. Suppose the dimension of the kernel of a 31× 17 matrix A is 12. Find the dimension of all

of its four fundamental subspaces.

Solution. By the Rank-Nullity Theorem, we have dimKerA+rankA = 17. Therefore, rankA = 5. Therefore,

dimCol (A) = dimRow (A) = 5. Applying the Rank-Nullity Theorem to AT we obtain dimKerAT +

rankAT = 31. Since rankAT = 5, we have dimKerAT = 26.

Example 4.3. Show the following vectors are linearly independent and complete them to a basis of F4

(1, 2,−1, 3)T , (1, 2, 1, 0)T , (0, 1, 2, 0)T

Solution. We will form a matrix whose rows are the given vectors.
1 2 −1 3

1 2 1 0

0 1 2 0

 R2−R1−−−−−→


1 2 −1 3

0 0 2 −3

0 1 2 0

 R2↔R3−−−−−→


1 2 −1 3

0 1 2 0

0 0 2 −3


This matrix is in echelon form with 3 pivot entries. Thus, the three given vectors are linearly independent.

Furthermore, placing e4 in the last row creates a matrix in echelon form with four pivot entries. Therefore,

the following vectors form a basis for F4.

(1, 2,−1, 3)T , (1, 2, 1, 0)T , (0, 1, 2, 0)T , e4



44 CHAPTER 4. WEEK 4

Example 4.4. Consider n − 1 linearly independent vectors v1, . . . ,vn−1 ∈ Fn. Suppose the only vector in

the standard basis that completes these n − 1 vectors to a basis for Fn is en. Prove that the n-th entry of

every vj , j = 1, . . . , n− 1 is zero.

Solution. For simplicity let W = span {v1, . . . ,vn−1}. Note that since vj ’s are linearly independent,

dimW = n− 1.

First, we claim that for every j with 1 ≤ j < n, we have ej ∈ W . We will prove that by contradiction.

Suppose ej ̸∈W . By Exercise 1.9 the set A = {v1, . . . ,vn−1, ej} is linearly independent. Since dimFn = n,

by Theorem 3.8, the set A is a basis for Fn, which is a contradiction. Therefore, for every j with 1 ≤ j < n, we

have ej ∈W . Therefore, e1, . . . , en−1. On the other hand since dimW = n−1, by Theorem 3.8, e1, . . . , en−1

is a basis for W . Therefore, W = span {e1, . . . , en−1}. However the n-th coordinate of every vector that is

in the span of e1, . . . , en−1 is zero. Thus, the n-th coordinates of vj ’s are all zero.

Example 4.5. Consider the ordered bases A = (1+ t, 2+ 3t) and B = (2− t, 1+ 2t) of P1. Find the change

of coordinate matrix from B to A.

Solution. Consider the standard ordered basis S = (1, t) of P1. We know

[I]SA =

 1 2

1 3

 , and [I]SB =

 2 1

−1 2


Therefore,

[I]AB = [I]AS [I]SB = [I]−1
SA[I]SB =

 1 2

1 3

−1 2 1

−1 2

 =

 3 −2

−1 1

 2 1

−1 2



The answer is

 8 −1

−3 1

 .

Example 4.6. Write down the coordinate vector of 3t2 − t+ 1 with respect to each given basis.

(a) A = (1, t, t2).

(b) B = (t, 1, t2).

(c) C = (1 + t, 1− t2, t− t2).

Solution. (a) By definition the answer is (1 − 1 3)T .

(b) By definition the answer is (−1 1 3)T .
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(c) For simplicity let p(t) = 1− t+ 3t2. We know [p(t)]A = (1 − 1 3)T . In order to find [p(t)]C we will find

[I]CA. Then use the fact that [p(t)]C = [I]CA[p(t)]A. By Theorem ?? we have

[I]AC =
(
[1 + t]A [1− t2]A [t− t2]A

)
=


1 1 0

1 0 1

0 −1 −1

 .

Therefore, by a Theorem we have the following:

[I]CA =


1 1 0

1 0 1

0 −1 −1


−1

=


1/2 1/2 1/2

1/2 −1/2 −1/2

−1/2 1/2 −1/2


The final answer is obtained by evaluating [I]CA[p(t)]A. The answer is (3/2 − 1/2 − 5/2)T .

Example 4.7. Prove that if A and B are similar matrices, then trA = trB. Is it true that if trA = trB,

then A and B must be similar?

Solution. Since A and B are similar, B = PAP−1 for some invertible matrix P . By Example 1.4, we have

tr (PAP−1) = tr (P−1PA) = trA. Therefore, trA = trB, as desired.

Example 4.8. Let T : R2 → P1 be the linear transformation given by T (a, b) = (a + b) + (b − a)t. Find

[T ]BA, where A = (e2, e1) and B = (1, t) are ordered bases of R2 and P1. You may assume T is linear and

A,B are bases for R2 and P1.

Solution. By a theorem, we have

[T ]BA = ([T (0, 1)]B[T (1, 0)]B) = ([1 + t]B[1− t]B) =

 1 1

1 −1

 .

Example 4.9. Consider the linear transformation T : P2 → P2 given by T (at2+ bt+ c) = (a+ b)t2+(b+ c).

Let A = (1, 2+ 3t, 1− t2) and B = (1+ t, 1− t, t+ t2) be ordered bases for P1. Find [T ]BA. You may assume

A and B are bases and T is linear.

Solution. Let S = (1, t, t2) be the standard ordered basis for P2. By Theorem 4.7, we know

[T ]BA = [I]BS [T ]SA.

We will now evaluate each one of the three matrices above.

[I]BS = [I]−1
SB =

(
[1 + t]S [1− t]S [t+ t2]S

)
=


1 1 0

1 −1 1

0 0 1


−1
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Furthermore,

[T ]SA =
(
[T (1)]S [T (2 + 3t)]S [T (1− t2)]S

)
=
(
[1]S [5 + 3t2]S [1− t2]S

)
=


1 5 1

0 0 0

0 3 −1


Therefore, the answer can be evaluated by performing the following operations:

[T ]BA =


1 1 0

1 −1 1

0 0 1


−1

1 5 1

0 0 0

0 3 −1


(For a complete solution, this calculation must be done.)

Example 4.10. Prove for every two matrices A,B of the same size rank (A+B) ≤ rank (A) + rank (B).

Solution. Let v1, . . . ,vr and w1, . . . ,ws be bases for Col (A) and Col (B), respectively.

Suppose columns of A are a1, . . . ,an in that order and columns of B are b1, . . . ,bn in that order. Thus,

columns of A+B are a1 + b1, . . . ,an + bn. Every vector x in Col (A+B) can be written as

x =

n∑
j=1

cj(aj + bj) =

n∑
j=1

cjaj +

n∑
j=1

cjbj

Since
n∑

j=1

cjaj ∈ Col (A), the vector
n∑

j=1

cjaj can be written as a linear combination of v1, . . . ,vr. Similarly

n∑
j=1

cjbj is a linear combination of w1, . . . ,ws. Therefore, x is a linear combination of v1, . . . ,vr,w1, . . . ,ws.

This means Col (A + B) has a generating set of size r + s. Therefore, by Theorem 3.8, the dimension of

Col (A) is at most r + s. Thus, rank (A+B) ≤ r + s = rankA+ rankB.

Example 4.11. Prove that a matrix A ∈Mm×n(F) has rank 1 iff A = uvT for some nonzero column vectors

u ∈ Fm and v ∈ Fn.

Solution. A is of rank 1 iff the dimension of the column space of A is 1. This is equivalent to Col (A) =

span {u}, for some nonzero column vector u ∈ Fm. This is equivalent to all columns of A being scalar

multiples of u and one of these columns must be nonzero. Let the columns of A be c1u, . . . , cnu. We

conclude rankA = 1 if and only if

A = (c1u · · · cnu) = u
(

c1 · · · cn

)
,

and at least one of cj ’s is nonzero.

Example 4.12. Suppose for a matrix A we have Col (A) ⊆ Row (A). Prove that Row (A) = Col (A).

Solution. By Theorem 4.2, the dimensions of Row (A) and Col (A) are the same. By Theorem 3.10, since

Col (A) ⊆ Row (A), we must have Col (A) = Row (A).
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4.4 Exercises

Exercise 4.1. Determine if each statement is true or false.

(a) The nullity of a matrix A is at least the number of zero rows of A.

(b) The rank of a matrix A is the same as the number of nonzero columns of A.

(c) The nullity of a matrix is the same as the nullity of its transpose.

(d) If for a matrix A we have Row (A) ⊆ Col (A), then A is a square matrix.

(e) If A is an invertible matrix, then Row (A) = Col (A).

Exercise 4.2. Suppose A ∈Mm×n(F) and B ∈Mn×k(F).

(a) Prove that Col (AB) ⊆ Col (A).

(b) Prove that Row (AB) ⊆ Row (B).

(c) Deduce that rank(AB) ≤ min(rankA, rankB).

(d) Prove that if A is left invertible, then Row (AB) = Row (B), and if B is right invertible, then Col (AB) =

Col (A).

Exercise 4.3. Suppose A ∈Mm×n(F) and B ∈Mn×k(F) such that Col (AB) = Col (A). Prove that there is

a matrix C ∈Mk×n for which ABC = A.

Exercise 4.4. For each of the following matrices:

1. Find its rank and nullity.

2. Find all of its four fundamental subspaces.


1 2 0 0

0 1 0 −1

0 1 1 3

 ;


−1 0 2

1 0 2

−1 0 −2

2 1 −8

 ;


i 1 0

1 1− i 1

2 −i i

 .

Exercise 4.5. A 25× 64 matrix has rank 14. What are the dimensions of its four fundamental subspaces?

Exercise 4.6. Prove that if the nullity of A and AT are the same, then A is a square matrix.

Exercise 4.7. In each case provide an example of a matrix satisfying the given conditions or show no such

matrix exists.

(a) A has 16 columns, rankA = 15 and Null (A) contained two linear independent vectors.

(b) A ∈M15×31(F), dimKerA = 10 and A has no entries of zero.
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(c) A ∈M4×6(F), and rankA = 7.

(d) A ∈M10×9(F), rankA = 9 and A has precisely 82 entries that are zero.

Exercise 4.8. Two matrices A,B satisfy Row (A) = Row (B) and dimNull (A) = dimNull (B). Do A and

B have to be the same matrices? Do they have to have the same size?

Exercise 4.9. How many matrices A ∈M4(F) satisfy all of the following?

(a) rankA = 3;

(b) All entries of A are from the set {0, 1, 2, . . . , 7}; and

(c) A has precisely 3 nonzero entries.

Exercise 4.10. Two matrices A,B have the same corresponding four fundamental subspaces. Can we con-

clude A = B?

Exercise 4.11. Prove that for a matrix A ∈ Mn(R) it is not possible to have KerA = Col (AT ). By an

example show this can happen when A is allowed to have nonreal entries.

Exercise 4.12. Suppose A,B ∈Mn(F) are similar matrices. Prove that

(a) rankA = rankB.

(b) A and B have the same nullity, but their null spaces may be different.

Exercise 4.13. Let T : V → W be a linear transformation, and A and B be ordered bases for V and W ,

respectively. Prove that T is invertible if and only if [T ]BA is an invertible matrix.

Exercise 4.14. Write down the coordinate vector of t3 − 2t+ 1 with respect to the given bases of P3.

(a) A = (1, t3, t, t2).

(b) B = (1 + t, 1− t2, t3 + t,−t2).

You may assume A,B are bases for P3.

Exercise 4.15. Suppose A,B ∈Mn(F) are similar matrices. Prove that there is an ordered basis for Fn for

which [T ]AA = B, where T : Fn → Fn is the linear transformation associated with A, i.e. T (v) = Av.

Exercise 4.16. Prove that “being similar” is an equivalence relation in Mn(F). In other words, prove the

following:

(a) Every matrix is similar to itself. (Reflexive)

(b) If A is similar to B, then B is similar to A. (Symmetric)

(c) If A is similar to B and B is similar to C, then A is similar to C. (Transitive)
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Exercise 4.17. Suppose every entry of A ∈Mn(F) is an integer. Suppose every entry of B ∈Mn(R) except

for its (1, 1) entry is an integer, and (1, 1) entry of B is not an integer. Prove that A and B cannot be

similar.

Exercise 4.18. Prove that if A and B are similar matrices, then so are AT and BT .

Exercise 4.19. Find the change of coordinate matrix from A to B, where A = (1 + 5t, t − 5) and B =

(1 + t, 2− t) are bases for P1. You may assume A,B are bases.

Exercise 4.20. Find the matrix of the linear transformation T : R2 → R2 given by T (x, y) = (x−2y, 3x+y)

once in the standard ordered basis (e1, e2) and once in the ordered basis ((1, 2), (2, 1)).

Exercise 4.21. Determine if each statement is true or false.

(a) rank (AB) = rank (BA) for every A,B ∈Mn(F) and every n.

(b) Col (A) = Row (AT ) for every matrix A.

(c) The rank of a matrix is the number of nonzero columns of its reduced echelon form.

(d) The nullity of a matrix is the number of zero rows of its reduced echelon form.

Exercise 4.22. Let T, S : V → W be linear transformations of vector spaces over F and c ∈ F be a scalar.

Suppose A and B are bases for V and W , respectively. Prove that:

[T + cS]BA = [T ]BA + c[S]BA.

Suppose dimV = m and dimW = n. Use the above to prove the function φ : L(V,W )→Mn×m(F) given by

φ(T ) = [T ]BA is an isomorphism.

Exercise 4.23. Suppose V and W are finite-dimensional vector spaces of dimensions m and n, respectively.

Let A and B be bases for V and W , respectively. Prove that for every A ∈ Mn×m(F), there is T ∈ L(V,W )

for which [T ]BA = A.

Exercise 4.24. Suppose A ∈Mn(F) satisfies A2 = 0. Prove that rankA ≤ n

2
.

Exercise 4.25. Consider the following block diagonal matrix, where A1, . . . , Ar are matrices.

A =


A1 0

A2

. . .

0 Ar


Prove rankA =

r∑
j=1

rankAj .

Exercise 4.26. Suppose a1, . . . , an are scalars and b1, . . . , bn is a permutation of a1, . . . , an. Prove the

diagonal matrices diag(a1, . . . , an) and diag(b1, . . . , bn) are similar.
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Exercise 4.27 (A Generalization of the Previous Exercise). Let A1, . . . , Ar be square matrices. Suppose σ

is a permutation of {1, 2, . . . , n}. Prove the two block matrices below are similar:
A1 0

A2

. . .

0 Ar

 and


Aσ(1) 0

Aσ(2)

. . .

0 Aσ(r)

 .

Hint: Try r = 2 first.

Exercise 4.28. Let A ∈Mm×n(F). Define T : Mn×k(F)→Mm×k(F) by T (X) = AX.

(a) Prove T is a linear transformation.

(b) Suppose rankA = r. Prove dimKerT = (n− r)k.

Exercise 4.29. Prove the following 3× 3 matrices are similar.
a11 a12 a13

a21 a22 a23

a31 a32 a33

 and


a33 a32 a31

a23 a22 a21

a13 a12 a11

 .

Exercise 4.30. Generalize the previous exercise for an n× n matrix.

4.5 Challenge Problems

Exercise 4.31. Find all permutations σ of 1, 2, . . . , n2 for which the following matrices are similar, for every

choice of scalars a1, a2, . . . , an2 .

a1 a2 · · · an

an+1 an+2 · · · a2n
...

...
...

...

a(n−2)n+1 a(n−2)n+2 · · · an(n−1)

a(n−1)n+1 a(n−1)n+2 · · · an2


and



aσ(1) aσ(2) · · · aσ(n)

aσ(n+1) aσ(n+2) · · · aσ(2n)
...

...
...

...

aσ((n−2)n+1) aσ((n−2)n+2) · · · aσ(n(n−1))

aσ((n−1)n+1) aσ((n−1)n+2) · · · aσ(n2)


.



Week 5

5.1 Determinants

In this section we would like to define the determinant of a square matrix. One interpretation of determinant

is “volume”. Given n vectors v1, . . . ,vn ∈ Fn, we want the n×n determinant corresponding to v1, . . . ,vn to

determine the volume of the parallelepiped determined by these n vectors. We expect any reasonable volume

to satisfy the following properties:

Area(u,u) = 0 Area(u,v +w) = Area(u,v) + Area(u,w)

Area(u, cv) = cArea(u,v)

Definition 5.1. Let D : Mn(F)→ F be a function.

(a) We say D is multi-linear iff D is linear with respect to each row. In other words, for every j, 1 ≤ j ≤ n,

we have

D



v1

...

avj + bw
...

vn


= aD



v1

...

vj

...

vn


+ bD



v1

...

w
...

vn


← j − th row.

51
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(b) We say D is alternating iff D


v1

...

vn

 = 0 when vj = vk for some j ̸= k.

To keep the notations more compact, instead of writing D


v1

...

vn

 we write D(v1, . . . ,vn); inserting commas

to indicate v1, . . . ,vn are rows and not columns.

Theorem 5.1. Let D : Mn(F)→ F be alternating and multi-linear, then it satisfies the following properties.

(a) Swapping two rows, negates D. In other words,

D(v1, . . . ,vj , . . . ,vk, . . . ,vn) = −D(v1, . . . ,vk, . . . ,vj , . . . ,vn)

(b) Scaling a row by c scales D by c. In other words,

D(v1, . . . , cvj , . . . ,vn) = cD(v1, . . . ,vj , . . . ,vn).

(c) Adding a multiple of one row to another does not change D. In other words,

D(v1, . . . ,vj + cvk, . . . ,vn) = D(v1, . . . ,vj , . . . ,vn) if j ̸= k.

(d) If v1, . . . ,vn are linearly dependent, then D(v1, . . . ,vn) = 0.

Clearly the first three operations are very familiar. These are precisely the row operations that we explored

when solving systems of linear equations.

Example 5.1. Find all alternating, multi-linear function D : M2(F)→ F.

Theorem 5.2. For every positive integer n, there is a unique multi-linear, alternating function D : Mn(F)→

F satisfying D(I) = 1.

Definition 5.2. Let n be a positive integer. The determinant is the unique multi-linear, alternating

function D : Mn(F)→ F for which D(In) = 1. Determinant of a matrix A is denoted by detA or det(A).

Corollary 5.1 (Leibniz formula for determinants). For every matrix A = (ajk) ∈Mn(F), we have

detA =
∑
σ∈Sn

ϵσa1σ(1) · · · anσ(n),

where Sn is the set of all permutations σ : {1, 2, . . . , n} → {1, 2, . . . , n} and ϵσ = ±1 only depends on σ,

Example 5.2. Evaluate

det


1 2 −1

2 0 1

3 2 1

 .
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5.2 Row Operations and Matrix Multiplication

Theorem 5.3. Let A and B be two n× n matrices, then det(AB) = (detA)(detB).

Corollary 5.2. If A and B are square similar matrices, then they have the same determinant.

Proof. By definition, A = PBP−1 for some invertible matrix P . By Theorem 5.3, we have detA =

(detP )(detB)(detP−1). Note that since PP−1 = I, we have (detP )(detP−1) = det I = 1. Therefore,

detA = detB.

Definition 5.3. Determinant of a linear transformation T : V → V is defined as the determinant of

[T ]AA, where A is some ordered basis for V . Note that since the matrices of T in different bases are similar,

their determinants are the same. Therefore, this is well-defined.

Determinants can be evaluated using co-factor expansions. Here is an example.

det


a11 a12 a13

a21 a22 a23

a31 a32 a33

 = a11 det

 a22 a23

a32 a33

− a12 det

 a21 a23

a31 a33

+ a13 det

 a21 a22

a31 a32

 .

In other words, we can write the determinant of a 3× 3 matrix A as follows:

detA = a11 detA11 − a12 detA12 + a13 detA13,

where Aij is obtained by removing the i-th row and the j-th row of A.

Theorem 5.4. (Cofactor Expansion Along a Row or a Column) Let A ∈Mn(F), with ajk as its (j, k) entry.

Then, for every j with 1 ≤ j ≤ n, we have

detA =

n∑
k=1

(−1)j+kajk detAjk,

where Ajk is obtained by removing the j-th row and the k-th column of A. Similarly, for every k with

1 ≤ k ≤ n, we have

detA =

n∑
j=1

(−1)j+kajk detAjk,

Theorem 5.5. For a square matrix A the following are equivalent:

(a) A is invertible.

(b) detA ̸= 0.

(c) Columns of A are linearly independent.

(d) Rows of A are linearly independent.
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Theorem 5.6 (Cramer’s Rule). Let A = (a1 · · ·an) be an invertible matrix. Then for every column vector

b, the only solution to Ax = b is

x =


x1

...

xn

 ,

where xj =
det(a1 · · ·aj−1 b aj+1 · · ·an)

det(A)
.

Example 5.3. Solve the system of equations using Cramer’s Rule:
x+ y − 2z = 1

y + 2z = 1

x− z = 3

Theorem 5.7. Let A be an invertible matrix. Then the (j, k) entry of A−1 equals
(−1)j+k det(Akj)

detA
, where

Akj is the matrix obtained from A by removing the k-th row and the j-th column of A.

Example 5.4. Prove the inverse of any invertible 2× 2 matrix is given by a b

c d

−1

=
1

ad− bc

 d −b

−c a


Example 5.5. Suppose A ∈ Mn(R) is an invertible matrix whose entries are all rational. Prove that for

every b ∈ Qn, the solution x to Ax = b is in Qn.

5.3 Minors, Rank and Determinant

We know determinant of a square matrix is nonzero if and only if it is invertible. We would like to find a

relation between rank of a matrix and some determinant.

Definition 5.4. Let A be a matrix. A submatrix of A is a matrix obtained by selecting some arbitrary

columns and some arbitrary rows of A and looking at the entries that lie at the intersections of these rows

and columns. In other words, the submatrix corresponding to rows numbered i1 < i2 < · · · < ik and columns

numbered j1 < j2 < · · · < jℓ, is a matrix whose (r, s) entry is Airjs , where Aij is the (i, j) entry of A. A

minor of order k of a matrix A is the determinant of a k × k submatrix of A.

Theorem 5.8. For a nonzero matrix A, the rank of A equals to the maximum integer k for which there

exists a nonzero minor of order k.

5.4 Examples

Example 5.6. For scalars a1, . . . , an let A = diag(a1, . . . , an) be the n × n matrix whose diagonal entries

are a1, . . . , an in that order. Prove that detA = a1 · · · an in two ways:
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(a) Using induction along with co-factor expansion.

(b) Using row operations

Solution. (a) We will prove this by induction on n.

Basis step. For n = 1, A = (a1), and we have det(a1) = a1.

Inductive step. Expanding detA along the last row we obtain detA = (−1)n+nan det(diag(a1, . . . , an−1)) (∗),

since the rest of the terms in the expansion are zero. By inductive hypothesis det(diag(a1, . . . , an−1)) =

a1 · · · an−1. Combining this with (∗) we obtain the result.

(b) Note that rows of the given matrix are a1e1, . . . , anen. By the rescaling row operation with a factor of

a1 and with respect to the first row we obtain the following:

det


a1e1

a2e2
...

anen

 = a1 det


e1

a2e2
...

anen


Repeating this we conclude that

det(diag(a1, . . . , an)) = a1 · · · an det I = a1 · · · an,

as desired.

Example 5.7. Suppose A is a square matrix such that A and A−1 both only have integer entries. Prove

that detA = ±1.

Solution. First note that if B is a square matrix with integer entries, then detB is also an integer. This can

be shown by induction on the size of B and cofactor expansion. (Show this!) Therefore, detA and detA−1

are both integer. Since det(AA−1) = det I = 1, we must have (detA)(detA−1) = 1. Since both detA and

detA−1 are integers, we must have detA = ±1.

Example 5.8. Prove the converse of the previous example: Suppose A is a matrix with integer entries for

which detA = ±1. Prove that all entries of A−1 are integers.

Solution. We know the (j, k) entry of A−1 is
(−1)j+k det(Akj)

detA
= ±det(Akj), since detA = ±1. Note that

since all entries of A are integers, by what we saw in the previous example det(Akj) is an integer. Therefore,

every entry of A−1 is an integer.
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Example 5.9. Let a, b, c be three real numbers. Evaluate the following determinant:

det


a a2 a3

b b2 b3

c c2 c3


Solution. We will use properties of determinant.

det


a a2 a3

b b2 b3

c c2 c3

 = abcdet


1 a a2

1 b b2

1 c c2


Use row operations R2 −R1 and R3 −R1 we obtain the following:

abcdet


1 a a2

0 b− a b2 − a2

0 c− a c2 − a2

 = abc(b− a)(c− a) det


1 a a2

0 1 b+ a

0 1 c+ a

 ,

which is obtained by taking out scalars b− a and c− a from the second and third rows of the matrix. Using

the row operation R3 −R2 we obtain the following:

abc(b− a)(c− a) det


1 a a2

0 1 b+ a

0 0 c− b

 = abc(b− a)(c− a)(c− b) det


1 a a2

0 1 b+ a

0 0 1


Expanding this along the first column and the fist column again we obtain abc(b− a)(c− a)(c− b) .

Example 5.10. Let A ∈Mn(F) and c ∈ F. Prove det(cA) = cn detA.

Solution. Suppose rows of A are a1, . . . ,an. Then rows of cA are c a1, . . . , c an. By properties of determi-

nant, we have the following:

det(cA) = det


c a1
...

c an

 = cdet


a1

c a2
...

c an

 = c2 det



a1

a2

c a3
...

c an


= · · · = cn det


a1
...

an

 = cn detA.

Example 5.11. A matrix A is called skew-symmetric if AT = −A. Prove that if an n × n matrix A is

skew-symmetric and n is odd, then A is not invertible.

Solution. By a theorem we know det(AT ) = detA. At the same time, we know det(−A) = (−1)n detA =

− detA, since n is odd. Therefore, detA = − detA and hence detA = 0. This implies that A is not

invertible.



5.4. EXAMPLES 57

Example 5.12. Suppose A is an upper triangular n×n matrix whose diagonal entries are λ1, . . . , λn. Prove

detA = λ1 · · ·λn.

Solution. We will prove this by induction on n.

Basis step. For n = 1, A = (λ1), and detA = λ1 det(1) = λ1.

Inductive step. Suppose A is an n×n upper triangular matrix with λ1 in its (1, 1) position. Using cofactor

expansion along the first column, we conclude detA = (−1)1+1λ1 detB, where B is an upper triangular

matrix whose diagonal entries are λ2, . . . , λn. By inductive hypothesis, detB = λ2 · · ·λn. This implies

detA = λ1 · · ·λn, as desired.

Example 5.13. Let A be the n × n matrix, whose entries above or on the main diagonal are all 1’s and

whose entries below the main diagonal are all a variable t. Find detA in terms of n and t.

Solution. The matrix A is as follows:

A =



1 1 . . . 1 1

t 1 . . . 1 1
...

...
. . .

...
...

t t . . . 1 1

t t . . . t 1


n×n

We will apply the row operations R2 − tR1, R3 − tR1, . . . , Rn − tR1 to obtain the following:

detA = det



1 1 . . . 1 1

0 1− t . . . 1− t 1− t
...

...
. . .

...
...

0 0 . . . 1− t 1− t

0 0 . . . 0 1− t


n×n

This is an upper triangular matrix and thus detA = (1− t)n−1.

Example 5.14. Evaluate the determinant of an n×n matrix whose off-diagonal entries are all 1 and whose

diagonal entries are all a variable t.

Solution. Let

E =



t 1 . . . 1 1

1 t . . . 1 1
...

...
. . .

...
...

1 1 . . . t 1

1 1 . . . 1 t


n×n
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Subtracting the first row from all other rows does not change the determinant and we obtain the following

determinant:

detE = det



t 1 . . . 1 1

1− t t− 1 . . . 0 0
...

...
. . .

...
...

1− t 0 . . . t− 1 0

1− t 0 . . . 0 t− 1


Adding all columns to the first we obtain the following:

detE = det



t+ n− 1 1 . . . 1 1

0 t− 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . t− 1 0

0 0 . . . 0 t− 1


This is an upper triangular matrix. Thus, its determinant is the product of its diagonal entries. Therefore,

detE = (t− 1)n−1(t+ n− 1).

Example 5.15. Let A(t) be an m× n matrix whose entries are all polynomials on variable t with complex

coefficients. Prove that rank of A(t) is constant for every t ∈ C, except possibly finitely many complex

numbers t, where the rank is smaller.

Solution. Consider all minors of A(t). Since all entries of A(t) are polynomials, all minors are also poly-

nomials. If all of these minors are identically zero, then A(t) = 0, since minors of order 1 are the entries of

A(t). Otherwise, assume k is the largest integer for which there is a nonzero minor of order k. Since this

minor is a polynomial, it has finitely many roots. Let S be the set of roots of this minor, which is a finite

set. For every complex number not in S, this minor is nonzero. Thus, by Theorem 5.8 the rank of A(c) is k

for every c ∈ C\S. By the choice of k the rank of A(c) never exceeds k for any c ∈ C, as desired.

5.5 Exercises

Exercise 5.1. Consider a function D : Mn(F)→ F and c ∈ F is a scalar.

(a) Prove that if D is alternating, then so is cD, defined by (cD)(A) = cD(A).

(b) Prove that if D is multi-linear, the so is cD.

Exercise 5.2. Suppose D : Mn(F) → F is a multi-linear, alternating function. Prove that there is a scalar

c for which D(A) = c detA for all A ∈Mn(F).
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Exercise 5.3. To turn a matrix into one in reduced echelon form, we use three row operations: Row Addition,

Row Interchange, and Row Scaling.

(a) Prove that the Row Interchange operation is not needed. In other words, show that Row Interchange can

be obtained from Row Addition and Row Scaling.

(b) Prove that Both Row Addition and Row Scaling are necessary to turn a matrix into one in reduced

Echelon form.

Exercise 5.4. Suppose A,B ∈ Mn(F), and assume A is invertible. Prove there are infinitely many r ∈ F

for which A+ rB is also invertible.

Exercise 5.5. Let A be a square matrix. Prove that all of the following matrices

 A ∗

0 I

 ,

 I ∗

0 A

 ,

 A 0

∗ I

 ,

 I 0

∗ A


have determinant equal to detA. In each case ∗ is an arbitrary matrix that makes the given matrix a square

matrix.

Exercise 5.6. Find the determinant of an n×n matrix whose minor diagonal entries are a1, . . . , an and all

of whose entries below the minor diagonal are zero. In other words, find the determinant of the matrix:
∗ ∗ · · · a1

∗ · · · a2 0
... . .

. ...

an 0 · · · 0

 .

Exercise 5.7. Let Dn be the determinant of the n × n matrix–shown below–whose main diagonal entries

are all 1’s, the entries immediately above the main diagonal (if any exists) are all −1’s and the entries

immediately below the main diagonal (if any exists) are all 1’s, and whose all other entries (if any exists)

are all 0’s. 

1 −1 0 0 · · · 0 0 0 0

1 1 −1 0 · · · 0 0 0 0

0 1 1 −1 · · · 0 0 0 0

0 0 1 1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 −1 0 0

0 0 0 0 · · · 1 1 −1 0

0 0 0 0 · · · 0 1 1 −1

0 0 0 0 · · · 0 0 1 1


(a) Evaluate D1, D2, D3, D4 and D5.

(b) Conjecture a recursion for Dn.
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(c) Prove your claim in part (b). (Hint: Expand along the first column.)

Exercise 5.8. Let Dn be the determinant of the n×n matrix–shown below–whose main diagonal entries are

all 3’s, the entries immediately above the main diagonal (if any exists) are all 2’s and the entries immediately

below the main diagonal (if any exists) are all 1’s, and whose all other entries (if any exists) are all 0’s.

3 2 0 0 · · · 0 0 0 0

1 3 2 0 · · · 0 0 0 0

0 1 3 2 · · · 0 0 0 0

0 0 1 3 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 3 2 0 0

0 0 0 0 · · · 1 3 2 0

0 0 0 0 · · · 0 1 3 2

0 0 0 0 · · · 0 0 1 3


(a) Evaluate D1, D2, D3 and D4.

(b) Conjecture a formula for Dn, for every n.

(c) Prove your claim in part (b) using induction.

For the next exercise you will need the following familiar theorem:

Theorem 5.9. Suppose p(t) = A0+A1t+· · ·+Ant
n is a polynomial with complex coefficients A0, A1, . . . , An.

Suppose p(t) has n distinct roots r1, . . . , rn ∈ C. Then

p(t) = An(t− r1) · · · (t− rn).

Exercise 5.9 (Vandermonde Determinant). In this exercise you will prove the Vandermonde Determinant

using induction:

det


1 c0 c20 · · · cn0

1 c1 c21 · · · cn1
...

...
... · · ·

...

1 cn c2n · · · cnn

 =
∏

0≤j<k≤n

(ck − cj) (∗)

(a) Prove (∗) for n = 1.

(b) Prove (∗) holds if cj = ck for some j ̸= k. For the rest of the problem assume cj’s are distinct.

(c) Instead of cn in the last row use a variable t. Using cofactor expansion along the last row show that this

determinant can be written as A0+A1t+ · · ·+Ant
n, where Aj’s are constants depending on c0, . . . , cn−1.

(d) Prove that the polynomial p(t) = A0 +A1t+ · · ·+Ant
n has n roots t = c0, c1, . . . , cn−1. Use this to show

p(t) = An(t− c0) · · · (t− cn−1). (Hint: Use Theorem 5.9.)
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(e) Assuming (∗) is true for n − 1, find An. Use that to obtain a proof of the Vandermonde determinant

using induction.

Exercise 5.10. Is there a subspace of M2(R) of dimension larger than 1 whose only noninvertible matrix

is the zero matrix? How about M3(R)? How about Mn(R) for other positive integers n? Discuss this for

Mn(C) and a positive integer n.

Exercise 5.11. Prove that if A,B are square matrices of the same size and that AB = cI for some nonzero

scalar c, then BA = cI.

Exercise 5.12. Suppose A,B ∈Mn(F). Prove det(A2 + 2AB +B2) = (det(A+B))2.

Exercise 5.13. Determine if each statement is true or false.

(a) det(A+BC) = det(A+ CB) for every A,B,C ∈Mn(F) and all n.

(b) det(ABT ) = det(ATB) for every A,B ∈Mn(F) and all n.

(c) det(AB) = det(ATB) for every A,B ∈Mn(F) and all n.

Exercise 5.14. Prove that for every A,B,C ∈Mn(F) we have

det

 A B

0 C

 = (detA)(detC), and det

 0 A

−B C

 = (detA)(detB).

Definition 5.5. A square matrix P is called a permutation matrix iff it is obtained by applying row inter-

change operations to the identity matrix. In other words, a permutation matrix is a matrix with precisely

one entry of 1 in every row and all other entries 0.

Exercise 5.15. Let P be an n× n permutation matrix.

(a) Describe the inverse of P .

(b) Find the number of n× n permutation matrices.

(c) Prove that PN = I for some positive integer N .

(d) Suppose rows of P , in order from top to bottom, are eσ(1), . . . , eσ(n). Describe PA for a matrix A ∈

Mn(F).

(e) What are columns of P , the permutation matrix provided in part (c)? Use that to describe AP for a

matrix A ∈Mn(F).

Exercise 5.16. Suppose A,B ∈ Mn(R) are matrices that are similar in Mn(C). Is it true that A and B

must be similar as matrices of Mn(R)?

Exercise 5.17. Prove that for every square matrix A, we have detA = detA.

Exercise 5.18. Let A ∈Mn(F) be an invertible matrix. Prove the following:
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(a) detA = 1 if and only if A = E1 · · ·Ek for some row replacement elementary matrices E1, . . . , Ek.

(b) detA = −1 if and only if A = E1 · · ·EkEk+1 for some row replacement elementary matrices E1, . . . , Ek

and a row interchange elementary matrix Ek+1.

(c) A = E1 · · ·EkEk+1 for some row replacement elementary matrices E1, . . . , Ek and a row multiplication

elementary matrix Ek+1.

5.6 Challenge Problems

Exercise 5.19. Consider a square matrix A whose entries in the j-th row from left to right form an arithmetic

sequence with common difference dj and first term xj. Find detA in terms of xj’s and dj’s.

Exercise 5.20. Find the determinant of the n × n matrix whose entries from left to right and from top to

bottom are cos 1, cos 2, . . . , cos(n2), where all angles are measured in radians.

Exercise 5.21. Suppose A,B ∈Mn(R) satisfy AB = BA. Prove that det(A2 +B2) ≥ 0.
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6.1 Eigenvalues and Eigenvectors

Definition 6.1. Consider a linear transformation L : V → V . We say a scalar λ ∈ F is an eigenvalue (or

e-value, for short) of L iff L(v) = λv for some nonzero vector v ∈ V . This vector v is called an eigenvector

(or e-vector, for short) and the pair (λ,v) is called an eigenpair (or e-pair, for short) of L. For a matrix

A ∈ Mn(F), we define the same notions, replacing L(v) by Av. The set of all eigenvalues of a matrix A

(resp. a linear transformation L) is called the spectrum and is denoted by σ(A) (resp. σ(L)).

Theorem 6.1. Let L : V → V be a linear transformation, and A be a basis for V . A scalar λ ∈ F and a

nonzero vector v ∈ V form an eigenpair (λ,v) for L if and only if v ∈ Ker (T −λIV ). Similarly, for a matrix

A ∈Mn(F), a scalar λ ∈ F and a nonzero vector v ∈ Fn, the pair (λ,v) is an eigenpair for A if and only if

v ∈ Ker (A− λI).

Theorem 6.2. Let T : V → V be a linear transformation of a finite dimensional vector space V , and A be

an ordered basis for V . A scalar λ ∈ F is an eigenvalue of T if and only if det([T ]AA − λI) = 0.

Theorem 6.3. If A and B are similar matrices, then the polynomials det(A− tI) and det(B − tI) are the

same.

Since the matrices [T ]AA and [T ]BB of a linear transformation T : V → V in two ordered bases A and B are

similar, the polynomials det([T ]AA − tI) and det([T ]BB − tI) are the same. This brings us to the following

definition.

Definition 6.2. Let T : V → V be a linear transformation of a finite dimensional vector space V and A

be an ordered basis for V . The polynomial det([T ]AA − tI) is called the characteristic polynomial of T .

Similarly, for a square matrix A, the polynomial det(A− tI) is called the characteristic polynomial of A.

Remark 6.1. Suppose V is a finite dimensional vector space with an ordered basis A. Let T : V → V

be a linear transformation. Since [·]A is an isomorphism (See Theorem 4.5), the equality T (v) = λv is

equivalent to [T (v)]A = [λv]A = λ[v]A. By Theorem 4.6 this is equivalent to [T ]AA[v]A = λ[v]A. So, finding

eigenpairs of T is equivalent to finding eigenpairs of its matrix [T ]AA. Because of this, we will mainly focus

on understanding eigenpairs of square matrices.

63
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Example 6.1. Consider the matrix A =

 0 −1

1 0

. Find all eigenvalues of A, once as a matrix in M2(R)

and once as a matrix in M2(C).

Definition 6.3. We say a root c of a polynomial p(t) has multiplicity m iff p(t) = (t− c)mq(t), where m

is a positive integer, and q(t) is a polynomial with q(c) ̸= 0.

Definition 6.4. Let λ be an eigenvalue of a matrix A, and let p(t) = det(A − tI) be the characteristic

polynomial of A. The multiplicity of λ as a root of p(t) is called the algebraic multiplicity of this

eigenvalue λ. The dimension of Ker (A− λI) is called the geometric multiplicity of λ.

Theorem 6.4. For every eigenvalue λ of a matrix A, the geometric multiplicity of λ does not exceed its

algebraic multiplicity.

Example 6.2. Consider the matrix

A =


−2 1 7

−4 2 8

0 0 6


Find the spectrum of A, the algebraic and geometric multiplicity of each eigenvalue of A.

Theorem 6.5. Let λ1, . . . , λn be all eigenvalues of a matrix A ∈Mn(C). Then,

(a) trA = λ1 + · · ·+ λn.

(b) detA = λ1 · · ·λn.

6.2 Examples

Example 6.3. Suppose (λ,v) is an eigenpair for a square matrix A with real entries. Prove that (λ,v) is

also an eigenpair for A.

Solution. By assumption Av = λv. Note that since for every two complex numbers z, w we have zw = z w

and z + w = z + w, we will obtain the following:

Av = λv⇒ Av = λv⇒ Av = λv.

Above we use the fact that all entries of A are real and thus A = A. Since v is nonzero, v is also nonzero

and thus (λ,v) is an eigenpair of A, as desired.

Example 6.4. Prove that the set of all eigenvectors of a linear transformation T : V → V corresponding to

a fixed eigenvalue λ along with the zero vector, is a subspace of V . Prove a similar result for a square matrix.

Solution. Let W be the set of all eigenvectors of T corresponding to λ along with the zero vector. We see

that x ∈ W if and only if T (x) = λx or x = 0, however T (0) = 0 = λ0. Therefore, x ∈ W if and only
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if T (x) = λx, which is equivalent to (T − λI)(x) = 0, which is equivalent to x ∈ Ker (T − λI). Therefore,

W = Ker (T − λI) and hence it is a subspace of V . A similar argument works for a square matrix.

Example 6.5. Find all scalars c for which λ = 1 is an eigenvalue of the matrix

A =


1 c −1

c 1 0

2 3 −1


Solution. λ = 1 is an eigenvalue of A if and only if det(A− I) = 0. This is equivalent to

det


1− 1 c −1

c 1− 1 0

2 3 −1− 1

 = 0

Expanding along the second row we obtain

−cdet

 c −1

3 −2

 = 0⇒ c(−2c+ 3) = 0.

Therefore, the answer is c = 0, 3/2.

Example 6.6. Show that the characteristic polynomial of an n × n matrix has degree n and its leading

coefficient is (−1)n.

Solution. Suppose A = (ajk) ∈Mn(F). Set A− zI = (bjk). We will use Leibniz formula for determinant.

det(A− zI) = det(bjk) =
∑
σ∈Sn

±b1σ(1)b2σ(2) · · · bnσ(n).

We know bjk = ajk iff j ̸= k, which means those terms that σ(j) ̸= j for some j yield a polynomial of degree

less than n. The only term in the above sum with σ(j) = j for all j is

b11b22 · · · bnn(a11 − z)(a22 − z) · · · (ann − z).

Distributing the above product, we note that all terms have degree less than n except the term obtained by

mutiplying −z with itself n times. Therefore, the term with the highest degree in the polynomial det(A−zI)

is (−z)n = (−1)nzn, as desired.

6.3 Exercises

Exercise 6.1. Determine if each statement is true or false.

(a) The rank of a square matrix A is equal to the number of nonzero eigenvalues of A, counting multiplicity.
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(b) A square matrix A is invertible if and only if 0 ̸∈ σ(A).

(c) Every matrix in Mn(R) has n real eigenvalues counting (algebraic) multiplicities.

(d) Similar matrices have the same eigenvalues.

(e) For every A,B ∈Mn(F), if λ ∈ σ(A), then λ ∈ σ(AB).

Exercise 6.2. For each of the following matrices:

1. Find σ(A).

2. Find the geometric and algebraic multiplicity of each eigenvalue.

 1 7

−1 4

 ,


1 2 1

1 0 2

1 1 0

 .

Exercise 6.3. Find all eigenvalues of the n× n matrix all of whose entries are 1.

Exercise 6.4. Prove that the eigenvalues of an upper triangular matrix is its diagonal entries.

Definition 6.5. A matrix A ∈Mn(F) is called nilpotent iff Ak = 0 for some positive integer k.

Exercise 6.5. Prove that if A is a nilpotent matrix, then σ(A) = {0}.

Exercise 6.6. Suppose (λ,v) is an eigenpair for a linear transformation T : V → V , and A,B are ordered

bases for V . Prove that det([T ]BA − λ[IV ]BA) = 0. By an example show that the matrix [T ]BA − λI may be

invertible. (Compare this to Theorem 6.2.)

Exercise 6.7. Suppose A ∈Mn(R), where n is an odd integer. Prove that A has a real eigenvalue.

Exercise 6.8. For any list of complex numbers λ1, . . . , λn ∈ C create an n×n matrix whose list of eigenvalues

is the given list λ1, . . . , λn.

Exercise 6.9. Suppose A,B are m× n and n×m matrices, respectively, where n ≤ m. Let p(t), q(t) be the

characteristic polynomials of AB and BA, respectively. Prove that p(t) = tm−nq(t).

Exercise 6.10. Prove that if A is a nilpotent matrix, the matrix I +A is invertible.

6.4 Challenge Problems

Exercise 6.11. Prove that if for a square matrix A we know tr (Ak) = 0 for all positive integers k, then A

is nilpotent.
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Exercise 6.12. Let a1 = a, a2 = a+ d, . . . , an2 = a+ (n2 − 1)d be terms of an arithmetic sequence of length

n2. Place these numbers in entries of an n× n matrix A from top left to bottom right as follows.

A =



a1 a2 · · · an−1 an

an+1 an+2 · · · a2n−1 a2n
...

...
...

...

an2−2n+1 an2−2n+2 · · · an2−n−1 an2−n

an2−n+1 an2−n+2 · · · an2−1 an2


Find the characteristic polynomial of A. Use that to find all eigenvalues of A.
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Week 7

7.1 Diagonalization

Matrix operations for diagonal matrices is very easy. For example:
a1 0

. . .

0 an




b1 0
. . .

0 bn

 =


a1b1 0

. . .

0 anbn


Definition 7.1. A square matrix A is called diagonalizable iff A = SDS−1 for a diagonal matrix D and

an invertible matrix S. The representation A = SDS−1, where D is diagonal and S is invertible is called a

diagonalization of A.

Theorem 7.1. A matrix A ∈ Mn(F) is diagonalizable iff there is a basis B of Fn for which all elements of

B are eigenvectors of A. Furthermore, if B = {b1, . . . ,bn} is a basis for Fn, where (λj ,bj) is an eigenpair

of A for j = 1, . . . , n, then A = SDS−1, where D = diag(λ1, . . . , λn), and S = (b1 · · ·bn). Conversely, if

A = SDS−1 is diagonalization of A, then each diagonal entry of D is an eigenvalue of A and its corresponding

column in S is a corresponding eigenvector of A.

Example 7.1. Consider the matrices

A =

 1 −1

1 1

 , and B =

 1 1

0 1

 .

Prove that A is not diagonalizable over R, but it is diagonalizable over C. Show that B is not diagonalizable.

For every diagonal matrixD = diag(a1, . . . , an) and every positive integerm, we haveDm = diag(am1 , . . . , amn ).

If we define eD using the Taylor series for ex we get

eD =

∞∑
m=0

Dm

m!
=

∞∑
m=0

diag

(
λm
1

m!
, . . . ,

λm
n

m!

)
= diag

( ∞∑
m=0

λm
1

m!
, . . . ,

∞∑
m=0

λm
n

m!

)
= diag

(
eλ1 , . . . , eλn

)
.

Given A = SDS−1, we have Am = SDmS−1, so if A is diagonalizable, it is easy to evaluate its powers. We

could also define eA for every diagonalizable matrix A using Taylor series of ex as:

∞∑
m=0

Am

m!
=

∞∑
m=0

SDmS−1

m!
= S

( ∞∑
m=0

Dm

m!

)
S−1 = SeDS−1 = Sdiag

(
eλ1 , . . . , eλn

)
S−1.

69
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Theorem 7.2. Suppose v1, . . . ,vr are eigenvectors associated to distinct eigenvalues of a matrix A. Then

v1, . . . ,vr are linearly independent.

Corollary 7.1. If A ∈Mn(F) has n distinct eigenvalues, then A is diagonalizable.

Definition 7.2. Suppose V1, . . . , Vr are subspaces of a vector space V .

(a) We say V1, . . . , Vr form a basis for V iff every vector v ∈ V has a unique representation v =
r∑

j=1

vj with

vj ∈ Vj for j = 1, . . . , r.

(b) We say V1, . . . , Vr are linearly independent iff the only solution to 0 =
r∑

j=1

vj with vj ∈ Vj for j = 1, . . . , r

is vj = 0 for j = 1, . . . , r.

Corollary 7.2. Suppose λ1, . . . , λr are distinct eigenvalues of a matrix A ∈ Mn(F). Then subspaces Ej =

Ker (A− λjI) with j = 1, . . . , r are linearly independent.

Theorem 7.3. Suppose V1, . . . , Vr are linearly independent subspaces of a vector space V . Let Bj be a basis

for Vj for j = 1, . . . , r. Then
k⋃

j=1

Bj is linearly independent. Furthermore, if V1, . . . , Vr are a basis for V ,

then
k⋃

j=1

Bj is a basis for V .

Theorem 7.4. A matrix A ∈ Mn(F) is diagonalizable if and only if the characteristic polynomial of A has

n (not necessarily distinct) roots and for every eigenvalue λ, the algebraic multiplicity of λ is the same as its

geometric multiplicity.

Corollary 7.3. If a matrix A ∈Mn(R) has n real eigenvalues and it can be diagonalized over C, then it can

be diagonalized over R.

7.2 Inner Product Spaces

To better understand the geometry of vector spaces, we would like to define the notion of “angle” between

vectors.

Example 7.2. Consider the vectors u = (x1, y1) and v = (x2, y2) in R2. Let θ be the angle between u and

v. Using the law of cosines, prove that

x1x2 + y1y2 =
√
x2
1 + y21

√
x2
2 + y22 cos θ.
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Definition 7.3. An inner product (or scalar product) on a vector space V is a function that assigns a

scalar ⟨x,y⟩ to every pair of vectors x,y ∈ V that satisfies the following for all x,y, z ∈ V and all a, b ∈ F:

(a) ⟨x,x⟩ > 0 if x ̸= 0 (Positivity),

(b) ⟨x,y⟩ = ⟨y,x⟩ (Conjugate Symmetry),

(c) ⟨ax+ by, z⟩ = a⟨x, z⟩+ b⟨y, z⟩ (Linearity).

Any vector space equipped with an inner product is called an inner product vector space or simply an

inner product space.

Example 7.3. The following are examples of inner product spaces:

(a) ⟨(x1, . . . , xn), (y1, . . . , yn)⟩ =
n∑

j=1

xjyj over Fn.

(b) ⟨f, g⟩ =
∫ 1

0

f(t)g(t) dt for every f, g ∈ Pn.

(c) ⟨A,B⟩ = tr (B∗A) for every A,B ∈Mm×n(F).

(d) ⟨f, g⟩ =
∫ b

a

f(x)g(x) dx for every f, g ∈ C[a, b], where a < b are real numbers.

Note that by conjugate symmetry and linearity we can prove conjugate linearity with respect to the second

vector:

⟨x, ay + bz⟩ = a⟨x.y⟩+ b⟨x, z⟩.

Definition 7.4. In an inner product space, the length of a vector v, denoted by ||v||, is defined by:

||v|| =
√
⟨v,v⟩.

Definition 7.5. We say vectors v and w in an inner product space V are orthogonal, written as v ⊥ w,

iff ⟨v,w⟩ = 0. We say vectors v1, . . . ,vn ∈ V are orthogonal iff each pair of them are orthogonal, i.e.

⟨vj ,vk⟩ = 0 for every j ̸= k. If in addition ||vj || = 1 for every j, then we say v1, . . . ,vn are orthonormal.

Example 7.4. Prove that 1 and t are orthogonal vectors in P2 under the inner product ⟨f, g⟩ =
∫ 1

−1

f(t)g(t) dt.

Solution. ⟨1, t⟩ =
∫ 1

−1

t dt =
t2

2

]1
−1

= 0. Therefore, 1 and t are orthogonal.

Theorem 7.5 (Generalized Pythagorean Theorem). Suppose v1, . . . ,vn are orthogonal vectors in an inner

product space. Then

||v1 + · · ·+ vn||2 = ||v1||2 + · · ·+ ||vn||2.

Corollary 7.4. Any set of nonzero orthogonal vectors are linearly independent.

Theorem 7.6. Given two vectors v,w in an inner product space V with w ̸= 0, the vector
⟨v,w⟩
||w||2

w is the

unique vector x that satisfies both of the following
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1. x is a scalar multiple of w, and

2. v − x ⊥ w.

Definition 7.6. Given two vectors v,w in an inner product space V with w ̸= 0, the vector
⟨v,w⟩
||w||2

w is

called the (orthogonal) projection of v onto w and is denoted by Pwv.

Theorem 7.7 (Cauchy-Schwarz Inequality). For every two vectors v,w in an inner product space we have

|⟨v,w⟩| ≤ ||v|| ||w||.

Proof. First, assume w ̸= 0. Set x = Pwv. Since v − x ⊥ w and x is a scalar multiple of w, we have

v − x ⊥ x.

By the Pythagorean Theorem, ||v||2 = ||v − x||2 + ||x||2 ≥ ||x||2. Note that for every scalar c we have

||cw||2 = ⟨cw, cw⟩ = cc⟨w,w⟩ = |c|2||w||2. Therefore, we obtain the following:

||v||2 ≥ ||x||2 =
|⟨v,w⟩|2

|⟨w,w⟩|2
||w||2 =

|⟨v,w⟩|2

||w||4
||w||2 =

|⟨v,w⟩|2

||w||2
⇒ ||v|| ≥ |⟨v,w⟩|

||w||
⇒ ||v|| ||w|| ≥ |⟨v,w⟩|.

The case where w = 0 is left as an exercise.

Definition 7.7. The angle between two vectors v,w in a real inner product space is given by

θ = cos−1

(
⟨v,w⟩
||v|| ||w||

)

7.3 Normed Spaces

Definition 7.8. Let V be a vector space. A function, denoted by || · ||, that assigns to every vector v ∈ V

a real number ||v|| satisfying the following properties is called a norm on V .

(a) ||v|| > 0 for every nonzero v ∈ V . (Positivity)

(b) ||c v|| = |c| ||v|| for every v ∈ V and every c ∈ F. (Homogeneity)

(c) ||v +w|| ≤ ||v||+ ||w|| for every v,w ∈ V . (Triangle Inequality)
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Any vector space equipped with a norm is called a normed space or a normed vector space.

Theorem 7.8. Let V be an inner product space. Then, ||v|| defined as
√
⟨v,v⟩ is a norm on V .

Theorem 7.9. A norm on a vector space V is produced from an inner product if and only if the following

identity (called the parallelogram identity) holds for every v,w ∈ V :

||v +w||2 + ||v −w||2 = 2||v||2 + 2||w||2.

7.4 Examples

Example 7.5. Diagonalize each matrix or show the matrix is not diagonalizable.

A =


−1 −2 2

−2 −1 2

−2 −2 3

 , B =


−2 −4 5

−2 0 1

−3 −3 5

 , C =

 2 1

1 2


Solution. det(A − λI) = −λ3 + λ2 + λ − 1. We guess λ = 1 as a root. After performing long division we

can factor this polynomial as (λ− 1)(−λ2 + 1). Therefore, the eigenvalues of A are 1, 1,−1.

For λ = 1 we can find the eigenvectors by solving the following:


−2 −2 2

−2 −2 2

−2 −2 2




x

y

z

 = 0⇒ −2x− 2y + 2z = 0⇒ z = x+ y.

This yields, two linearly independent eigenvectors for λ = 1: (1 0 1)T and (0 1 1)T .

For λ = −1 we can find the eigenvectors by solving the following:


0 −2 2

−2 0 2

−2 −2 4




x

y

z

 = 0⇒


−2y + 2z = 0

−2x+ 2z = 0

−2x− 2y + 4z = 0

⇒ z = x = y.

This yields an eigenvector (1 1 1)T for λ = −1. Therefore, A = PDP−1, where D = diag(1, 1,−1) and

P =


1 0 1

0 1 1

1 1 1

 .

det(B − λI) = −λ3 + 3λ2 − 4. By inspection a root of this polynomial can be obtained as λ = −1. After

performing long division we obtain −λ3+3λ2−4 = (λ+1)(−λ2+4λ−4) = −(λ+1)(λ−2)2. The eigenvalues

are λ = −1, 2, 2. Following the same process as before we can find an eigenvector for λ = −1. For λ = 2 we

need to solve the following:
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−4 −4 5

−2 −2 1

−3 −3 3




x

y

z

 = 0⇒


−4x− 4y + 5z = 0

−2x− 2y + z = 0

−3x− 3y + 3z = 0

After solving we obtain z = 0 and y = −x. Therefore, the eigenspace corresponding to λ = 2 is one-

dimensional. This means we cannot find three linearly independent eigenvectors, which implies B is not

diagonalizable.

det(C−λI) = λ2−4λ+3. The eigenvalues, thus, are λ = 1, 3, which are distinct and thus C is diagonalizable.

After finding the eigenvectors we will get the following diagonalization of C:

C =

 −1 1

1 1

 1 0

0 3

 −1 1

1 1

−1

.

Example 7.6. Suppose (λ,v) is an eigenpair for a square matrix A with real entries. Prove that (λ,v) is

also an eigenpair for A.

Solution. By assumption Av = λv. Note that since for every two complex numbers z, w we have zw = z w

and z + w = z + w, we will obtain the following:

Av = λv⇒ Av = λv⇒ Av = λv.

Above we use the fact that all entries of A are real and thus A = A. Since v is nonzero, v is also nonzero

and thus (λ,v) is an eigenpair of A, as desired.

Example 7.7. Prove that a 2×2 matrix with complex entries is not diagonalizable if and only if it is similar

to a matrix of the form  a b

0 a

 ,

where a, b ∈ C and b ̸= 0.

Solution. (⇒) Assume A is a 2× 2 matrix that is not diagonalizable. By Corollary 7.1 the two eigenvalues

of A must be identical. Assume a is the only eigenvalue of A and let v be an eigenvector corresponding to a.

Let w ∈ C2 be a vector that is not a scalar multiple of v. Since Av = av, the matrix A in the basis (v,w)

is of the form  a b

0 c

 .

Since this matrix is similar to A, its only eigenvalue must be a. Therefore, c = a. On the other hand b

cannot be zero, for otherwise A would be diagnozalizable.
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(⇐) Assume A is similar to a matrix of the form a b

0 a

 (∗)

where a, b ∈ C and b ̸= 0. On the contrary assume A is diagonalizable. Since the eigenvalues of A are both

a, for some invertible matrix S we must have:

A = S

 a 0

0 a

S−1 = SaIS−1 = aI.

Therefore, aI is similar to the matrix (∗), and thus,

aI = P

 a b

0 a

P−1 ⇒ P−1aIP =

 a b

0 a

⇒ aI =

 a b

0 a

 .

This implies b = 0, which is a contradiction. Therefore, A is not diagonalizable.

Example 7.8. Find all scalars c for which the matrix A given below is not diagonalizable.

A =

 1 c

2 −1

 .

Solution. The characteristic polynomial is (1− t)(−1− t)− 2c = t2 − 1− 2c. The eigenvalues of A are then

t = ±
√
1 + 2c. If the eigenvalues are distinct, then by Corollary 7.1 the matrix A is diagonalizable. Suppose

the two eigenvalues are identical. This means 1+2c = 0, which implies c = −1/2. In this case the eigenvalues

are both zero. If A were diagonalizable, then A = P0P−1 = 0, which is a contradiction, because A is not

the zero matrix. Therefore, the answer is c = −1/2.

Example 7.9. Determine which of the following matrices are similar. 2 −2

1 2

 ,

 4 1

−1 0

 ,

 2 0

1 3

 ,

 3 2

1 1

 ,

 2 1

3 2


Solution. Let’s call these matrices A,B,C,D,E in order. We note that

detA = detC = 6, detB = detD = detE = 1.

Therefore, A and C may be similar and B,D,E may be similar. We notice trA = 4 and trC = 5 are not the

same. Therefore, A and C are also not similar. Thus, A and C are not similar to any of the above matrices.

Note that trB = trD = trE = 4, so these three may be similar. The characteristic equations of B,D and E

are all z2 − 4z + 6 = 0 which has 2 distinct roots r, s. Thus, all matrices B,D,E are similar to the diagonal

matrix diag(r, s). This means B,D,E are all similar.

Example 7.10. Suppose a diagonalizable matrix A is also nilpotent. Prove that A = 0.
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Solution. Since A is diagonalizable A = PDP−1 for some diagonal matrix D = diag(c1, . . . , cn). By

assumption, Ak = 0 for some positive integer k. Therefore,

(PDP−1)k = 0⇒ PDkP−1 = 0⇒ Dk = 0.

This implies

diag(ck1 , . . . , c
k
n) = 0⇒ ck1 = · · · = ckn = 0⇒ c1 = · · · = cn = 0⇒ D = 0.

Therefore, A = P0P−1 = 0, as desired.

Example 7.11. Prove that if || · || is a norm relative to an inner product in a vector space V and v,w ∈ V ,

then

||v +w||2 + ||v −w||2 = 2(||v||2 + ||w||2).

Solution. By definition we have ||v ± w||2 = ⟨v ± w,v ± w⟩. By linearity and conjugate symmetry this

simplifies to

⟨v ±w,v ±w⟩ = ⟨v,v⟩ ± ⟨v,w⟩ ± ⟨w,v⟩+ ⟨w,w⟩.

Summing the two together and using the fact that ⟨v,v⟩ = ||v||2 and ⟨w,w⟩ = ||w||2 we obtain the result.

Example 7.12. Prove that if || · || is a norm on a vector space V , then ||0|| = 0.

Solution. By homogeneity ||00|| = |0| ||0|| = 0||0|| = 0. Since 00 = 0, we obtain ||0|| = 0, as desired.

Example 7.13. Prove that if v1, . . . ,vn are vectors in normed space V , then

||v1 + · · ·+ vn|| ≤ ||v1||+ · · ·+ ||vn||.

Solution. We will prove this by induction on n.

Basis step: For n = 1 both sides of the inequality are ||v1||. This proves the basis step.

Inductive Step: Let v1, . . . ,vn+1 be vectors in V . Suppose

||v1 + · · ·+ vn|| ≤ ||v1||+ · · ·+ ||vn|| (∗)

By the Triangle Inequality we obtain:

||v1 + · · ·+ vn+1|| ≤ ||v1 + · · ·+ vn||+ ||vn+1||.

Combining this with (∗) completes the inductive step.

Example 7.14. Suppose c1, . . . , cn ∈ F are constants. Define a function ⟨, ⟩ by

⟨(x1, . . . , xn), (y1, . . . , yn)⟩ =
n∑

j=1

cjxjyj , for all x1, . . . , xn, y1, . . . , yn ∈ F.
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(a) Show ⟨, ⟩ satisfies linearity with respect to the first vector.

(b) Prove ⟨, ⟩ satisfies conjugate symmetry if and only if c1, . . . , cn are all real.

(c) Show that ⟨, ⟩ is an inner product if and only if c1, . . . , cn are all positive real numbers.

Solution. Let u = (x1, . . . , xn),v = (y1, . . . , yn),w = (z1, . . . , zn) be in Fn and α, β ∈ F.

(a) We have

⟨αu+ βv,w⟩ =
n∑

j=1

cj(αxj + βyj)zj

= α
n∑

j=1

cjxjzj + β
n∑

j=1

cjyjzj

= α⟨u,w⟩+ β⟨v,w⟩

This proves the linearity of ⟨, ⟩ with respect to the first vector.

(b) By definition, we have

⟨u,v⟩ =
n∑

j=1

cjxjyj

=
n∑

j=1

cj , xj , yj

=
n∑

j=1

cjyjxj

⟨v,u⟩ =
n∑

j=1

cjyjxj

(∗)

(⇒) Assume ⟨u,v⟩ = ⟨v,u⟩ for all u,v ∈ Fn. Setting u = v = ej in (∗), we conclude cj = cj and hence

cj ∈ R for j = 1, . . . , n.

(⇐) Assume cj ’s are all real. This means cj = cj . Hence, (∗) shows ⟨u,v⟩ = ⟨v,u⟩ for all u,v ∈ Fn. This

completes the proof.

(c) (⇒) Assume ⟨, ⟩ defined an inner product. By the Positivity axiom of an inner product, we must have

⟨ej , ej⟩ is a positive real number. By definition, we obtain cj > 0 for j = 1, . . . , n, as desired.

(⇐) Suppose c1, . . . , cn are all positive. By definition, ⟨u,u⟩ =
n∑

j=1

cjxjxj =
n∑

j=1

cj |xj |2 ≥ 0, since |xj |2 ≥ 0

for all j and cj > 0. Each term cj |xj |2 is positive unless xj = 0. Therefore, if
n∑

j=1

cj |xj |2 = 0, then every xj

is zero. This proves the Positivity. We have already shown ⟨, ⟩ is linear with respect to the first vector and

it satisfies conjugate symmetry. Therefore, ⟨, ⟩ is an inner product.

Example 7.15. Let B = {v1,v2, . . . ,vn} be a basis for a vector space V . For every two vectors

v = a1v1 + a2v2 + · · ·+ anvn, and w = b1v1 + b2v2 + · · ·+ bnvn in V,

define ⟨v,w⟩ = a1b1 + a2b2 + · · ·+ anbn. Prove that this defines an inner product on V .
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Solution. ⟨v,w⟩ = a1b1 + · · ·+ anbn = b1a1 + · · ·+ bnan = ⟨w,v⟩, which proves conjugate symmetry.

Suppose u = c1v1 + · · ·+ cnvn, and a, b ∈ F.

⟨av + bw,u⟩ = ⟨
n∑

j=1

(aaj + bbj)vj ,

n∑
j=1

cjvj⟩ =
n∑

j=1

(aaj + bbj)cj = a

n∑
j=1

ajcj + b

n∑
j=1

bjcj = a⟨v,u⟩+ b⟨w,u⟩.

This proves linearity.

Suppose v ̸= 0. Therefore, at least one aj is nonzero, and thus ⟨v,v⟩ = |a1|2 + · · ·+ |an|2 > 0, which proves

the Positivity.

Therefore, ⟨, ⟩ is an inner product.

Example 7.16. Find the angle between 1 and t as vectors in P1(R) under the inner product ⟨f, g⟩ =∫ 1

0

f(t)g(t) dt.

Solution. We see that:

⟨1, t⟩ =
∫ 1

0

t dt =
1

2

⟨1, 1⟩ =
∫ 1

0

1 dt = 1

⟨t, t⟩ =
∫ 1

0

t2 dt = 1/3

Therefore,
⟨1, t⟩
||1|| ||t||

=
1/2√
1/3

=

√
3

2
. Thus, the angle is

π

6
.

Example 7.17. Prove that if u,v are vectors in an inner product space, then

||u+ v||2 = ||u||2 + ||v||2 + 2Re (⟨u,v⟩).

Here, Re z is the real part of the complex number z.

Solution.

||u+ v||2 = ⟨u+ v,u+ v⟩

= ⟨u,u⟩+ ⟨u,v⟩+ ⟨v,u⟩+ ⟨v,v⟩

= ||u||2 + ⟨u,v⟩+ ⟨u,v⟩+ ||v||2

= ||u||2 + ||v||2 + 2Re (⟨u,v⟩)

The last equality is obtained from the fact that for every complex number z = a+ bi, with a, b ∈ R we have

z + z = a+ bi+ a− bi = 2a = 2Re z.
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7.5 Exercises

Exercise 7.1. Consider the matrix A =

 1 2

4 −1

.

(a) Diagonalize A, i.e. find an invertible matrix S and a diagonal matrix D for which A = SDS−1.

(b) Use part (a) to evaluate An for every positive integer n. You can leave your answer as a product of three

matrices, but evaluate any possible inverses in your product.

Exercise 7.2. Prove that if a matrix A is diagonalizable so is its transpose.

Exercise 7.3. Suppose A = SDS−1 is a diagonalization of A and λ ∈ σ(A). Prove that columns of S that

are eigenvectors corresponding to λ form a basis for Ker (A− λI).

Exercise 7.4. Suppose V is a 1-dimensional normed space with basis {e}.

(a) Prove that there is a positive real constant α for which ||c e|| = α|c| for all c ∈ F.

(b) Prove that given a positive real constant α, the function given by ||c e|| = α|c| defines a norm on V .

(c) Deduce that every norm of V is obtained from an inner product.

Exercise 7.5 (Equality Case of the Cauchy-Schwarz Inequality). Prove that if in an inner product space for

two vectors v and w we have |⟨v,w⟩| = ||v|| ||w||, then v = cw for some c ∈ F or w = 0.

Hint: Follow the proof of the Cauchy-Schwarz Inequality.

Exercise 7.6 (Equality Case of the Triangle Inequality). Suppose || · || is a norm obtained from an inner

product of a vector space V . Prove that ||v+w|| = ||v||+ ||w|| for two vector v,w ∈ V , if and only if v = cw

for some positive real number c or w = 0

Exercise 7.7. Suppose v1, . . . ,vn is a spanning set in an inner product space V and x ∈ V . Prove that if

x ⊥ vj for j = 1, . . . , n, then x = 0.

Exercise 7.8. Suppose A ∈ Mm×n(R). Show KerA is the set of all vectors that are orthogonal to all rows

of A under the usual dot product of Rn.

Exercise 7.9. Suppose n > 1 is an integer. Prove the following defines a norm on Cn that cannot be obtained

from an inner product:

||(z1, . . . , zn)|| = max(|z1|, . . . , |zn|).

Hint: To show this norm cannot be obtained from an inner product, show it does not satisfy the parallelogram

identity.

Exercise 7.10. Suppose T : V → W is an isomorphism. Assume V is an inner product space. Prove W

can be turned into an inner product space under the inner product defined by:

⟨x,y⟩ = ⟨T−1(x), T−1(y)⟩.
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Exercise 7.11. Suppose ⟨, ⟩1 and ⟨, ⟩2 are inner products for a vector space V . Let c be a positive scalar.

Prove the following define inner products on V :

(a) ⟨x,y⟩ = c⟨x,y⟩1.

(b) ⟨x,y⟩ = ⟨x,y⟩1 + ⟨x,y⟩2.

Exercise 7.12 (Reverse Triangle Inequlity). Prove in every normed space for every two vectors v,w:

||v −w|| ≥ | ||v|| − ||w|| |.

Exercise 7.13 (Polarization Identities). Assume x,y are vectors in an inner product space. Prove the

following:

(a) ⟨x,y⟩ = 1

4

(
||x+ y||2 − ||x− y||2

)
, if V is a real vector space.

(b) ⟨x,y⟩ = 1

4

∑
c=±1,±i

c ||x+ cy||2, if V is a complex vector space.

Exercise 7.14. Consider the matrix

A =

 2 1

3 4

 .

Prove there are precisely four distinct matrices B for which B2 = A.

Exercise 7.15. Suppose A ∈ Mn(C) has n distinct eigenvalues. Prove there are either precisely 2n−1 or

precisely 2n distinct matrices B ∈Mn(C) for which B2 = A.

Exercise 7.16. Prove vectors v1, . . . ,vn in an inner product space are linearly independent if and only if

the n× n matrix whose (j, k) entry, for all 1 ≤ j, k ≤ n, is ⟨vj ,vk⟩ is invertible.

Exercise 7.17. Suppose n > 1 is an integer. Prove the following defines a norm on Cn that cannot be

obtained from an inner product:

||(z1, . . . , zn)|| = |z1|+ · · ·+ |zn|.

Exercise 7.18. Consider the vector space M2(C) equipped with the inner product given by ⟨A,B⟩ = tr (B∗A).

Find the orthogonal projection of A =

 1 2

−i 0

 onto B =

 1 1

0 1

.



Week 8

8.1 Orthogonal Projections and Orthogonal Bases

Definition 8.1. We say a vector v is orthogonal to a subspace W of an inner product space V iff v ⊥ w,

for every w ∈W . We say two subspaces W1 and W2 of V are orthogonal iff w1 ⊥ w2 for every w1 ∈W1 and

every w2 ∈W2.

Theorem 8.1. Suppose W is a subspace of an inner product space V . Suppose w1, . . . ,wn form an orthogonal

basis for W . Then, for every v ∈ V , there is a unique vector w ∈ W for which v −w ⊥ W . Furthermore,

this vector w is given by

w =

n∑
j=1

⟨v,wj⟩
||wj ||2

wj .

We would like to call the vector w in the above theorem the orthogonal projection of v onto W . Before

we can do so, we need to prove such a vector w exists. In Theorem 7.6 we discussed the projection of a

vector v onto a vector w, i.e. Pwv. In order to prove the existence of the projection of a vector v onto an

arbitrary subspace W using Theorem 8.1, we need to prove W has an orthogonal basis. This is achieved in

the following theorem.

Theorem 8.2 (Gram-Schmidt Orthogonalization Process). Suppose v1, . . . ,vn form a basis for an inner

product space V . Define vectors w1,w2, . . . ,wn recursively as follows:

w1 = v1

w2 = v2 −
⟨v2,w1⟩
⟨w1,w1⟩

w1

w3 = v3 −
⟨v3,w1⟩
⟨w1,w1⟩

w1 −
⟨v3,w2⟩
⟨w2,w2⟩

w2

...

wn = vn −
⟨vn,w1⟩
⟨w1,w1⟩

w1 −
⟨vn,w2⟩
⟨w2,w2⟩

w2 − · · · −
⟨vn,wn−1⟩
⟨wn−1,wn−1⟩

wn−1

Then w1,w2, . . . ,wn form an orthogonal basis for V .

Definition 8.2. A basis of orthogonal vectors for an inner product space is called an orthogonal basis.

Similarly, a basis of orthonormal vectors for an inner product space is called an orthonormal basis.
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Corollary 8.1. Every finite dimensional inner product space has an orthonormal basis.

Corollary 8.2. Let W be a finite dimensional subspace of an inner product space V . Then, for every v ∈ V

there is a unique vector w ∈W for which v −w ⊥W.

Definition 8.3. The orthogonal projection of a vector v ∈ V onto a finite dimensional subspace W of

V , denoted by PW (v), is the unique vector w ∈W for which v −w ⊥W .

Theorem 8.3. Suppose W is a finite dimensional subspace of an inner product space V , then for every

v ∈ V , we have ||PW (v) − v|| ≤ ||x − v|| for every x ∈ W . Furthermore, equality occurs if and only if

x = PW (v).

Definition 8.4. The orthogonal complement of a subspace E of a vector space V , denoted by E⊥, is

the set consisting of all vectors v ∈ V for which v ⊥ E.

Theorem 8.4. Suppose E is a subspace of a finite dimensional inner product space V . Then,

(a) E⊥ is a subspace of V .

(b) dimE + dimE⊥ = dimV.

(c) (E⊥)⊥ = E.

Theorem 8.5. Let v1, . . . ,vn form an orthogonal basis for a vector space V , then every v ∈ V can be written

as

v =

n∑
j=1

⟨v,vj⟩
||vj ||2

vj .

8.2 Least Square Solution

We want to find the best solution x to the equation Ax = b. In other words, we would like to find x for which

||Ax − b|| is minimized. This means we are looking for u ∈ Col (A) that is closest to b. This is precisely

the projection of b onto Col (A). This means we need A∗(Ax−b) = 0. This gives us the normal equation

A∗Ax = A∗b.

Theorem 8.6. Ker (A∗A) = KerA.

Corollary 8.3. Let A ∈Mm×n(F). The matrix A∗A is invertible if and only if rankA = n.
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Example 8.1 (Line of best fit). Given a data set (x1.y1), (x2, y2), . . . , (xn, yn) with n ≥ 2 and distinct xj ’s,

we want to find a line y = a+ bx that best describes this data set. In other words, we would like to minimize

||(y1 − a− bx1, . . . , yn − a− bxn)||. This is the same as finding the least square solution to the system:
a+ bx1

a+ bx2

...

a+ bxn

 =


y1

y2
...

yn

 , i.e.


1 x1

1 x2

...

1 xn


 a

b

 =


y1

y2
...

yn

 .

Example 8.2. We want to estimate the data set (x1.y1), (x2, y2), . . . , (xn, yn) with a parabola a+ bx+ cx2.

We need to find the least square solution to
1 x1 x2

1

1 x2 x2
2

...

1 xn x2
n




a

b

c

 =


y1

y2
...

yn

 .

Definition 8.5. The least square solution to an equation Ax = b, where A ∈ Mm×n(F) and b ∈ Fm, is

a vector x ∈ Fn for which ||Ax− b|| is miminized.

8.3 Adjoint of a Linear Transformation

Definition 8.6. The conjugate of a matrix A ∈Mm×n(F), denoted by A, is an m× n matrix whose (j, k)

entry is the complex conjugate of the (j, k) entry of A for all j = 1, . . . ,m and k = 1, . . . , n. The adjoint or

conjugate transpose or Hermitian of A, denotes by A∗, is the matrix A
T
.

Remark 8.1. The standard inner product x · y of two column vectors x,y ∈ Fn is given by y∗x, where y∗ is

the transpose conjugate of y.

Theorem 8.7. Let A ∈ Mm×n(F). A matrix B ∈ Mm×n(F) is the adjoint of A if and only if ⟨Ax,y⟩ =

⟨x, By⟩.

Theorem 8.8. Let T : V → W be a linear transformation between inner product spaces. Then, there is a

unique linear transformation S : W → V satisfying:

⟨T (x),y⟩ = ⟨x, S(y)⟩, for all x ∈ V,y ∈W.

As seen in the proof of the above theorem, if A and B are orthonormal bases for V and W , respectively, then

[T ∗]AB = ([T ]BA)
∗.

Definition 8.7. Suppose T : V → W be a linear transformation between inner product spaces. Then, the

unique linear transformation S : W → V satisfying:

⟨T (x),y⟩ = ⟨x, S(y)⟩, for all x ∈ V,y ∈W,

is called the adjoint of T and is denoted by T ∗.
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Theorem 8.9. Given two matrices A,B and a scalar c we have

(a) (A+B)∗ = A∗ +B∗

(b) (AB)∗ = B∗A∗

(c) (cA)∗ = cA∗

(d) (A∗)∗ = A

as long as the appropriate operation is defined. Similar properties are true for linear transformations between

inner product spaces.

Theorem 8.10. Given a matrix A we have

(a) (KerA)⊥ = Col (A∗)

(b) (ColA)⊥ = Ker (A∗)

8.4 Isometries

Definition 8.8. A linear transformation T : V → W between inner product spaces is called an isometry

iff it preserves the norm, i.e. ||U(x)|| = ||x|| for all x ∈ V.

Theorem 8.11. Suppose T : V → W is a linear transformation between inner product spaces. T is an

isometry if and only if T preserves the inner product, i.e.

⟨x,y⟩ = ⟨T (x), T (y)⟩, ∀x,y ∈ V.

Theorem 8.12. Suppose T : V → W is an isometry. If v1, . . . ,vn are orthogonal (resp., orthonormal)

vectors in V , then T (v1), . . . , T (vn) are orthogonal (resp., orthonormal) vectors in W .

Theorem 8.13. A linear transformation T : V → W between inner product spaces is an isometry if and

only if T ∗ ◦ T = IV .

Definition 8.9. An isometry is called unitary iff it is invertible.

Theorem 8.14. An isometry T : V →W is unitary iff dimV = dimW .

Corollary 8.4. A linear transformation T : V → W between inner product spaces is unitary if and only if

T−1 = T ∗. A similar result hold for square matrices.

Definition 8.10. A square matrix U is called unitary iff U∗U = I, i.e. U−1 = U∗. A unitary matrix with

real entries is called an orthogonal matrix.

Theorem 8.15. Suppose T : V → W is a linear transformation between inner product spaces. If T is

unitary, then so is T−1. Similarly, if a matrix is unitary, then, so is its inverse.
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Proof. By assumption T−1 = T ∗. In order to show T−1 is unitary, we need to show (T−1)−1 = (T−1)∗. We

know (T−1)−1 = T . We also see that (T−1)∗ = (T ∗)∗ = T . Therefore, (T−1)−1 = (T−1)∗, as desired.

Theorem 8.16. Suppose T : V → V is a unitary transformation, and λ ∈ σ(T ). Then,

(a) |λ| = 1.

(b) |detT | = 1.

A similar result holds for square matrices.

Proof. (a) By definition of an eigenvalue, T (v) = λv for some nonzero vector v. Since T is unitary, it is an

isometry and hence, ||T (v)|| = ||v||. Therefore,

||v|| = ||λv|| = |λ| ||v|| ⇒ |λ| = 1, since v ̸= 0.

(b) Let A be a matrix of T in some basis of V . By Theorem 6.5, detT = λ1 · · ·λn, where λ1, . . . , λn are all

eigenvalues of A (including multiplicities.) We now take the absolute value of both sides and use part (a) to

obtain:

|detT | = |λ1| · · · |λn| = 1.

8.5 Examples

Example 8.3. Find the orthogonal projection of t3 onto the subspace of P3 spanned by 1 and t2. Use the

inner product ⟨p, q⟩ =
∫ 1

0

p(t)q(t) dt

Solution. First, we need to find an orthogonal basis for E = span{1, t2}. For that we will use the Gram-

Schmidt process.

v1 = 1,v2 = t2 − ⟨t
2, 1⟩
⟨1, 1⟩

1.

We see ⟨t2, 1⟩ =
∫ 1

0

t2 dt =
1

3
, and ⟨1, 1⟩ =

∫ 1

0

1 dt = 1. This yields v2 = t2 − 1

3
. The projection of t3 onto

E is
⟨t3, 1⟩
⟨1, 1⟩

1 +
⟨t3, (t2 − 1/3)⟩

⟨(t2 − 1/3), (t2 − 1/3)⟩
(t2 − 1/3).

⟨t3, 1⟩ =
∫ 1

0

t3 dt =
1

4
.

⟨t3, (t2 − 1/3)⟩ =
∫ 1

0

t5 − t3

3
dt =

1

6
− 1

12
=

1

12
.

⟨(t2 − 1/3), (t2 − 1/3)⟩ =
∫ 1

0

(t2 − 1/3)2 dt =

∫ 1

0

t4 + 1/9− 2t2/3 dt =
1

5
+

1

9
− 2

9
=

4

45
.

Therefore,

PE(t
3) =

1

4
+

45

48
(t2 − 1/3)
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Example 8.4. Prove that PE ◦ PE = PE for every subspace E of an inner product space.

Solution. Let v ∈ V , the vector PE(v) is in E and PE(v)− PE(v) is orthogonal to E. Thus, PE(PE(v)) =

PE(v). Therefore, PE ◦ PE = PE , as desired.

Example 8.5. Let E1 and E2 be two subspaces of an inner product space V for which the projection of

every v ∈ V onto E1 and E2 are the same. Prove E1 = E2.

Solution. Let v ∈ E1. By definition PE1(v) = v. Since PE1 = PE2 , we have PE2(v) = v. By definition,

PE2(v) ∈ E2. Thus, v ∈ E2. Therefore, E1 ⊆ E2. Similarly, E2 ⊆ E1. Therefore, E1 = E2.

Example 8.6. Suppose E is a subspace of an inner product vector space V . Let P,Q be projections onto

E and E⊥, respectively.

(a) Prove that P ◦Q(v) = 0, for every vector v ∈ V .

(b) Prove that P +Q is the identity transformation.

(c) Prove (P −Q)−1 = P −Q.

Solution. (a) Q(v) is a vector in E⊥. Thus, Q(v)−0 is orthogonal to E. Since 0 ∈ E, we have P (Q(v)) = 0.

(b) By definition, v−P (v) is orthogonal to E. Thus, v−P (v) ∈ E⊥. On the other hand v−(v−P (v)) = P (v)

is orthogonal to E⊥. Therefore, v − P (v) = Q(v). Thus, P (v) + Q(v) = v, which implies P + Q is the

identity transformation.

(c) By linearity, (P −Q) ◦ (P −Q) = P ◦ P +Q ◦Q+ P ◦Q+Q ◦ P = P +Q. Here we used the fact that

P ◦ P = P , P ◦Q = Q ◦ P = 0. Therefore, P −Q is its own inverse.

Example 8.7. Consider the subspace V of F4 spanned by v = (1, 2, 0, 1) and w = (1,−1, 1, 2). Find a basis

for the orthogonal complement of V relative to the standard inner product.

Solution. Note that since v and w are not multiples of each other, dimV = 2. By Theorem 8.4, we have

dimV ⊥ = 4− 2 = 2.

We will find a basis for F4 containing v and w. To do that, we will place these vectors in rows of a matrix,

and row reduce the matrix as below: 1 2 0 1

1 −1 1 2

 R2−R1−−−−−→

 1 2 0 1

0 −3 1 1


Therefore, by adding e3 and e4 to the rows of this matrix, we obtain a matrix in echelon form. Thus,

v,w, e3, e4 form a basis for F4. Now, we will apply the Gram-Schmidt process.
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w1 = v

w2 = w − ⟨w,v⟩
⟨v,v⟩

v

w3 = e3 −
⟨e3,w1⟩
⟨w1,w1⟩

w1 −
⟨e3,w2⟩
⟨w2,w2⟩

w2

w4 = e4 −
⟨e4,w1⟩
⟨w1,w1⟩

w1 −
⟨e4,w2⟩
⟨w2,w2⟩

w2 −
⟨e4,w3⟩
⟨w3,w3⟩

w3

The vectors w3,w4 are linearly independent and are in V ⊥. Since dimV ⊥ = 2, the two vectors w3 and w4

form a basis for V ⊥. (The calculation must be done!)

Example 8.8. Suppose E,F are subspaces of an inner product space V for which PE ◦ PF = 0, the zero

function. Prove E ⊥ F . Conversely, prove that if E ⊥ F , then PE ◦ PF = 0.

Solution. (⇒) Let x ∈ F . Since x ∈ F and x − x ⊥ F , we have PF (x) = x. By assumption PE(x) = 0.

Therefore, by definition of projection x− 0 ⊥ E. Thus, every element of F is orthogonal to E, which means

E ⊥ F .

(⇐) Suppose E ⊥ F . Let x ∈ V . We know PF (x) ∈ F , by definition of PF . Therefore, PF (x)−0 = PF (x) ⊥

E, which implies PE(PF (x)) = 0, as desired.

Example 8.9. Suppose A ∈Mn(F) is self adjoint. Prove that for every S ∈Mn(F) the matrix S∗AS is self

adjoint.

Solution. By properties of adjoint and the fact that A is self adjoint, we have (S∗AS)∗ = S∗A∗(S∗)∗ =

S∗A∗S = S∗AS. Therefore, S∗AS is self adjoint.

8.6 Exercises

Exercise 8.1. Determine if each statement is true or false.

(a) If a square matrix has determinant 1, then it is unitary.

(b) Any matrix corresponding to an isometry transformation has a left inverse.

(c) Any matrix corresponding to a unitary transformation is invertible.

(d) If T : V → W is a linear transformation and T sends some orthonormal basis of V to an orthonormal

basis of W , then T is unitary.

(e) If T : V → V is a linear transformation of an inner product space V and ||T (vj)|| = ||vj || for some

orthogonal basis v1, . . . ,vn of V , then T is unitary.
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Exercise 8.2. Find the shortest distance from a point (x0, y0, z0) ∈ R3 to the plane ax1 + bx2 + cx3 = 0,

where (a, b, c) ∈ R3 is a fixed nonzero vector.

Hint: Show the given plane is the orthogonal complement of the span of (a, b, c). Use that to find the

projection of (x0, y0, z0) onto the plane.

Exercise 8.3. Prove that every projection is its own adjoint.

Hint: Consider ⟨PE(x)− x, PE(y)⟩.

Exercise 8.4. Find the least square solution to the system
1 0

−1 1

0 2

x =


1

−1

1

 .

Exercise 8.5. Find the equation of the line of best fit for the data set (x1, y1), . . . , (xn, yn), where n ≥ 2 and

xj’s are distinct.

Exercise 8.6. Suppose a linear transformation T : V → V is its own adjoint (aka self adjoint) and T ◦ T =

IV . Prove T is an orthogonal projection.

Exercise 8.7. Find an orthonormal basis for Mm×n(F) under the inner product ⟨A,B⟩ = tr (B∗A).

Exercise 8.8. Prove that the product of two unitary matrices of the same size is unitary.

Exercise 8.9. Prove that if U ∈M2(R) is orthogonal with detU = 1, then U is a rotation matrix.

Exercise 8.10. Prove there is no square matrix A for which A∗ = A+ I.

Exercise 8.11. Consider Pn(R) equipped with the inner product ⟨f, g⟩ =
∫ 1

−1

f(t)g(t) dt. Prove that the

orthogonal complement of the subspace of even polynomials, (i.e. the subspace spanned by 1, t2, t4, . . . , t2⌊n/2⌋)

is the subspace of odd polynomials (i.e. the subspace spanned by t, t3, . . . , t2⌈n/2⌉−1).

Exercise 8.12. Prove that the adjoint of an elementary matrix is an elementary matrix of the same type.

Exercise 8.13. Consider the vector space M2(C) with the inner product given by ⟨A,B⟩ = tr (B∗A). Find

the orthogonal projection of A =

 1 i

1 0

 onto the subspace of symmetric matrices.

Exercise 8.14. Suppose X, Y are inner product spaces of the same dimension. Prove there is an isomor-

phism T : X → Y for which

⟨T (v), T (w)⟩ = ⟨v,w⟩ ∀ v,w ∈ X.

Exercise 8.15. Suppose X,Y are normed spaces of the same dimension. Is it true that there must be an

isomorphism T : X → Y for which

||T (v)|| = ||v|| ∀ v ∈ X.
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Exercise 8.16. Consider the vector space C[−π, π] equipped with the inner product ⟨f, g⟩ =
∫ π

−π

f(x)g(x) dx.

Prove the following list is an orthonormal list of functions in C[−π, π]:

sin(x)√
π

,
cos(x)√

π
,
sin(2x)√

π
,
cos(2x)√

π
,
sin(3x)√

π
,
cos(3x)√

π
, . . . .

Exercise 8.17. Let W be the subspace of C[−1, 1] spanned by the functions

sin(x), cos(x), sin(2x), cos(2x), sin(3x), cos(3x), . . . .

Prove the function f ∈ C[−1, 1] defined by f(x) = x does not have an orthogonal projection onto W .
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Week 9

9.1 Unitary Equivalent Matrices

Definition 9.1. Two matrices A,B are said to be unitarily equivalent iff A = UBU∗, where U is a

unitary matrix. Similarly, two linear transformations S, T : X → X of an inner product space X are said to

be unitarily equivalent iff there is a unitary transformation U for which S = U ◦ T ◦ U∗.

Remark 9.1. Note that two unitarily equivalent matrices must be square of the same size. Furthermore, since

U∗ = U−1, two unitarily equivalent matrices are similar.

Definition 9.2. A square matrix is said to be unitarily diagonalizable iff it is unitarily equivalent to a

diagonal matrix. Similarly, a linear transformation L : V → V of an inner product space is called unitarily

diagonalizable iff the matrix of T relative to an orthonormal basis is diagonal.

Theorem 9.1. A matrix A ∈Mn(F) is unitarily diagonalizable if and only if Fn has an orthogonal basis of

eigenvectors. Furthermore, if A is unitarily diagonalizable, then Fn has an orthonormal basis of eigenvector.

Example 9.1. Determine if the matrix is unitarily diagonalizable: 1 1

−1 1


Theorem 9.2. If a matrix A ∈Mn(F) is unitarily diagonalizable, and u,v are eigenvectors of A correspond-

ing to distinct eigenvalues, then u ⊥ v.

9.2 Rigid Motions

Definition 9.3. A rigid motion of an inner product space V is a distance preserving function f : V → V ,

i.e.

||f(x)− f(y)|| = ||x− y|| ∀x,y ∈ V.

Note that a rigid motion is not assumed to be linear.
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Example 9.2. Suppose U : V → V is a unitary transformation and v ∈ V . Then, f : V → V defined by

f(x) = U(x) + v is a rigid motion.

Theorem 9.3. Suppose f : V → V is a rigid motion of a real inner product space V . Then, the function

T : V → V defined by T (x) = f(x)− f(0) is orthogonal.

9.3 Schur’s Theorem

Theorem 9.4. Suppose a matrix A ∈ Mn(F) has n eigenvalues. Then, there is an upper triangular matrix

T and a unitary matrix U for which A = UTU∗. Consequently, for every A ∈ Mn(C), there is an upper

triangular matrix T and a unitary matrix U for which A = UTU∗. Similarly, if L : V → V is a linear

transformation on an inner product n-dimensional space V has n eigenvalues. Then, there is an ordered

orthonormal basis A of V for which the matrix [L]AA is upper triangular.

9.4 Self-Adjoint and Normal Linear Transformations

Definition 9.4. A square matrix is called self-adjoint iff it is its own adjoint. Similarly, a linear transfor-

mation L : V → V on an inner product space V is called self-adjoint iff T = T ∗.

Theorem 9.5. Suppose L : V → V is a self-adjoint linear transformation. Then, all eigenvalues of L are

real. Similarly, all eigenvalues of a self-adjoint matrix is real.

Question. When is a matrix (or linear transformation) unitarily diagonalizable?

Definition 9.5. A square matrix N is called normal iff NN∗ = N∗N . Similarly, a linear transformation

N : V → V on an inner product space V is called normal iff NN∗ = N∗N .

Theorem 9.6. If A ∈Mn(F) has n eigenvalues, then it is normal if and only if it is unitarily diagonalizable.

Similarly, if a linear transformation N : V → V on an inner product n-dimensional space V has n eigenvalues.

Then, N is normal if and only if it is unitarily diagonalizable.

Corollary 9.1. Every self adjoint matrix is unitarily equivalent to a diagonal matrix with real entries.

Theorem 9.7. A matrix N ∈Mn(F) is normal if and only if

||Nx|| = ||N∗x|| ∀x ∈ Fn.

Similarly, a linear transformation N : V → V on an inner product space V is normal if and only if

||N(x)|| = ||N∗(x)|| ∀x ∈ V.

9.5 Examples

Example 9.3. Prove that a normal matrix A is self-adjoint if and only if all of its eigenvalues are real.
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Solution. ⇒: Since A is self-adjoint, by a theorem all of its eigenvalues are real.

⇐: Since A is normal, there is a unitary matrix U and a diagonal matrix D for which A = UDU∗. Since A

and D are similar, they have the same eigenvalues. Since D is diagonal, its diagonal entries are its eigenvalues.

Therefore, diagonal entries of D are all real, and hence D∗ = D. We now see that

A∗ = (UDU∗)∗ = (U∗)∗D∗U∗ = UD∗U∗ = UDU∗ = A.

Therefore, A is self-adjoint.

Example 9.4. Consider the complex vector space C. By an example show that there is a rigid motion

f : C→ C for which T : C→ C given by T (z) = f(z)− f(0) is not linear.

Solution. Let f : C→ C be given by f(z) = z for all z ∈ C. We have

||f(z)− f(w)|| = ||z − w|| = ||z − w|| = ||z − w||.

Thus, f is a rigid motion. Furthermore, f(0) = 0. However, f is not linear, since f(i) = −i ̸= if(1) = i.

Example 9.5. Suppose A is a square matrix for which AA∗ = λI for some λ ∈ F. Prove that A is normal.

Solution. First, note that if λ ̸= 0, then (detA)(detA∗) = λn is not zero and thus A is invertible. This

implies

A∗ = A−1λI = λIA−1 ⇒ A∗A = λI ⇒ AA∗ = A∗A

Therefore, A is normal.

Now, assume λ = 0. Let a be the first row of A. The first column of A∗ is a∗. The (1, 1) entry of AA∗ is aa∗

which is the same as a · a = ||a||2. Since λ = 0, we must have AA∗ = 0 and thus ||a||2 = 0, which implies

the first row of A is zero. A similar argument shows all rows of A are zero. Thus, A = 0, which implies

AA∗ = 0 = A∗A. Hence, A is normal.

Example 9.6. Suppose A,B ∈Mn(F) are self-adjoint. Prove AB is self-adjoint if and only if AB = BA.

Solution. AB is self-adjoint if and only if (AB)∗ = AB. By properties of adjoint, (AB)∗ = B∗A∗ = BA,

since A,B are self-adjoint. Therefore, (AB)∗ = AB if and only if BA = AB, as desired.

9.6 Exercises

Exercise 9.1. Suppose V is a vector space. Prove that if T ∈ L(V, V ), then, there is an ordered basis A of

V for which [T ]AA is upper triangular. (Do not assume V is an inner product space.)

Exercise 9.2. Suppose T is an upper triangular normal matrix. Prove T is diagonal.
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Exercise 9.3. Use the fact that every matrix A ∈ Mn(C) is unitarily equivalent to an upper triangular

matrix to prove,

(a) detA is the product of eigenvalues of A.

(b) trA is the sum of eigenvalues of A.

Exercise 9.4. Consider the matrix

A =

 2 1 + i

1− i 1

 .

(a) Without evaluating the eigenvalues of A. Prove A is unitarily diagonalizable.

(b) Unitarily diagonalize A.

Exercise 9.5. Prove that a normal matrix A is unitary if and only if the absolute value of each of its

eigenvalues is 1.

Exercise 9.6. Prove that a normal matrix A is self-adjoint if and only if all of its eigenvalues are real.

Exercise 9.7. Determine if each statement is true or false:

(a) Any symmetrix matrix in Mn(C) is diagonalizable.

(b) Any symmetric matrix in Mn(C) is unitarily diagonalizable.

(c) Any diagonalizable matrix in Mn(C) is unitarily diagonalizable.

(d) The product of every two normal matrices is normal.

Exercise 9.8. Suppose an invertible square matrix A satisfies A∗ = A2. Prove A3 = I.

Exercise 9.9. Determine if each of the following is true or false.

(a) If A is a self-adjoint matrix, then A+ iI is invertible.

(b) If A is a unitary matrix, then A+ 2I is invertible.

(c) If A is a normal matrix, then A+ 3I is invertible.

(d) If A ∈Mn(R), then A+ iI is invertible.

(e) If A ∈Mn(R) and A+ (2− i)I is invertible, then A+ (2 + i)I is invertible.
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10.1 Positive Definite and Square Roots

Definition 10.1. A self adjoint linear transformation T : V → V on an inner product spaces V is called

positive definite, written as T > 0, iff

⟨T (x),x⟩ > 0 ∀x ∈ V \{0}.

Similarly, we say T is positive semidefinite, written A ≥ 0, iff

⟨T (x),x⟩ ≥ 0 ∀x ∈ V.

Similarly, a self adjoint matrix A ∈Mn(F) is said to be positive definite, written A > 0, iff

x∗Ax > 0 ∀x ∈ Fn\{0}.

A is called positive semidefinite, written A ≥ 0, iff

x∗Ax ≥ 0 ∀x ∈ Fn.

Similarly, we define negative definite and negative semidefinite linear transformations and matrices. If

a self adjoint linear transformation (resp. a self adjoint matrix) is neither positive semidefinite nor negative

semidefinite, we say it is indefinite. Determining the definiteness of a linear transformation or a matrix

means determining if it is positive definite, positive semidefinite, negative definite, negative semidefinite or

indefinite.

Theorem 10.1. Let A be a self adjoint matrix. Then,

(a) A > 0 if and only if all eigenvalues of A are positive.

(b) A ≥ 0 if and only if all eigenvalues of A are nonnegative.

Theorem 10.2. Let A be a positive semidefinite matrix. Then, there exists a unique positive semidefinite

matrix B for which B2 = A.
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Definition 10.2. Given a positive semidefinite matrix A, the unique matrix B satisfying B2 = A is called

the square root of A and is denoted by
√
A.

Definition 10.3. The modulus of a matrix A, denoted by |A|, is defined as
√
A∗A.

Theorem 10.3. For any matrix A we have || |A|x || = ||Ax || for all x ∈ Fn.

Corollary 10.1. For any matrix A we have KerA = Ker |A|.

10.2 Polar, Singular Value and Schmidt Decompositions

Any real number x can be written as x = ϵ|x|, where ϵ = ±1. Similarly, every complex number z can be

written as z = (cos θ + i sin θ)|z| (See Appendix). Note that | cos θ + i sin θ| = 1. In other words, |z| tells

us how “large” z is and cos θ + i sin θ tells us the angle that we need to rotate |z| to get to z. We will do

something similar for matrices.

Theorem 10.4 (Polar Decomposition). Every square matrix A can be represented as A = U |A|, where U is

a unitary matrix.

We know we cannot unitarily diagonalize all matrices, but can we find unitary matrices W,V and a diagonal

matrix D for which A = WDV ∗? Singular Value Decomposition answers this question.

Definition 10.4. Given a matrix A, every eigenvalue of |A| is called a singular value of A. In other words,

if λ1, . . . , λn are eigenvalues of A∗A, then
√
λ1, . . . ,

√
λn are singular values of A.

Theorem 10.5. Suppose σ1, . . . , σk is the list of all nonzero singular values of A, and v1, . . . ,vk is an

orthonormal basis of eigenvectors of A∗A, where (σ2
j ,vj) is an eigenpair for A∗A. Then, w1, . . . ,wk defined

below are orthonormal:

wj =
1

σj
Avj .

Theorem 10.6. Given a matrix A ∈ Mm×n(F), there are unitary matrices W ∈ Mm×m(F), V ∈ Mn×n(F)

and a matrix Σ ∈Mm×n(F) for which the following are satisfied:

(a) A = WΣV ∗.

(b) Every (j, k) entry of Σ, where j ̸= k, is zero.

(c) Every (j, j) entry of Σ is a nonnegative real number.

(d) All zero rows of Σ are at the bottom.

Definition 10.5. Any decomposition A = WΣV ∗ that satisfies the properties stated in the previous theorem

is called the singular value decomposition (SVD) of A.

Theorem 10.7. Every A ∈Mm×n(F) can be written as

A =

k∑
j=1

σjwjv
∗
j (∗),

where σj > 0 for j = 1, . . . , k and both v1, . . . ,vk ∈ Fm and w1, . . . ,wk ∈ Fm are orthonormal.
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Definition 10.6. Any decomposition of the form (∗) satisfying the conditions stated in the previous theorem

is called a Schmidt decomposition of A.

10.3 Examples

Example 10.1. Suppose A is a normal matrix whose eigenvalues, including multiplicity, are λ1, . . . , λn.

Prove that the singular values of A are |λ1|, . . . , |λn|

Solution. Since A is normal, by Theorem 9.6, A = UDU∗ for some unitary matrix U and a diagonal matrix

D = diag(λ1, . . . , λn). We have

A∗A = (UDU∗)∗(UDU∗) = UD∗U∗UDU∗ = UD∗DU∗ = Udiag(|λ1|2, . . . , |λn|2)U∗.

The eigenvalues of A∗A are |λ1|2, . . . , |λn|2. Therefore, the singular values of A are |λ1|, . . . , |λn|, as desired.

Example 10.2. Let A ∈ Mm×n(F). Prove that all non-zero eigenvalues of AA∗ and A∗A, counting multi-

plicities, are the same.

Solution. Assume A = UDV ∗ is a singular value decomposition of A. Note that U ∈Mm(F) and V ∈Mn(F)

are unitary, and D is an m × n “diagonal” matrix, i.e. Dij = 0 for all i ̸= j. Also, all entries of D are

nonnegative. We have

AA∗ = UDV ∗V D∗U∗ = UDD∗U∗, and A∗A = V D∗U∗UDV ∗ = V D∗DV ∗.

Therefore, AA∗ is similar to DD∗ and A∗A is similar to D∗D. If the (j, j) entry of D is λj , then the (j, j)

entry of DD∗ is λ2
j . Therefore, the diagonal entries of DD∗ are λ2

j ’s and zero, if any diagonal entries are left.

Similar is true for D∗D.

The number of zero eigenvalues of DD∗ and D∗D are the same if and only if m = n.

Example 10.3. Suppose a matrix A ∈Mm×n(F) is written as

A =

k∑
j=1

σjwjv
∗
j ,

where σj > 0 for j = 1, . . . , k and both v1, . . . ,vk ∈ Fm and w1, . . . ,wk ∈ Fm are orthonormal. Prove that

(a) σ1, . . . , σk are all nonzero singular values of A.

(b) wj =
1

σj
Avj for j = 1, . . . , k.
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Solution. (a) Suppose v1, . . . ,vk, . . . ,vn ∈ Fn is an orthonormal basis for Fn, which exists by extending

v1, . . . ,vk to a basis of Fn (See Theorem 3.9) and the Gram-Schmidt Orthogonalization Process. Using

properties of adjoint we obtain A∗ =
k∑

j=1

σjvjw
∗
j . Therefore,

A∗A =

k∑
j=1

σjvjw
∗
j

k∑
j=1

σjwjv
∗
j =

k∑
j=1

k∑
r=1

σjσrvjw
∗
jwrv

∗
r =

k∑
j=1

k∑
r=1

σjσrvj(wr ·wj)v
∗
r .

Since w1, . . . ,wk are orthonormal we obtain:

wr ·wj =

1 if r = j

0 if r ̸= j

Therefore,

A∗A =

k∑
j=1

σ2
jvjv

∗
j .

Since

v∗
jvr = vr · vj =

1 if j = r

0 if j ̸= r

we obtain A∗Avr =
k∑

j=1

σ2
jvjv

∗
jvr = σ2

rvr if r ≤ k, and A∗Avr = 0 if r > k. Thus, (σ2
r ,vr) is an eigenpair

of A∗A for r = 1, . . . , k and (0,vr) is an eigenpair for r = k + 1, . . . , n. Therefore, σ1, . . . , σk are all nonzero

singular values of A.

(b) For every 1 ≤ r ≤ k we have:

Avr =

k∑
j=1

σjwjv
∗
jvr =

k∑
j=1

σjwj(vr · vj) = σrwr ⇒
1

σr
Avr = wr.

This completes the proof.

Example 10.4. Prove the number of nonzero singular values of a matrix is the same as the rank of a matrix.

Solution. Suppose A = WΣV ∗ is a singular value decomposition of A. By Exercise 4.2(d), we have

Col (WΣV ∗) = Col (WΣ). Therefore, rankA = rank (WΣ). Similarly, by Exercise 4.2(d), we have Row (WΣ) =

Row (Σ) and thus rank (WΣ) = rankΣ. Therefore, rankA = rankΣ. Note that Σ is in echelon form and its

rank is the same as the number of nonzero singular values of A, as desired.

Example 10.5. Suppose A = WΣV ∗ is a singular value decomposition of a matrix A. Prove that the

nonzero entries of Σ are all nonzero singular values of A.

Solution. We have the following:

A∗A = V Σ∗W ∗WΣV ∗ = V ΣTΣV ∗.
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Therefore, A∗A and ΣTΣ are similar. Since Σ is “diagonal” the diagonal entries of ΣTΣ are σ2
1 , . . . , σ

2
k, 0, . . . , 0,

where σ1, . . . , σk are nonzero enrties of the diagonal of Σ. Therefore, all nonzero eigenvalues of A∗A are

σ2
1 , . . . , σ

2
k. Thus, by definition of singular values, σ1, . . . , σk are all nonzero singular values of A.

Example 10.6. Prove the following matrix is positive definite and find its square root.

A =

 2
√
3

√
3 4

 .

Solution. The characteristic polynomial of A is z2 − 6z + 5 = (z − 1)(z − 5). So, σ(A) = {1, 5}. Since both

eigenvalues of A are positive, A is positive definite. An eigenvector corresponding to the eigenvalue of 1 is

(
√
3 − 1)T and an eigenvector corresponding to the eigenvalue of 5 is (1

√
3)T . Therefore,

A =

 √3 1

−1
√
3

 1 0

0 5

 √3 1

−1
√
3

−1

.

Therefore, from the proof of Theorem 10.2,

√
A =

 √3 1

−1
√
3

 1 0

0
√
5

 √3 1

−1
√
3

−1

=
1

4

 3 +
√
5 −

√
3 +
√
15

−
√
3 +
√
15 1 +

√
15

 .

Example 10.7. Prove a square matrix A is positive semidefinite if and only if A = |A|.

Solution. (⇒) Since A is positive semidefinite, it is self adjoint. Thus, A∗A = A2. Therefore, A is the

positive semidefinite matrix whose square is A∗A and thus A =
√
A∗A. Therefore, A = |A|.

(⇐) Suppose A = |A|. Since |A| is positive semidefinite, so is A, as desired.

10.4 Exercises

Exercise 10.1. We know for every matrix A, the matrix A∗A is positive semidefinite. Prove the converse:

If A ≥ 0, then there is a matrix B for which A = B∗B.

Exercise 10.2. Find a Schmidt decomposition and a singular value decomposition of


1 1

0 1

−1 1

.

Exercise 10.3. Show that for every square matrix A we have det |A| = |detA|.

Exercise 10.4. Let σ be the largest singular value of a matrix A. Prove that if λ ∈ σ(A), then |λ| ≤ σ.

Exercise 10.5. Consider the matrix A =

 −2 −2

1 −2

.
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(a) Find a singular value decomposition for A.

(b) Use part (a) to find the maximum and minimum of ||Ax||, where x ranges over all unit vectors in R2.

Exercise 10.6. Prove a positive semidefinite matrix A is positive definite if and only if detA ̸= 0.

Exercise 10.7. Suppose A is a normal matrix whose list of eigenvalues is λ1, . . . , λn. Prove that the list of

singular values of A is |λ1|, . . . , |λn|.

Exercise 10.8. Suppose A = WΣV ∗ is a singular value decomposition for a square matrix A. Prove

|A| = V ΣV ∗ and if we set U = WV ∗, the decomposition A = U |A| is a polar decomposition of A.

Exercise 10.9. Let A =


7 1

0 0

5 5

 and B =

 1 1

−i i

. Find

(a) |A| and |B|.

(b) Two singular value decompositions of A.

(c) A polar decomposition for B.

10.5 Summary

• To find a singular value and a Schmidt decomposition of a matrix A ∈Mm×n(F):

– Evaluate A∗A.

– Find the list λ1, . . . , λn of all eigenvalues of A∗A.

– Find an orthonormal basis v1, . . . ,vn of Fn, where (λj ,vj) is an eigenpair of A∗A.

– Find singular values of A by evaluating square roots of λj ’s. Assume the list of singular values of

A is σ1, . . . , σk, 0, . . . , 0︸ ︷︷ ︸
n−k times

. Suppose σ1, . . . , σk are positive.

– Evaluate wj =
1

σj
Avj for j = 1, . . . , k.

– If k < m, extend wj ’s to an orthonormal basis w1, . . . ,wm of Fm. You may need to use the

Gram-Schmidt Orthogonalization Process.

– Set V = (v1 · · · vn) and W = (w1 . . . wm).

– Create an m× n matrix Σ whose (j, j) entry is σj for j = 1, . . . , k and all of whose other entries

are zero.

– A = WΣV ∗ is a singular value decomposition of A.

– A =
k∑

j=1

σjwjv
∗
j is a Schmidt decomposition of A.
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11.1 Structure of Orthogonal Matrices

Theorem 11.1. Suppose A is an orthogonal matrix. Then, there is an orthogonal matrix U for which

A = U



Rφ1

Rφ2 0
. . .

Rφk

ϵ1

0
. . .

ϵm


UT ,

where Rφj
=

 cosφj − sinφj

sinφj cosφj

 is a 2× 2 rotation matrix for j = 1, . . . , k and ϵ1, . . . , ϵm ∈ {±1}.

11.2 Bilinear Forms

Definition 11.1. A bilinear form on a vector space V is a function L : V × V → F that is linear with

respect to both of its components. In other words for all x,y, z ∈ V and all a, b ∈ F,

L(ax+ by, z) = aL(x, z) + bL(y, z), and L(z, ax+ by) = aL(z,x) + bf(z,y).

Theorem 11.2. A function L : Fn × Fn → F is bilinear if and only if L(x,y) = yTAx for a fixed matrix

A ∈ Mn(F) and all column vectors x,y ∈ Fn. Furthermore, for a given bilinear form L, this matrix A is

unique.
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11.3 Quadratic Forms

Suppose ⟨x,y⟩ is an inner product on Fn. We can write x =
n∑

j=1

xjej and y =
n∑

j=1

yjej , which yields:

⟨x,y⟩ = ⟨
n∑

j=1

xjej ,
n∑

j=1

yjej⟩

=
n∑

j=1

xj

n∑
k=1

yk⟨ej , ek⟩ by linearity and conjugate symmetry

=

(
n∑

k=1

yk⟨e1, ek⟩
n∑

k=2

yk⟨e2, ek⟩ · · ·
n∑

k=1

yk⟨en, ek⟩
)

x1

...

xn



= (y1 · · · yn)


⟨e1, e1⟩ · · · ⟨en, e1⟩

...
...

...

⟨e1, en⟩ · · · ⟨en, en⟩




x1

...

xn


= y∗Ax

.

Note that the matrix A above is independent of x and y and only depends on the inner product. Furthermore,

since ⟨, ⟩ satisfies conjugate symmetry, A is self adjoint. We will now investigate for what matrices A, the

expression y∗Ax defines an inner product on Fn. One of the conditions we need to prove is Positivity. For

that reason, we state the following definition.

Definition 11.2. A quadratic form Q : Fn → F is a function defined by Q(x) = x∗Ax, where A ∈Mn(F)

is a fixed matrix. When F = R we say Q is a quadratic form on Rn or a real quadratic form. When

F = C we say Q is a quadratic form on Cn or a complex quadratic form.

Example 11.1. Write down the real quadratic form Q(x1, x2) = x2
1−2x2

2+3x1x2 in the form Q(x) = xTAx.

How many different such matrices A can you find?

Theorem 11.3. Let Q be a quadratic form on Rn. Then, there is a unique symmetric matrix A for which

Q(x) = xTAx.

Definition 11.3. For a real quadratic form Q, the unique symmetric matrix A for which Q(x) = xTAx is

called the matrix associated with Q. The quadratic form Q is called the quadratic form defined by

A.

We cannot guarantee that the matrix of a quadratic form is symmetric or self adjoint. In fact distinct

matrices yield distinct complex quadratic forms.

Theorem 11.4. Suppose Q is a complex quadratic form. The matrix A ∈ Mn(C) for which Q(x) = x∗Ax

is unique.

Theorem 11.5. Let A ∈Mn(F). Then, x∗Ay = y∗Ax for all x,y ∈ Fn if and only if A is self adjoint.
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Theorem 11.6. Suppose A ∈Mn(C) is a fixed matrix. x∗Ax is real for all x ∈ Cn, if and only if A is self

adjoint.

Theorem 11.7. Given a matrix A ∈Mn(F), the function ⟨, ⟩ : Fn × Fn → F defined by ⟨x,y⟩ = y∗Ax is an

inner product if and only if A is positive definite. (Recall that any positive definite matrix is, by definition,

self adjoint.)

11.4 Diagonalization of Quadratic Forms

Consider a quadratic form Q(x) = x∗Ax, with A = A∗. Since A is self adjoint, all eigenvalues of A are real,

and by Corollary 9.1, A is unitarily diagonalizable. Therefore, we can write A = UDU∗ for some unitary

matrix U and a diagonal matrix D ∈Mn(R). Setting y = U∗x we can write

Q(x) = x∗Ax = x∗UDU∗x = (U∗x)∗D(U∗x) = y∗Dy =

n∑
j=1

λj |yj |2,

where D = diag(λ1, . . . , λn) and y = (y1 · · · yn)T .

Example 11.2. Unitarily diagonalize the matrix of the quadratic form Q(x, y) = x2 + y2 + 4xy. Use that

to write this quadratic form as a sum or difference of squares of linear combinations of x and y.

Unitary diagonalization of a matrix requires solving polynomial equations, which is not always easy or even

possible. For that reason we would seek non-unitary diagonalizations.

Theorem 11.8. Suppose Q(x) = x∗Ax is a quadratic form on Fn with A∗ = A. Assume D = S∗AS,

where D = diag(α1, . . . , αn) and S ∈ Mn(F) is invertible. (Note that S is not assumed to be unitary.) Let

y = S−1x = (y1 · · · yn)T . Then, Q(x) =
n∑

j=1

αj |yj |2 and α1, . . . , αn ∈ R.

Definition 11.4. Suppose Q(x) = x∗Ax is a quadratic form with A∗ = A. A diagonalization for Q is a

way of writing Q as

Q(x) =

n∑
j=1

αj |yj |2,

where αj ∈ R is constant for j = 1, . . . , n and
y1
...

yn

 = S−1


x1

...

xn

 ,

for some invertible matrix S ∈Mn(F). We say this diagonalization is unitary (or orthogonal when F = R)

iff the n× n matrix S is a unitary matrix.

Remark 11.1. In order to diagonalize Q we will find an invertible matrix S and a diagonal matrix D for

which D = S∗AS. We then apply Theorem 11.8.
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Example 11.3. Diagonalize Q(x, y, z) = x2 + 2y2 + 4xy − 2xz + 2yz.

Example 11.4. Write down the quadratic form associated with the following matrix and diagonalize it:

A =

 1 i

−i 2

 .

Determine the definiteness of this quadratic form.

11.5 Examples

Example 11.5. Consider the (real) quadratic form

Q(x1, x2, x3) = −x2
1 − x2

2 + 8x2
3 − 4x1x2 + 4x1x3 + 2x2x3.

(a) Find the matrix of this quadratic form.

(b) Diagonalize Q.

Solution. (a) The matrix of Q is

A =


−1 −2 2

−2 −1 1

2 1 8


(b) Applying R2 − 2R1 and R3 + 2R1 to The agumented matrix (A|I) we obtain the following:

−1 −2 2 1 0 0

0 3 −3 −2 1 0

0 −3 12 2 0 1


Applying the corresponding column operations in the same order (i.e. C2 − 2C1 followed by C3 + 2C1) we

obtain the following: 
−1 0 0 1 0 0

0 3 −3 −2 1 0

0 −3 12 2 0 1


Applying R3 +R2 to the augmented matrix we obtain:

−1 0 0 1 0 0

0 3 −3 −2 1 0

0 0 9 0 1 1


Applying C3 + C2 to the above matrix we obtain:

−1 0 0 1 0 0

0 3 0 −2 1 0

0 0 9 0 1 1
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Therefore, STAS = D, where,

ST =


1 0 0

−2 1 0

0 1 1

 , and D =


−1 0 0

0 3 0

0 0 9


We now find S−1 by row reducing the augmented matrix (S|I):

S−1 =


1 2 −2

0 1 −1

0 0 1


Therefore, S−1x = (x1 + 2x2 − 2x3 x2 − x3 x3)

T , which yields the following diagonalization of Q:

Q(x1, x2, x3) = −(x1 + 2x2 − 2x3)
2 + 3(x2 − x3)

2 + 9x2
3

Example 11.6. Prove that a square matrix A ∈ Mn(F) is symmetric if and only if there is an invertible

matrix S for which STAS is diagonal.

Solution. ⇐: Since STAS is diagonal, it is symmetric. Therefore, (STAS)T = STAS, which implies

STATS = STAS. Since S is invertible, ST is invertible. Multiplying both sides of STATS = STAS by S−1

from the right and (ST )−1 from the left, we obtain AT = A, as desired.

⇒: Suppose A ∈Mn(F) is symmetric. We will prove the statement by induction on n.

Basis step. For n = 1, the matrix A is itself diagonal. Thus S = (1) works.

Inductive step. First assume the (1, 1) entry of A is non-zero. By applying row addition operations, if

needed, i.e. R2 + α2R1, R3 + α3R1, . . . , Rn + αnR1 we can turn A into a matrix whose first column is a

multiple of e1. We know applying row operations is the same as multiplying by elementary matrices from

the left. Thus, there is an invertible matrix P for which the first column of PA is a multiple of e1. Since

PT corresponds to column additions C2 +α2C1, C3 +α3C1, . . . , Cn +αnC1, the first column of PAPT is the

same as the first column of PA and thus, it is a multiple of e1. Since A is symmetric, so is PAPT . Therefore,

there is an (n− 1)× (n− 1) matrix B for which

PAPT =

 c 0

0 B

 .

Since PAPT is symmetric, so is B. By inductive hypothesis, there is an (n− 1)× (n− 1) invertible matrix

K for which KTBK is diagonal. Therefore the following matrix is diagonal. 1 0

0 KT

PAPT

 1 0

0 K

 =

 c 0

0 KTBK
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Thus, the matrix STAS is diagonal, where

S = PT

 1 0

0 K

 .

Now, assume the (1, 1) entry of A is zero. If the first column of A is the zero vector, then the first row

of A must also be the zero vector, so the above proof with c = 0 and P = I would give us the result. If

A11 = 0 but some other entry of the first column of A, say A21, is non-zero, then we apply the row operation

R1 + R2 to turn A11 into A21. We then apply C1 + C2, we change the the first entry of the first column

into A21 +A12 = 2A21 which is non-zero. Therefore, there is an invertible (in fact elementary) matrix Q for

which the (1, 1) entry of QAQT is non-zero. By what we showed above, there is an invertible matrix S for

which STQAQTS is diagonal. Therefore, (QTS)TA(QTS) is diagonal.

Example 11.7. Suppose A = SDS∗ for an invertible matrix S and a diagonal matrix D. Is it true that

diagonal entries of D must be eigenvalues of A?

Solution. No! Choose D to be the identity matrix. Then A = SIS∗ does not have to have any eigenvalues

of 1. Here is an example:

A =

 1 1

0 1

 1 0

1 1

 =

 2 1

1 1


Characteristic polynomial of A is (2 − t)(1 − t) − 1 = t2 − 3t + 1. Therefore, the eigenvalues of A are

(3±
√
5)/2.

Example 11.8. Is it possible to write a square matrix A as A = SDS∗ for infinitely many diagonal matrices

D and invertible matrices S?

Solution. Yes. In the example above, for every real number r we can write 2 1

1 1

 =

 1/r 1/r

0 1/r

 r2 0

0 r2

 1/r 0

1/r 1/r

 .

Example 11.9. Suppose D = S∗AS for an invertible matrix S, a square matrix A and a diagonal matrix

D. Prove if all entries of D are real, then A is self adjoint. Does the conclusion remain true without the

condition that S is invertible?

Solution. Since S is invertible, so is S∗ and (S∗)−1 = (S−1)∗. Therefore, we have A = (S∗)−1DS−1 =

(S−1)∗DS−1. We have:

A∗ = ((S−1)∗DS−1)∗ = (S−1)∗D∗S−1 = (S−1)∗DS−1 = A.
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Therefore, A is self adjoint.

This is not true if we drop the assumption that S is invertible. For example we can take D = S = 0 and

A = diag(i, 1).

Example 11.10. Diagonalize the quadratic form and determine its definiteness:

Q(x1, x2) = |x1|2 − ix1x2 + 3|x2|2 + ix1x2.

Solution. The matrix associated with this quadratic form is A =

 1 −i

i 3

 , which is self adjoint. We

will proceed by diagonalizing this matrix using row and column operations. 1 −i 1 0

i 3 0 1

 R2−iR1−−−−−→

 1 −i 1 0

0 2 −i 1

 C2+iC1−−−−−→

 1 0 1 0

0 2 −i 1

 .

Therefore, D = S∗AS, where

D =

 1 0

0 2

 , and S∗ =

 1 0

−i 1

 .

This gives us S =

 1 −i

0 1

. Evaluating S−1 we obtain

S−1 =

 1 i

0 1

 .

Therefore, S−1(x1 x2)
T = (x1 + ix2 x2)

T which yields the following diagonalization of Q:

Q(x1, x2) = |x1 + ix2|2 + 2|x2|2.

Therefore, Q(x1, x2) ≥ 0 for all x1, x2 ∈ C. Furthermore, Q(x1, x2) = 0 implies x1 + ix2 = 0 and x2 = 0,

which implies x1 = x2 = 0. Thus, Q is positive definite.

11.6 Exercises

Exercise 11.1. Prove Theorem 11.4.

Exercise 11.2. Prove Theorem 11.6.

Exercise 11.3. Find the matrix associated with the bilinear form

L(x,y) = 2x1y1 − x1y2 + x2y1 − x2y2 + x1y3 + x3y3.

Here, x = (x1 x2 x3)
T and y = (y1 y2 y3)

T .
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Exercise 11.4. Suppose A ∈Mn(C) is a matrix for which x∗Ax is real for all x ∈ Cn. Prove that A is self

adjoint.

Exercise 11.5. Consider the following (real) quadratic form:

Q(x1, x2, x3) = 2x2
1 + x2

2 + 2x2
3 + 4x1x2 + 2x1x3 + 4x2x3

(a) Write down the matrix associated with Q.

(b) Write down a unitary diagonalization of Q.

(c) Write down a diagonalization of Q using row and column operations.

Exercise 11.6. Consider the following matrix:

A =

 1 1− i

1 + i 0

 .

Let Q(x) = x∗Ax be the (complex) qudaratic form associated with A.

(a) Write down an expression for Q(x1, x2).

(b) Write down a diagonalization of Q using row and column operations.

(c) Use part (b) to determine the type of this quadratic form. (i.e. positive definite, positive semidefinite,

etc.)

Exercise 11.7. Define L : F2 × F2 → F by L(x,y) = det(x y), where x,y ∈ F2 are column vectors.

(a) Prove L is bilinear.

(b) Find the matrix associated with L.

Exercise 11.8. Determine every inner product space V for which the function L : V × V → F defined by

L(x,y) = ⟨x,y⟩ is bilinear.

Exercise 11.9. Suppose A ∈ Mn(C). Prove xTAx ∈ R for every column vector x ∈ Rn if and only if

A+AT ∈Mn(R).

Exercise 11.10. Suppose ⟨, ⟩ is an inner product of Fn. Prove, there is a positive definite matrix A for which

⟨x,y⟩ = (Ax) · (Ay). (This shows every inner product of Fn is “essentially” the same as the dot product.)

Exercise 11.11. Find an orthogonal diagonalization for the quadratic form

Q(x1, x2, x3) = x2
1 + x2

2 + x2
3 − 2x1x2 − 2x1x3.

Find another one using row and column operations.
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12.1 Sylvester’s Law of Inertia and Positivity Criterion

Definition 12.1. Let A ∈Mn(F) be self adjoint. We say a subspace E of Fn is A-positive (resp. A-negative)

iff x∗Ax > 0 (resp. x∗Ax < 0) for all nonzero x ∈ E.

Theorem 12.1 (Sylvester’s Law of Intertia). Suppose A is a self adjoint matrix, S is an invertible matrix for

which D = S∗AS is diagonal. Then, the number of positive entries (resp. negative entries) of D is the same

as the maximum dimension of an A-positive (resp. A-negative) subspace of Fn. Consequently, the number of

positive entries (resp. negative entries) of D only depends on A, and not the choice of S.

Corollary 12.1. Suppose A is a self adjoint matrix, S is an invertible matrix for which D = S∗AS is

diagonal.

(a) A > 0 if and only if all diagonal entries of D are positive.

(b) A < 0 if and only if all diagonal entries of D are negative.

(c) A ≥ 0 if and only if all diagonal entries of D are nonnegative.

(d) A ≤ 0 if and only if all diagonal entries of D are nonpositive.

(e) A is indefinite if and only if D has at least one positive and one negative entry.

Theorem 12.2 (Minmax Characterization of Eigenvalues). Let A ∈Mn(F) be self adjoint and λ1 ≥ · · · ≥ λn

be the list of all of its eigenvalues. Then, for every k, 1 ≤ k ≤ n,

λk = max
E,dimE=k

(
min

||x||=1,x∈E
(x∗Ax)

)
= min

F,dimF=n+1−k

(
max

||x||=1,x∈F
(x∗Ax)

)
.

Theorem 12.3 (Intertwining of Eigenvalues). Suppose A ∈Mn(F) is self adjoint, and let B be the submatrix

of A formed by the first n− 1 rows and the first n− 1 columns of A. Let λ1 ≥ · · · ≥ λn and µ1 ≥ · · · ≥ µn−1

be all eigenvalues of A and B, respectively. Then,

λ1 ≥ µ1 ≥ λ1 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn.

109
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Definition 12.2. The k-th principal minor of an n×nmatrix A is the determinant of the square submatrix

of A formed by the first k columns and the first k rows of A for k = 1, . . . , n. We denote the k-th principal

minor of A by ∆k(A).

Theorem 12.4 (Sylvester’s Criterion for Positivity). Let A be a self adjoint n× n matrix.

(a) A is positive definite if and only if ∆k(A) > 0 for k = 1, . . . , n.

(b) A is negative definite if and only if (−1)k∆k(A) > 0 for k = 1, . . . , n.

(c) Suppose A is invertible. A is indefinite if and only if neither (a) nor (b) occurs.

12.2 Advanced Spectral Theory

Definition 12.3. Given a square matrix A and a polynomial p(t) = c0 + c1t + · · · + cnt
n with cj ∈ F for

j = 1, . . . , n, p(A) is defined as

p(A) = c0I + c1A+ · · ·+ cnA
n.

Remark 12.1. Suppose A ∈Mn(F), and p(t), q(t), f(t) ∈ P for which p(t)+ q(t) = f(t). Then, p(A)+ q(A) =

f(A). Similarly, if p(t)q(t) = f(t), then p(A)q(A) = f(A). Furthermore, by block multiplication of matrices,

if A has the following block form,

A =

 B ∗

0 C

 .

Then,

p(A) =

 p(B) ∗

0 p(C)

 .

Furthermore, in any polynomial identity that is valid over R we can substitute the variables by square

matrices of the same size as long as the matrices commute. For example, (A − B)(A + B) = A2 − B2 for

every two matrices A,B ∈Mn(F) for which AB = BA.

Theorem 12.5. Suppose λ1, . . . , λn is the list of all eigenvalues of a matrix A ∈ Mn(C) and p(t) is a

polynomial with complex coefficients. Then, the list of all eigenvalues of p(A) is

p(λ1), p(λ2), . . . , p(λn).

Example 12.1. Suppose (λ,v) is an eigenpair of a square matrix A and p(t) is a polynomial with coefficients

in F. Prove that p(A)v = p(λ)v.

Theorem 12.6 (Cayley-Hamilton). Let A ∈Mn(F) and p(t) = det(A− tI) be the characteristic polynomial

of A. Then, p(A) = 0.
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12.3 Jordan Canonical Form

We have shown that every matrix is similar to an upper triangular matrix, but can we write these upper

triangular matrices in a more specific form? Let’s look at an example.

Example 12.2. Consider the matrix A =


2 0 1 0

0 2 −1 0

0 0 2 2

0 0 0 2

.

(a) Find all eigenpairs of A and show A is not diagonalizable.

(b) Find a basis for Ker (A− 2I)n for all n ∈ Z+.

(c) Use that to write a matrix similar to A in an “almost diagonal” form.

Theorem 12.7. Let λ be an eigenvalue of an n× n matrix A. Then, there is an integer k ≤ n for which

Ker (A− λI) ⫋ Ker (A− λI)2 ⫋ · · · ⫋ Ker (A− λI)k = Ker (A− λI)k+1 = · · · .

Definition 12.4. For an eigenvalue λ of an n×n matrix A, every nonzero vector in Ker (A−λI)n is called a

generalized eigenvector of A corresponding to eigenvalue λ. The vector space Ker (A− λI)n is called the

generalized eigenspace of A corresponding to eigenvalue λ. The vector space Ker (A − λI)n is generally

denoted by Eλ.

Definition 12.5. Suppose T : V → V is a linear transformation. A subspace E of V is said to be T -invariant

iff T (E) ⊆ E. Similarly, for a matrix A ∈Mn(F), a subspace E of Fn is called A-invariant iff Ax ∈ E for all

x ∈ E.

Theorem 12.8. Generalized eigenspaces corresponding to a linear transformation T are T -invariant.

Theorem 12.9. Let λ1, . . . , λk be all distinct eigenvalues of a matrix A ∈Mn(C). Assume Eλ1 , . . . , Eλk
are

all generalized eigenspaces of A. Then, Eλ1
, . . . , Eλk

are linearly independent.

Theorem 12.10. The dimension of the generalized eigenspace corresponding to the eigenvalue λ for a square

matrix A is the same as the algebraic multiplicity of λ as an eigenvalue of A.

The above theorem implies that given an n×n matrix A we can find a basis for Fn consisting of generalized

eigenvectors of A by finding a basis for each generalized eigenspace and putting all of these bases together.

Definition 12.6. A matrix is said to be in Jordan canonical form (or Jordan form for short) if it is a

block matrix of the form 

B1 0 · · · 0 0

0 B2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Bn−1 0

0 0 · · · 0 Bn


,
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where each Bj , called a Jordan block, is a matrix with an eigenvalue λj on its main diagonal, 1’s immediately

above the main diagonal, and zeros everywhere else. In other words:

Bj =



λj 1 0 · · · 0

0 λj 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · λj 1

0 0 · · · 0 λj


.

12.4 Examples

Example 12.3. Suppose A is a self adjoint matrix and S is an invertible matrix for which S∗AS = D is

diagonal. Prove the number of zeros on the diagonal of D is the same as dimKerA.

Solution. Since A is self adjoint, there is a unitary matrix U and a diagonal matrixD0 for which A = UD0U
∗,

(and hence U∗AU = D0) where the diagonal entries of D0 are all eigenvalues of A. By Theorem 12.1, the

number of positive entries of D is the same as the number of positive entries of D0 and the number of negative

entries of D is the same as the number of negative entries of D0. Therefore, the number of zeros on the

diagonals of D and D0 are the same integer k. Since A and D are similar, they have the same characteristic

polynomial and thus the algebraic multiplicity of 0 as an eigenvalue of A is k. Since A is diagonalizable, by

Theorem 7.4, k = dimKerA, as desired.

Example 12.4. Give an example of a self adjoint matrix A = (ajk) ∈ M3(R) for which a11 > 0 and

detAk ≥ 0 for all k, but A is not positive semidefinite.

Solution. Consider the diagonal matrix A = diag(1, 0,−1). Since A has a negative eigenvalue of −1, it is

not positive semidefinite. Also, a11 = 1 is positive and detA2 = detA3 = 0.

Example 12.5. Prove that if A = (ajk) ∈ M2(C) is a self adjoint matrix satisfying a11 > 0 and detA ≥ 0,

then A is positive semidefinite.

Solution. Suppose A =

 a b

b c

, where a, c ∈ R and b ∈ C. By assumption, ac − |b|2 ≥ 0 and a > 0.

Since ac ≥ |b|2 ≥ 0 and a > 0, we have c ≥ 0. Since A is self-adjoint, the eigenvalues of A are real. Let λ1, λ2

be eigenvalues of A. By an exercise, λ1 + λ2 = tr (A) = a + c > 0. Also, λ1λ2 = detA ≥ 0. Thus, either

both λ1 and λ2 are nonnegative or they are both nonpositive. Since their sum is positive, they must both

be nonnegative. Therefore, A is positive semidefinite.

Example 12.6. Suppose a 2× 2 matrix A satisfies trA = 0. Prove that A2 = cI for some scalar c.
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Solution. Since A is 2× 2 and trA = 0, the matrix A must be of the form

A =

 a b

c −a

 .

The characteristic polynomial of A is p(z) = (a − z)(−a − z) − bc = z2 − a2 − bc. By the Cayley-Hamilton

Theorem, we must have p(A) = 0 and thus A2 = (a2 + bc)I, as desired.

Example 12.7. Find a matrix in Jordan form that is similar to the following matrix:

A =


−6 5 −3 9

−1 2 0 1

4 −4 4 −4

−5 3 −2 8

 .

Solution. The characteristic polynomial of A is det(A − zI) = z4 − 8z3 + 23z2 − 28z + 12. By inspection,

we see that z = 1 is a root. After performing long division we obtain the following:

z4 − 8z3 + 23z2 − 28z + 12 = (z − 1)(z3 − 7z2 + 16z − 12).

By inspection, we find z = 2 as a root of z3−7z2+16z−12 = 0. Repeating this process we find out that the

four eigenvalues of A are 1, 2, 2, 3. For the eigenvalue z = 2, the eigenspace Ker (A− 2I) is one-dimensional

(and is generated by (1 1 2 1)T ). Thus, A is not diagonalizable and thus the Jordan block corresponding to

eigenvalue 2 must be 2× 2. Therefore, the matrix in Jordan form that is similar to A is
2 1 0 0

0 2 0 0

0 0 1 0

0 0 0 3

 .

Example 12.8. Find an explicit formula for An, where n is a positive integer, and

A =


1 1 −1

3 −3 7

2 −3 6

 .

Solution. The characteristic polynomial of this matrix is det(A− zI) = −z3 + 4z2 − 5z + 2. By inspection

we can find a root of this polynomial to be z = 1. Dividing by z− 1 and factoring we obtain (z− 1)2(2− z).

For z = 2 we find v1 = (1 2 1)T as an eigenvector. For z = 1 we see that Ker (A− I) is one-dimensional and

is generated by (−1 1 1)T . We also obtain

(A− I)2 =


0 1 −1

3 −4 7

2 −3 5


2

=


1 −1 2

2 −2 4

1 −1 2

 .
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The vector (x, y, z) is in Ker (A− I)2 if and only if

x− y + 2z = 0, and 2x− 2y + 4z = 0.

Solving for x we obtain x = y − 2z. Thus, elements of Ker (A− I)2 are of the form
y − 2z

y

z

 = y


1

1

0

+ z


−2

0

1

 .

Now, we will choose a vector in Ker (A− I)2 that does not belong to Ker (A− I). We set v3 = (1 1 0)T , and

v2 = (A− I)v3 =


1

−1

−1

 .

Since v2 ∈ Ker (A − I), we have Av2 = v2. We also know Av1 = 2v1, and Av3 = v2 + v3. Note also that

v2,v3 are generalized eigenvectors correponding to eigenvalue of 1 and they are linearly independent. We

also know v1 is an eigenvector corresponding to the eigenvalue of 2. Thus, v1,v2,v3 are linearly independent

by Theorem 12.9. Therefore, we obtain the following decomposition:

A = PJP−1, where P =


1 1 1

2 −1 1

1 −1 0

 , and J =


2 0 0

0 1 1

0 0 1

 .

We know An = PJnP−1. By block multiplication of matrices Jn =

 2n 0

0 Bn

 , where B =

 1 1

0 1

.

Note that B = I + E, where I is the 2 × 2 identity matrix and E2 = 0. By the binomial theorem we have

Bn = I + nE +
(
n
2

)
E2 + · · · = I + nE. Therefore,

An =


1 1 1

2 −1 1

1 −1 0




2n 0 0

0 1 n

0 0 1




1 1 1

2 −1 1

1 −1 0


−1

.

12.5 Exercises

Exercise 12.1. Determine if each of the following is true or false. Assume every appropriate operation is

defined.

(a) A self adjoint matrix A is positive definite if and only if −A is negative definite.

(b) If A > 0 and B > 0, then A+B > 0.
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(c) If A > 0 then A is invertible.

(d) If A > 0, then A3 > 0.

(e) If A < 0, then A4 < 0.

(f) If A < 0, then A4 > 0.

(g) If A > 0 and B is indefinite, then A+B > 0.

(h) If A ≥ 0 and A ≤ 0, then A = 0.

Exercise 12.2. Suppose A ∈ Mn(F) is self adjoint. Prove that if the set consisting of the zero vector and

all vectors x ∈ Fn for which x∗Ax > 0 is a subspace of Fn, then A is positive definite.

Exercise 12.3. Determine the definiteness of each real quadratic form:

(a) Q(x, y, z) = x2 + 3y2 + 4z2 − xy + 6yz − xz.

(b) Q(x, y) = x2 + 2y2 + 2axy, where a ∈ R is a constant.

(c) Q(x, y) = 2x2 + 3y2 − xy.

(d) Q(x1, . . . , xn) =
n∑

j=1

x2
j + x1x2.

(e) Q(x1, . . . , xn) =
n∑

j=1

x2
j −

n−1∑
j=1

xjxj+1.

Exercise 12.4. Consider the (real) quadratic form

Q(x, y, z) = 2(x+ y)2 + 2(2x+ y − z)2 − (x− z)2.

(a) Using algebra show Q(x, y, z) = (3x+ 2y − z)2.

(b) Determine the definiteness of Q.

(c) Q seems to have two diagonalizations, one with positive and negative coefficients, and one with only

nonnegative coefficients. How do you reconcile this with Theorem 12.1 and Corollary 12.1?

Exercise 12.5. Suppose A ∈Mn(F) is self adjoint such that ∆k(A) > 0 for k = 1, . . . , n− 1 and detA ≥ 0.

Prove A is positive semidefinite.

Exercise 12.6. For each of the following quadratic forms

1. Q(x, y, z) = x2 + y2 + z2 + 2xy − xz + 4yz

2. Q(x1, x2) = |x1|2 − ix1x2 + 3|x2|2 + ix1x2

do the following:

(a) Diagonalize the quadratic form.
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(b) Determine the definiteness of Q using diagonalization found in part (a).

(c) Determine the definiteness of Q using Sylvester’s Criterion.

Exercise 12.7. Suppose A ∈Mn(F) is a nilpotent matrix. Prove that An = 0.

Hint: Recall that σ(A) = {0}. Then use the Cayley-Hamilton Theorem.

Exercise 12.8. Let A =

 0 c

0 0

, where c ∈ F is nonzero. Prove there is no matrix B for which B2 = A.

Exercise 12.9. Let A be a square matrix.

(a) Consider the matrices I, A,A2, . . .. Using the fact that Mn(F) is a finite dimensional vector space over

F, prove that there are constants ci, not all zero, for which c0I+ · · ·+ cn2An2

= 0. Deduce that there is a

nonzero polynomial f(t) for which f(A) = 0. (Do not use the Cayley-Hamilton Theorem for this part.)

(b) Prove that if f(A) = 0 for some f(t) ∈ P and λ is an eigenvalue of A, then f(λ) = 0.

(c) Suppose g(t) ∈ P is a monic polynomial with the smallest degree for which g(A) = 0. (Such a polynomial

exists by part (a).) Let h(t) be a polynomial for which h(A) = 0. Prove that h(t) is divisible by g(t). Use

that to prove such a polynomial g(t) is unique. (Hint: Using long division write h(t) = g(t)q(t) + r(t),

where q(t) and r(t) are the quotient and remainder when h(t) is divided by g(t).)

(d) Show that every root of the polynomial g(t) in part (c) is an eigenvalue of A.

Remark 12.2. The polynomial g(t) in the above exercise is called the minimal polynomial of A.

Exercise 12.10. Write the following matrix as A = PJP−1, where P is invertible and J is a matrix in

Jordan form:

A =


1 2 −1

1 1 1

0 −2 2

 .



Week 13

13.1 Jordan Canonical Form, Continued

Example 13.1. Write down the following matrix in the form SJS−1, where J is a Jordan matrix and S is

invertible: 
2 −1 0

−1 5 −1

−4 13 −2


Theorem 13.1. Every matrix in Mn(C) is similar to a matrix in Jordan form.

Theorem 13.2. Let A be a matrix in Mn(C) and J be a matrix in Jordan form that is similar to A. Then,

for every positive integer k, the number of Jordan blocks of J with size at least k × k corresponding to an

eigenvalue λ is given by

dimKer (A− λI)k − dimKer (A− λI)k−1.

Here (A−λI)0 = I and thus its kernel has dimension zero. Consequently, the matrix in Jordan form similar

to A is unique up to a permutation of Jordan blocks.

Using the above theorem, we can find the Jordan form of any matrix rather easily, however finding the matrix

P in A = PJP−1 is more difficult.

Example 13.2. How many 5× 5 nonsimilar matrices in Jordan form are there all of whose eigenvalues are

0?

Example 13.3. Find the number of nonsimilar 6 × 6 matrices in Jordan form whose eigenvalues are

1, 2, 2, 3, 3, 3.

Example 13.4. The characteristic polynomial of a matrix A is p(t) = t6(t− 1)4. Suppose

dimKerA = 1, and dimKer (A− I) = 3.

Find a matrix in Jordan form that is similar to A.
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To find P in A = PJP−1, where J is in Jordan form, start with a vector vk in Ker (A− λI)k that does not

lie in Ker (A−λI)k−1. Evaluate vectors vk−1 = (A−λI)vk, vk−2 = (A−λI)vk−1,. . . , v1 = (A−λI)v2. We

need to repeat this process and make sure we obtain a basis for each generalized eigenspace. This process is

not easy for large matrices and we skip the details. These vj ’s give us columns of matrix P .

13.2 Applications of Jordan Canonical Form

Theorem 13.3. For a matrix A ∈ Mn(C), there are matrices D,N ∈ Mn(C) for which all of the following

hold:

• D is diagonalizable and N is nilpotent;

• The eigenvalues of D and A are the same;

• DN = ND; and

• A = D +N.

Previously we defined eA for any square matrix A by

eA =

∞∑
n=0

An

n!
,

but we never proved this sum in fact converges. Here we will prove that and we will also define f(A) for a

class of functions called analytic functions.

Definition 13.1. A function f : R→ R is said to be analytic iff there is a sequence an of real numbers for

which

f(x) =

∞∑
n=0

anx
n, for all x ∈ R.

Theorem 13.4. Suppose f : R → R is analytic, i.e. f(x) =
∞∑

n=0
anx

n for some sequence an ∈ R. Then,

an =
f (n)(0)

n!
and

∞∑
n=0

anz
n converges, for all z ∈ C.

Definition 13.2. Suppose f : R → R is analytic, i.e. f(x) =
∞∑

n=0
anx

n for some sequence an ∈ R. The

function F : C → C defined by F (z) =
∞∑

n=0
anz

n is called the analytic continuation of f . Eventhough F

and f have different domains, for simplicity, we denote both function by “f”.

Definition 13.3. Suppose f(x) =
∞∑

n=0
anx

n is an analytic function. Given a square matrix A we define

f(A) = lim
m→∞

m∑
n=0

anA
n, if the limit exists.

Definition 13.4. Given a sequence of matrices An = (aij,n), we define the matrix A = lim
n→∞

An to be the

matrix whose (i, j) entry is the limit of the sequence of (i, j) entries of An. In other words

lim
n→∞

(aij,n) = ( lim
n→∞

aij,n).
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When An(t) is a sequence of matrices whose entries are functions of t, then their limit A(t) is defined the

same way for every real number t.

The following theorem can be easily proved using the above definition and properties of limit.

Theorem 13.5. Let j, k, ℓ be three positive integers and let An, Bn be two sequences of j × k matrices, and

Cn be a sequence of k × ℓ matrices. Let an ∈ F be a sequence of scalars. Suppose

lim
n→∞

An = A, lim
n→∞

Bn = B, lim
n→∞

Cn = C, and lim
n→∞

an = a.

Then,

• lim
n→∞

(An +Bn) = A+B.

• lim
n→∞

(AnCn) = AC.

• lim
n→∞

(anAn) = aA.

Now, suppose f(t) is an analytic function. By Theorem 13.3, we can write A = D + N , where D is diago-

nalizable and N is nilpotent and ND = DN . We will define f(A) =
∞∑
k=0

akA
k, where

∞∑
k=0

akt
k is the Taylor

series for f(t). We need to show
∞∑
k=0

akA
k converges for every square matrix A.

Let pm(t) =
m∑

k=0

akt
k be the m-th partial sum of the Taylor series for f(t).

Since D is diagonalizable we can write D = S diag(λ1, . . . , λn) S
−1. Since, pm is a polynomial, we have:

pm(D) = S diag(pm(λ1), . . . , pm(λn)) S
−1

As m→∞, we have pm(λj)→ f(λj) for every j. Therefore,

f(D) = lim
m→∞

pm(D) = S diag(f(λ1), . . . , f(λn)) S
−1 (∗)

From calculus, we know the Taylor polynomial of pm centered at x0 is given by

pm(x0 + h) =

∞∑
k=0

p
(k)
m (x0)

k!
hk.

Since the k-th derivative of pm when k > deg pm is zero, the above sum is a finite sum, and it will terminate

at k = deg pm. Since N and D commute, we can substitute x0 = D and h = N to obtain

pm(D +N) =

∞∑
k=0

p
(k)
m (D)

k!
Nk.

Since N is nilpotent, N ℓ = 0 for some positive integer ℓ. Therefore,

pm(A) =

ℓ−1∑
k=0

p
(k)
m (D)

k!
Nk,
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since N ℓ = N ℓ+1 = · · · = 0.

Applying the term by term differentiation of power series to f(x) =
∞∑

n=0
anx

n we obtain f (k)(x) =
∞∑

n=0

dk(anx
n)

dxk
,

which means the polynomials p
(k)
m (x) are partial sums of f (k)(x). By (∗) we have lim

m→∞
p
(k)
m (D) = f (k)(D)

exists. Therefore, we have:

f(A) = lim
m→∞

pm(A) =

ℓ−1∑
k=0

f (k)(D)

k!
Nk.

This means the pm(A) converges and thus the power series for f(A) is convergent.

If we substitute f(x) = ex, we obtain: eA = eD
n−1∑
k=0

Nk

k!
.

We summarize this in the following two theorems.

Theorem 13.6. Suppose f : R→ R is an analytic function, D = Pdiag(λ1, . . . , λn)P
−1 is a diagonalizable

matrix. Then,

f(D) = Pdiag(f(λ1), . . . , f(λn))P
−1.

Theorem 13.7. Suppose f : R→ R is an analytic function, with its Taylor series given as f(t) =
∞∑
k=0

akt
k.

Then, for every matrix A ∈Mn(C), the series f(A) =
∞∑
k=0

akA
k converges. Furthermore, if A = D+N with

DN = ND, D diagonalizable, and N nilpotent, then f(A) =
n−1∑
k=0

f (k)(D)

k!
Nk.

(Note: We define A0 = I for every square matrix A.)

Example 13.5. Evaluate sinA and eA, where A =

 3 −1

1 1

 .

13.3 Examples

Example 13.6. Suppose A = PBP−1 for three square matrices A,B, P . Prove that eA = PeBP−1.

Solution. By definition eA = lim
m→∞

pm(A), where pm(z) =
m∑

k=0

zk

k!
. Substituting A = PBP−1 we obtain the

following:

pm(A) =

m∑
k=0

(PBP−1)k

k!
=

m∑
k=0

PBkP−1

k!
= P

(
m∑

k=0

Bk

k!

)
P−1 = P pm(B) P−1.

By properties of limit we have the following:

eA = lim
m→∞

pm(A) = lim
m→∞

P pm(B) P−1 = P
(

lim
m→∞

pm(B)
)
P−1 = PeBP−1.

Therefore, eA = PeBP−1.

Example 13.7. Find all A ∈Mn(C) satisfying A2 = A.
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Solution. First, note that if λ is an eigenvalue of A, then Av = λv for some nonzero v and thus A2v = λ2v,

which implies λ2 = λ, since A = A2. Therefore, λ = 0, 1. We will now write A in Jordan form: A = PJP−1.

A2 = A ⇐⇒ PJ2P−1 = PJP−1 ⇐⇒ J2 = J.

By block multiplication of matrices B2 = B for every Jordan block of J . If B is of size more than 1× 1, then

the (1, 2) entry of B2 is 2λ, while the (1, 2) entry of B is 1. Therefore, λ = 1/2, which is a contradiction.

Therefore, all Jordan blocks of J are 1× 1, and thus A is diagonalizable. This means A2 = A if and only if

A = PDP−1, where D is a diagonal matrix whose diagonal entries are 0 and 1.

Example 13.8. Evaluate sin(A), where A =

 −1 1

0 −1

.

Solution. Let A = −I +N , where N =

 0 1

0 0

 . By Theorem 13.7 and Theorem 13.6, we have,

sin(A) = sin(−I) + cos(−I)N =

 sin(−1) 0

0 sin(−1)

+

 cos(−1) 0

0 cos(−1)

 0 1

0 0

 .

Therefore,

sin(A) =

 − sin 1 cos 1

0 − sin 1

 .

13.4 Exercises

Definition 13.5. For every positive integer n, the number of sequences of positive integers a1 ≤ a2 ≤ a2 ≤

· · · ≤ ak satisfying a1 + a2 + · · ·+ ak = n is denoted by p(n).

The answer to the next problem could be in terms of the function p(n) defined above.

Exercise 13.1. How many n × n matrices J in Jordan form are there that have a single given eigenvalue

λ? How about if J were to have two distinct given eigenvalues λ1 and λ2?

Exercise 13.2. Two (n+ 1)× (n+ 1) matrices A and B with complex entries are given. Assume the list of

eigenvalues of both A and B is

1, 2, . . . , n− 2, n− 1, n, n.

Suppose further that neither A nor B is diagonalizable. Prove that A and B are similar matrices.

Hint: Find Jordan forms of A and B.

Exercise 13.3. Find cos(A) and eA if A =

 2 1

0 2

 .
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Exercise 13.4. Suppose B is a Jordan block with eigenvalue λ, i.e. a square matrix of the form:

B =



λ 1 0 · · · 0

0 λ 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · λ 1

0 0 · · · 0 λ


(a) Prove that B is similar to BT .

(b) Using part (a) and Jordan canonical form, prove that every matrix in Mn(C) is similar to its transpose.

Exercise 13.5. Evaluate eB, where B is the n× n Jordan block with λ on its main diagonal.

Exercise 13.6. Show the number of Jordan blocks of size k×k corresponding to an eigenvalue λ of a square

matrix A is given by the following formula:

2 dimKer (A− λI)k − dimKer (A− λI)k+1 − dimKer (A− λI)k−1.

Exercise 13.7. Suppose A ∈ Mn(C). Assume rankAm = rankAm+1 for some positive integer m. Prove

rankAm = rankAk for every integer k ≥ m.

Exercise 13.8. Prove a matrix A ∈ Mn(C) is diagonalizable if and only if rank (A− λI) = rank (A− λI)2

for every λ ∈ σ(A).

Exercise 13.9. Given nonzero numbers a1, . . . , an find the matrix in Jordan form that is similar to the

(n + 1) × (n + 1) matrix (shown below) whose entries immediately below the main diagonal are a1, . . . , an,

and all of its other entries are zero.



0 0 · · · 0 0

a1 0 · · · 0 0

0 a2 · · · 0 0
...

...
. . .

...
...

0 0 · · · an 0


.

Exercise 13.10. Show that a matrix is diagonalizable if and only if its Jordan form J is diagonal.

Exercise 13.11. Write the matrix A in the form PJP−1, where J is in Jordan form:

A =


3 −1 0 0

9 −3 0 0

0 0 5 −2

0 0 12 −5

 .

Use this to find eA. You could leave your answers as products of matrices.
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Exercise 13.12. Let A be an n × n matrix. Recall that A can be written as A = D + N , where D is

diagonalizable, N is nilpotent and ND = DN . Also, recall that eigenvalues of A and D are the same.

(a) Using the fact that N is nilpotent, prove that for any positive integer m, we have Am =
n−1∑
k=0

(
m
k

)
Dm−kNk.

(b) Suppose every eigenvalue λ of A satisfies |λ| < 1. Prove that Dm approaches the zero matrix as m→∞.

Deduce that Am approaches the zero matrix as m→∞.

Hint: You may use the fact that exponential decay is faster than polynomial growth.

Exercise 13.13. Suppose A is a square matrix satisfying A4 = A. Prove that A is diagonalizable.

Exercise 13.14. Find cos(A) and eA if A is each of the following matrices.
1 0 2

0 2 0

0 0 1

 ,

 2 1

0 2


Exercise 13.15. Suppose λ is an eigenvalue of an n×n matrix A for which Ker (A−λI)n−1 ̸= Ker (A−λI)n.

Prove that A is similar to a single Jordan block.

Exercise 13.16. Prove that for every analytic function f , two square matrices A,P of the same size, with

P being invertible, we have f(PAP−1) = Pf(A)P−1.

Exercise 13.17. Prove that for every block matrix

A =

 B 0

0 C

 ,

where B,C are square matrices, and every analytic function f : R→ R we have

f(A) =

 f(B) 0

0 f(C)

 .

Exercise 13.18. Consider the matrices

A =

 0 1

0 0

 , and

 0 0

−1 0

 .

Evaluate eA, eB and eA+B. Show that eAeB ̸= eA+B.
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Week 14

14.1 Quotient Spaces

Definition 14.1. Given a subspace W of a vector space V and a vector x ∈ V , the coset of W in V

corresponding to x is the set denoted by x+W and defined by:

x+W = {x+w | w ∈W}.

Example 14.1. Let W be a 1-dimensional subspace of R2. Then cosets of W in R2 are precisely all lines

identical or parallel to W .

Theorem 14.1. Suppose W is a subspace of a vector space V and let x,y ∈ V . Then,

(a) Either x+W = y +W or (x+W ) ∩ (y +W ) = ∅ (but not both!)

(b) x+W = y +W if and only if x− y ∈W .

(c) x+W = W if and only if x ∈W.

Remark 14.1. Note that a coset x +W typically has many representations. In other words x +W may be

the same as y +W even though x and y are not the same. Because of that when a definition depends on

the choice of a representative x we must make sure the definition is valid. This is phrased as the definition

is well-defined.

Definition 14.2. Given a subspace W of a vector space V , the set V/W (or
V

W
) is the set of all cosets of

W in V . In other words,
V

W
= {x+W | x ∈ V }.

Theorem 14.2. Given a subspace W of a vector space V , the set V/W along with the following addition

and scalar multiplication

(x+W ) + (y +W ) = (x+ y) +W, and c(x+W ) = cx+W, ∀x,y ∈ V,∀c ∈ F

is a vector space.

125
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Definition 14.3. The vector space
V

W
is called the quotient space of V by W .

Theorem 14.3. Let W be a subspace of a finite dimensional vector space V . Then,

dim(V/W ) = dimV − dimW.

Furthermore, if v1, . . . ,vk form a basis for W and vk+1+W, . . . ,vn+W form a basis for
V

W
, then v1, . . . ,vn

form a basis for V .

Theorem 14.4 (First Isomorphism Theorem). Let L : V → U be a linear transformation of (not necessarily

finite dimensional) vector spaces. Then, L :
V

KerL
→ L(V ) given by L(v+KerL) = L(v) is an isomorphism.

Example 14.2. Let c ∈ F. Find a linear transformation from Pn to F whose kernel is

V = {f(x) ∈ Pn | f(c) = 0}.

Use that to show V is a subspace of Pn of dimension n.

Example 14.3. For every vector space V , the vector space V/{0} is isomorphic to V .

Definition 14.4. For every two subspaces W and U of a vector space V , we define

W + U = {w + u | w ∈W, and u ∈ U}.

Theorem 14.5 (Second Isomorphism Theorem). Let W,U be two subspaces of a (not necessarily finite

dimensional) vector space V . Then, W + U is a subspace of V and

L :
W + U

U
→ W

W ∩ U
, given by L(w + U) = w + (W ∩ U),∀w ∈W,

is an isomorphism. Furthermore, if W + U is finite dimensional, then

dim(W + U) = dimW + dimU − dim(W ∩ U).

Theorem 14.6 (Third Isomorphism Theorem). Suppose W ⊆ U are subspaces of a (not necessarily finite

dimensional) vector space V . Then,
U

W
is a subspace of

V

W
, and

L :
V/W

U/W
→ V

U
, given by L

(
(v +W ) +

U

W

)
= v + U,∀v ∈ V,

is an isomorphism.

Quotient spaces can be used to eliminate “unwanted” portions of a vector space. What follows illustrates an

example.

Definition 14.5. A seminorm on a vector space V is a function p : V → R satisfying all of the following:

(a) (Homogeneity) p(cx) = |c|p(x) for all c ∈ F and all x ∈ V ,

(b) (Triangle Inequality) p(x+ y) ≤ p(x) + p(y) for all x,y ∈ V , and
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(c) (Nonnegativity) p(x) ≥ 0 for all x ∈ V .

Note that in this definition we do not require p(x) to be nonzero for every nonzero vector x.

Example 14.4. Consider the vector space V consisting of all integrable function f : [0, 1] → R. The

following is a seminorm on V , which is not a norm:

p(f) =

(∫ 1

0

(f(x))2 dx

)1/2

.

Theorem 14.7. Suppose V is a vector space equipped with a seminorm p. Let W be the subset of V consisting

of every vector in V whose seminorm is zero. In other words

W = {x ∈ V | p(x) = 0}.

Then, the following is a norm on V/W :

||x+W || = p(x), ∀x ∈ V.

14.2 Examples

Example 14.5. Let V be the subspace of F3 spanned by (1,−1, 3). Find all vectors v ∈ F3 for which

v + V = (1, 2, 0) + V.

Solution. Let v = (x, y, z). By Theorem 14.1, (x, y, z)+V = (1, 2, 0)+V if and only if (x− 1, y− 2, z) ∈ V .

This is equivalent to (x − 1, y − 2, z) = (c,−c, 3c), which implies x = c + 1, y = −c + 2, z = 3c. Thus,

v = (c+ 1,−c+ 2, 3c), for some c ∈ F.

Example 14.6. Let W be a subspace of a vector space V . Prove that every subspace of V/W is of the form

X/W , where X is a subspace of V containing W .

Solution. Let A be a subspace of V/W , and let X be given by

X = {x ∈ V | x+W ∈ A}.

We will show X is a subspace of V containing W and that A = X/W .

First, note that if w ∈W , then w +W = 0+W ∈ A, and thus w ∈ X. Therefore, X contains W .

Now, assume x,y ∈ X and c ∈ F. By definition, x +W and y +W are both in A. Since A is a subspace

of V/W , we have (x+W ) + (y +W ), c(x+W ) ∈ A. Therefore, (x+ y) +W and (cx) +W are both in A.

Thus, x+ y and cx are in X. Thus, by the subspace criterion, X is a subspace of V .

We will now show A = X/W . If a+W ∈ A, then by definition of X, we have a ∈ X and thus a+W ∈ X/W .

Suppose x+W ∈ X/W . By definition of X we have x+W ∈ A. Thus, A = X/W , as desired.
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In the next problem we will use the fact that for every two vector spaces X and Y , their Cartesian product,

X × Y is also a vector space of dimension dimX + dimY. See Exercise 3.13.

Example 14.7. Suppose V is a finite dimensional vector space. The diagonal of the vector space V × V is

the set given by

D = {(v,v) | v ∈ V }.

Using the First Isomorphism Theorem, prove that D is a subspace of V × V whose dimension is the same as

dimV.

Solution. Define L : V × V → V by L(x,y) = x − y. We will show L is linear. Let x1,x2,y1,y2 ∈ V and

c ∈ F.

L((x1,y1) + c(x2,y2)) = L(x1 + cx2,y1 + cy2) = x1 + cx2 − y1 − cy2 = L(x1,y1) + cL(x2,y2).

Therefore, L is linear. The kernel of L is precisely D. Note also that L(x,0) = x, which implies L is onto.

Therefore by the First Isomorphism Theorem, (V ×V )/D is isomorphic to V and thus dim(V ×V )−dimD =

dimV . Since dim(V × V ) = dimV + dimV , we conclude dimD = dimV .

Example 14.8. Let V be a vector space and E be a subspace of V . Define ϕ :
V

E
→ E⊥ by ϕ(x +

E) = PE⊥(x). Show that ϕ is an isomorphism. Solve this problem once directly using the definition of an

isomorphism, and once using the First Isomorphism Theorem.

Solution 1. First, we will show ϕ is well-defined. Suppose x + E = y + E for two vectors x,y ∈ V . By

Theorem 14.1, x− y ∈ E. Since PE⊥(x)− x ∈ E, we have PE⊥(x)− y ∈ E. On the other hand PE⊥(x) is

in E⊥. Therefore, PE⊥(y) = PE⊥(x).

First, we will show ϕ is linear. Let x,y ∈ V and c ∈ F.

ϕ((x+ E) + c(y + E)) = ϕ((x+ cy) + E) = PE⊥(x+ cy) = PE⊥(x) + cPE⊥(y) = ϕ(x+ E) + cϕ(y + E).

Thus, ϕ is linear. Now, we will show ϕ is one-to-one. Suppose ϕ(x+ E) = ϕ(y + E). By definition of ϕ we

have PE⊥(x) = PE⊥(y). Therefore, PE⊥(x− y) = 0. This implies x− y − 0 is orthogonal to E⊥, and thus

x− y ∈ E. By Theorem 14.1, we have x+ E = y + E. Thus, ϕ is one-to-one.

Now, we will show ϕ is onto. Let x ∈ E⊥. Note that ϕ(x+E) = PE⊥(x) = x, since x ∈ E⊥. This implies ϕ

is an isomorphism.

Solution 2. We apply the First Isomorphism Theorem: We know PE⊥ : V → E⊥ is a linear transformation.

Also, PE⊥ is onto since if x ∈ E⊥, then PE⊥(x) = x. Thus, by the First Isomorphism Theorem, ϕ defined

above is an isomorphism.
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14.3 Exercises

Exercise 14.1. Consider P2 as a subspace of P4. Find all polynomials f(t) ∈ P4 for which f(t) + P2 =

(1 + t4) + P2.

Exercise 14.2. Suppose W is a subspace of a vector space V that has only finitely many cosets. Prove that

W = V .

Exercise 14.3. We know the intersection of every two subspaces is another subspace. Prove that the in-

tersection of every two cosets is either empty or it is another coset. In other words, show if U and W are

subspaces of a vector space V and x,y ∈ V , then (x+U)∩ (y+W ) is either empty or it is a coset of U ∩W .

Exercise 14.4. Suppose X,Y are vector spaces over the same field. Using the First Isomorphism Theorem,

prove that
X × Y

X × {0}
is isomorphic to Y . Deduce that dim(X × Y ) = dimX + dimY .

Exercise 14.5. Suppose L : X → Y is a linear transformation of vector spaces. Using the First Isomorphism

Theorem, prove that the set given by

A = {(x,y) | y = L(x)}.

is a subspace of X × Y and that its dimension is the same as the dimension of X.

Exercise 14.6. Let E be the subspace of R4 generated by (1,−1, 2, 1)T , (2, 0, 1,−1)T and (4,−2, 5, 1)T . Find

a basis for
R4

E
.

Exercise 14.7. Suppose W is a subspace of a finite dimensional vector space V . Prove that if v1, . . . ,vk

form a basis for W and v1, . . . ,vn form a basis for V , then vk+1 +W, . . . ,vn +W form a basis for
V

W
.

Exercise 14.8. Determine if the vector space C[R]/C1[R] is finite dimensional. How about Cn[R]/Cn+1[R],

for a given positive integer n?

Exercise 14.9. Write an onto linear transformation from P to P whose kernel is all constant polynomials.

Use the First Isomorphism Theorem to deduce
P
F
∼= P. Using a similar method show

C∞[R]
A

∼= C∞[R], where

A is the vector space of all constant functions from R to R.
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Basics of Complex Numbers

A.1 Definition and Basic Operations

Definition A.1. The set of complex numbers, denoted by C, is defined as

C = {a+ bi | a, b ∈ R},

where i is a solution of the equation i2 = −1. The form a+ bi for a complex number is called its standard

form. Two complex numbers a+ bi and c+ di with a, b, c, d ∈ R are said to be equal if and only if a = c and

b = d. We say a and b are the real and the imaginary parts of the complex number z = a+ bi, respectively.

We denote these by Re (z) and Im (z), respectively.

The set C is equipped with two binary operations + and . as follows:

• ∀a, b, c, d ∈ R (a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

• ∀a, b, c, d ∈ R (a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i. (Or (a+ bi)(c+ di), without the dot.)

Note: Both real and imaginary parts of a complex number are real.

Definition A.2. For a complex number z = a+ bi, where a and b are real numbers, we define its complex

conjugate as z = a− bi and its absolute value (or norm) as |z| =
√
a2 + b2.

Theorem A.1 (Field properties of C). For every x, y, z ∈ C

• (Commutativity) x+ y = y + x, and xy = yx.

• (Associativity) (x+ y) + z = x+ (y + z) and (xy)z = x(yz).

• (Additive Identity) x+ 0 = x. (Here zero of C is given by 0 = 0 + 0i.)

• (Additive Inverse) There is t ∈ C for which x+ t = 0. (When x = a+ bi, we have t = −a+ (−b)i.)

• (Multiplicative Inverse) If x ̸= 0, there is some t ∈ C for which xt = 1. (t is denoted by x−1 or 1/x.)

• (Distributivity) x(y + z) = xy + xz.
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Theorem A.2 (Properties of complex conjugate and norm). For every two complex numbers z and w, we

have

• zw = z w.

• |zw| = |z| |w|.

• |z|2 = z z.

• If z ̸= 0, then z−1 =
z

|z|2
.

• |z + w| ≤ |z|+ |w|. (Triangle Inequality.)

Example A.1. Find the additive and multiplicative inverse of 3 + 2i.

Solution. Its additive inverse is −3− 2i. Its multiplicative inverse is
3− 2i

9 + 4
=

3

13
− 2

13
i.

A.2 Geometry of C

Each complex number z = a+ bi can be plotted on a plane called the complex plane. The horizontal axis

consists of all real numbers and the vertical axis consists of all complex numbers with zero real part. If θ is

the angle between 0z and the positive real axis, then z = |z|(cos θ + i sin θ).

bi

aO

−bi

z = a+ bi

z = a− bi

Re

Im

θ

Recall the power series of cos θ, sin θ and ex are as follows:

cos θ = 1− θ2

2!
+

θ4

4!
− θ6

6!
+− · · ·

sin θ = θ − θ3

3!
+

θ5

5!
− θ7

7!
+− · · ·

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+

x4

4!
+ · · ·

Multiplying sin θ by i and adding it to cos θ we obtain the series for ex, when x is replaced by iθ. This yields

the following theorem:
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Theorem A.3. For every real number θ, we have eiθ = cos θ + i sin θ.

Theorem A.4. Let x, y be two real numbers and n be an integer. Then,

(a) eixeiy = ei(x+y).

(b) (De Moivre’s Formula) (eix)n = einx.

A.3 Examples

Example A.2. Let z = 2 + i, w = 1 − 3i. Write down the complex numbers z + w, z − w, zw, and z/w in

standard form.

Solution. z+w = 3−2i, z−w = 1+4i, zw = 2+i−6i−3i2 = 5−5i. z/w = zw/|w|2 = (2+i+6i+3i2)/(1+9) =

−0.1 + 0.7i.

Example A.3. Find all real numbers a, b for which a2 + bi+ 2i = (7 + 3i)(1− i).

Solution. Writing the left hand side in standard form and multiplying the right hand side we obtain:

a2 + (b+ 2)i = 7− 7i+ 3i+ 3 = 10− 4i⇒ a2 = 10, and b+ 2 = −4.

The answer is a = ±
√
10, and b = −6.

Example A.4. Evaluate (1 + i)1000

Solution. Since we are finding large exponents of a complex number, De Moiver’s formula would be helpful.

So, we will first write down this complex number in polar form. |1+ i| =
√
2. The angle between the segment

from 0 to 1 + i and the positive real axis is π/4. This means 1 + i =
√
2eiπ/4. Therefore, (1 + i)1000 =

2500ei250π = 2500(cos(250π) + i sin(250π)) = 2500.

Example A.5. Given a positive integer n, solve the equation zn = 1 over complex numbers.

Solution. By taking the absolute value of both sides we obtain |z|n = 1. Since |z| is a nonnegative real

number, we must have |z| = 1. Therefore, using the polar form we obtain z = eiθ for some angle θ ∈ [0, 2π).

This means, we must solve einθ = 1. This holds if and only if cos(nθ) = 1 and sin(nθ) = 0. This is equivalent

to nθ = 2kπ for some integer k. Since θ ∈ [0, 2π), we have k = 0, 1, . . . , n− 1. Therefore, all roots of zn = 1

are z = e2ikπ/n with k = 0, 1, . . . , n− 1.

Example A.6. Prove that a complex number z satisfies |z| = 1 if and only if z = eiθ for some real number

θ.
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Solution. (⇒) Suppose |z| = 1. By the polar form of z we know z = |z|eiθ = eiθ for some θ ∈ [0, 2π).

(⇐) Suppose z = eiθ for some real number θ. Then, z = cos θ + i sin θ. Therefore, |z| =
√
cos2 θ + sin2 θ =

1.

A.4 Exercises

Exercise A.1. Find all real numbers a, b for which a+ 3bi+ a2b = 2ab+ ai+ 2bi.

Exercise A.2. Using the method of Mathematical Induction, prove the De Moivre’s formula: (eix)n = einx

for every real number x and every integer n. Note that the cases where n is negative or positive should be

dealt with separately.

Exercise A.3. Suppose z, w are complex numbers for which both z + w and i(z − w) are real. Prove that

z = w.
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