[1] S. Berhanu, W.W. Comfort and J.D. Reid, Counting subgroups and topological group topologies, Paci c J. of Math 116 (1985), 217-241.
[2] S. Berhanu, Hypo-analytic pseudo-di erential operators, Proceedings of AMS 105 (1989), 582-588.
[3] S. Berhanu, Microlocal hypo-analyticity and hypo-analytic pseudodifferential operators, Proceedings of AMS 105 (1989), 594-602.
[4] S. Berhanu, Propagation of hypo-analyticity along bicharacteristics, Paci c J of Math 138 (1989), 221-232.
[5] S. Berhanu, An asymptotic formula for hypo-analytic pseudodi erential operators, Transactions of the AMS 322 (1990), 711-729.
[6] S. Berhanu, Microlocal Holmgren’s theorem for a class of hypo-analytic structures, Transactions of the AMS 323 (1991), 51-64.
[7] S. Berhanu, Propagation of singularities in a locally integrable structure, Michigan Journal of Math 40 (1993), 119-138.
[8] S. Berhanu and S. Chanillo, Boundedness of the FBI transform on Sobolev spaces and propagation of singularities, Communications in PDE 16 (1991), 1665-1686.
[9] S. Berhanu and S. Chanillo, Holder and Lp estimate for a local solution of @b at top degree, Journal of Functional Analysis 114 (1993), 232-256.
[10] S. Berhanu, Liouville’s theorem and the maximum modulus principle for a system of complex vector fields, Communications in PDE 19 (1994), 1805-1827.
[11] S. Berhanu and G. Mendoza, Orbits and Global unique continuation for systems of vector fields, Journal of Geometric Analysis 7 (1997), 173-194.
[12] S. Berhanu, Extreme points and the strong maximum principle for CR functions, Contemporary Math 205 (1997), 1-13.
[13] S. Berhanu and A. Meziani, On rotationally invariant vector fields in the plane, Manuscripta Math. 89 (1996), 355-371.
[14] S. Berhanu and A. Meziani, Global properties of a class of planar vector fields of infnite type, Communications in PDE 22 (1997), 99-142.
[15] S. Berhanu and I. Pesenson, The trace problem for vector fields satisfying Hormander’s condition, Mathematische Zeitschrift 231 (1999), 103-122.
[16] S. Berhanu and G. Porru, Qualitative and quantitative estimates for large solutions to semilinear equations, Communications in Applied Analysis 4 (2000), 121-131.
[17] S. Berhanu, F. Gladiali and G. Porru, Qualitative properties of solutions to elliptic singular problems, Journal of Inequal. and Appl. 3 (1999), 313-330.
[18] S. Berhanu, J. Hounie and P. Santiago, A similarity principle for complex vector fields and applications, Transactions of the AMS 353 (2000), 1661-1675.
[19] S. Berhanu and J. Hounie, Uniqueness for locally integrable solutions of overdetermined systems, Duke Math. Journal 105 (2000), 387-410.
[20] S. Berhanu and J. Hounie, An F. and M. Riesz theorem for planar vector fields, Mathematische Annalen 320 (2001), 463-485.
[21] S. Berhanu and J. Hounie, A strong uniqueness theorem for planar complex vector fields, Bol. Soc. Bras. Mat. 32 (2001), 359-376.
[22] S. Berhanu and J. Hounie, On boundary properties of solutions of complex vector fields, Journal of Functional Analysis 192 (2002), 446-490.
[23] S. Berhanu and J. Hounie, Traces and the F. and M. Riesz theorem for planar vector fields, Annales de L’Institut Fourier 53 (2003), 1425-1460.
[24] S. Berhanu and J. Hounie, On boundary regularity for one-sided locally solvable vector fields, Indiana University Mathematics Journal 52 (2003), 1447-1477.
[25] S. Berhanu, F. Cuccu and G. Porru, On the boundary behaviour, including second order effects, of solutions to singular elliptic problems, Acta Mathematics Sinica 23, No 3 (2007), 479-486.
[26] S. Berhanu and Ahmed Mohammed, A Harnack inequality for ODE solutions, The American Mathematical Monthly 112 (2005), 32-41.
[27] S. Berhanu and J. Hounie, The F. and M. Riesz property for vector fields, Contemporary Math 368 (2005), 25-39.
[28] S. Berhanu and J. Hounie, An F. and M. Riesz theorem for a system of vector fields, Inventiones Mathematicae 162 (2005), 357-380.
[29] S. Berhanu and C.Wang, On the maximum principle and a notion of plurisub-harmonicity for abstract CR manifolds, Michigan Mathematical Journal, 55, Issue 1 (2007), 81-102.
[30] S. Berhanu and J. Hounie, On the F. and M. Riesz theorem on wedges with edges of class C1; , Math. Zeitschrift, 255 (2007), 161-175.
[31] Z. Adwan and S. Berhanu, Edge-of-the-wedge theory in involutive structures, The Asian Journal of Mathematics 11, Number 1 (2007), 1-18.
[32] S. Berhanu and J. Hounie, The Baouendi-Treves approximation theorem for continuous vector fields, The Asian Journal of Mathematics 11, Number 1 (2007), 55-68.