Publications

Work done at UMD

Solid-State NMR(SSNMR):

  1. Baumann, A.; Beaucage, P.; Vallery, R.; Gidley, D.; Nieuwendaal, R.; Snyder, C.; Ilavsky, J.; Chen, F.; Stafford, C. and Soles, C. Assessing Composite Structure in Metal-Organic Framework-Polymer Mixed-Matrix Membranes. Chem. Mater. https://doi.org/10.1021/acs.chemmater.4c00283
  2. Kim, E.; Mohammadiroudbari, M.; Chen, F.; Yang, Z. and Luo, C. A Carbonyl and Azo-based Polymer Cathode for Low-temperature Na-ion batteries. ACS Nano. 2024, 18: 4159–4169. https://doi.org/10.1021/acsnano.3c08860
  3. Menke, A.J.; Chen, F. and Chen, K. Multinuclear 1H/13C/15N chemical shift assignment of therapeutic octreotide acetate performed at natural abundance short: Chemical shift assignment of octreotide at natural abundance. Magn. Reson. Chem. https://doi.org/10.1002/mrc.5436
  4. Zhang, W.; Koverga, V.; Liu, S.; Zhou, J.; Wang, J.; Bai, P.; Tan, S.; Dandu, N.; Wang, Z.; Chen, F.; Xia, J.; Wan, H.; Zhang, X.; Yang, H.; Nan, B.; Lucht, B.L.; Li, A.-M.; Wang, H.; Ncube, M.; Yang, X.-Q.; Hu, E.; Raghavan, S.R.; Ngo, A.T. and Wang, C. Single-Phase Local-High-Concentration Solid Polymer Electrolytes for Lithium Metal Batteries. Nat. Energy. 2024. https://doi.org/10.1038/s41560-023-01443-0
  5. Mohammadiroudbari, M.; Li, S.; Huang, J.; Yang, Z.; Chen, F.; Cheng, L. and Luo, C. Three-dimensional Polymers as Organic Cathodes for Affordable and Sustainable Sodium/Potassium-ion Batteries. Batteries & Supercaps. 2023, e202300472. https://doi.org/10.1002/batt.202300472
  6. Yang, M.C.; Rollins, D.; Huber, D.; Ou, J.-T.; Baptiste, M.; Zeppuhar, A.; Chen, F. and Taylor, M. Carbonyl-Rich Porous Organic Polymers for Cobalt Adsorption from Water. J. Mater. Chem. C 2023, 11: 15541–15547. https://doi.org/10.1039/D3TC03320A
  7. Zeppuhar, A.; Rollins, D.; Huber, D.; Bazan-Bergamino, E.; Chen, F.; Evans, H. and Taylor, M. Linkage Transformations in a Three-Dimensional Covalent Organic Framework for High-Capacity Adsorption of Perfluoroalkyl Substances. ACS Appl. Mater. Interfaces 2023, 15: 52622–52630. https://doi.org/10.1021/acsami.3c12826
  8. Mohammadiroudbari, M.; Huang, J.; Kim, E.; Yang, Z.; Chen, F. and Luo, C. Porous Bipolar Polymers as Organic Cathodes for Sustainable Sodium/Potassium-ion Batteries. J. Mater. Chem. A 2023, 11: 16636-16647. https://doi.org/10.1039/D3TA02445H
  9. Mohanan, M.; Ahmad, H.; Ajayan, P.; Pandey, P.K.; Calvert, B.; Zhang, X.; Chen, F.; Kim, S.J.; Kundu, S. and Gavvalapalli, N. Using Molecular Straps to Engineer Conjugated Porous Polymers Growth, Chemical Doping and Conductivity. Chem. Sci. 2023, 14: 5510–5518. https://doi.org/10.1039/d3sc00983a
  10. Qin, K.; Holguin, K.; Huang, J.; Mohammadiroudbari, M.; Chen, F.; Yang, Z.; Xu, G. and Luo, C. A fast-charging and high-temperature all-organic rechargeable potassium battery. Adv. Sci. 2022, 2106116. https://doi.org/10.1002/advs.202106116
  11. Holguin, K.; Qin, K.; Kamphaus, E.; Chen, F.; Cheng, L.; Xu, G. and Luo, C. Establishing substitution rules of functional groups for high-capacity organic anode materials in Na-ion batteries. J. Power Sources. 2022, 533: 231383. https://doi.org/10.1016/j.jpowsour.2022.231383
  12. Celiz, M.D.; Morehouse, K. M.; Ridge, C.D.; Chen, F.; deJager, L. S. and Begley, T. H. Extraction and Analysis of an Organophosphate Salt Nucleating Agent from Irradiated Polypropylene Resin. Food. Addit. Contam. 2022, 39: 1009-1020. https://doi.org/10.1080/19440049.2022.2037727
  13. Skaggs, C.M.; Siegfried, P.E.; Kang, C.-J.; Brown, C.M.; Chen, F.; Ma, L.; Ehrlich, S.N.; Xin, Y.; Croft, M.; Xu, W.; Lapidus, S.H.; Ghimire, N.J. and Tan, X. Iridate Li8IrO6: An Antiferromagnetic Insulator. Inorg. Chem. 2021, 60: 17201-17211. https://doi.org/10.1021/acs.inorgchem.1c02535
  14. Olademehin, O.; Liu, C.; Rimal, B.; Adegboyega, N.F.; Chen, F.; Sim, C. and Kim, S.J. Dsi-RNA Knockdown of Genes Regulated by Foxo Reduces Glycogen and Lipid Accumulations in Diapausing Culex Pipiens. Scientific Reports. 2020, 10: 17201. https://doi.org/10.1038/s41598-020-74292-6
  15. Xiao, S.; Lee, W.; Chen, F.; Zavalij, P.; Gutierrez, O. and Davis, J.T. Oxidation of 8-Thioguanosine Gives Redox-Responsive Hydrogels and Reveals Intermediates in a Desulfurization Pathway. Chem. Commun. 2020, 56: 6981-6984. https://doi.org/10.1039/D0CC02926B
  16. Cui, C.; Ji, X.; Wang, P.F.; Xu, G.L.; Chen, L.; Chen, J.; Kim, H.; Ren, Y.; Chen, F.; Yang, C.; Fan, X.; Luo, C.; Amine, K. and Wang, C. Integrating Multi-Redox Centers into one Framework for High Performance Organic Li-Ion Battery Cathode. ACS Energy Lett. 2020, 5: 224-231. https://doi.org/10.1021/acsenergylett.9b02466

Acknowledgements (SSNMR at UMD):

  1. Li, T.; Algrim, L.; McEntee, M.; Tsyshevsky, R.; Leonard, M.; Karwacki, C.; Kuklja, M.M.; Zachariah, M.R. and Rodriguez, E.E. Aliovalent-Doping Effects on the Surface Activity of Mesoporous CeO2 toward Nerve Agent Simulant DMMP Decomposition. J. Phys. Chem. C 2022, 126: 17923–17934. https://doi.org/10.1021/acs.jpcc.2c04853
  2. Zhang, X.; Mao, Y. and Briber, R.M. Efficient production of oligomeric chitin with narrow distributions of degree of polymerization using sonication-assisted phosphoric acid hydrolysis. Carbohydr. Polym. 2022, 276: 118736. https://doi.org/10.1016/j.carbpol.2021.118736

Solution NMR:

  1. Li, A.M.; Borodin, O.; Pollard, T.; Zhang, W.; Zhang, N.; Tan, S.; Chen, F.; Jayawardana, C.; Lucht, B.; Hu, E.; Yang, X. and Wang, C. Methylation enables use of fluorine-free ether electrolytes in high-voltage lithium metal batteries. Nat. Chem. Accepted.
  2. Xu, J.; Zhang, J.; Li, Q.; Pollard, T.P.; Tan, S.; Hou, S.; Wan, H.; Chen, F.; He, H.; Hu, E.; Xu, K.; Yang, X.Q.; Borodin, O. and Wang, C. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature, 2023, 614: 694–700. https://doi.org/10.1038/s41586-022-05627-8
  3. Wu, M.; Wang, Z.; Zhang, W.; Jayawardana, C.; Li, Y.; Chen, F.; Nan, B.; Lucht, B.L. and Wang, C. High-performance lithium metal batteries enabled by a fluorinated cyclic ether with a low reduction potential. Angewandte Chemie, 2023, 62: https://doi.org/10.1002/anie.202216169
  4. Wang, P.; Fortner, J.; Luo, H.; Kłos, J.; Wu, X.; Qu, H.; Chen, F.; Li, Y. and Wang, Y.H. What pairs with the aryl sp3 defect on sp2 carbon lattices? J. Am. Chem. Soc. 2022, 144: 13234–13241. https://doi.org/10.1021/jacs.2c03846
  5. Schmidt, W.F.; Chen, F.; Broadhurst, C.L.; Qin, J.; Crawford, M. and Kim, M.S. Unique and Redundant Spectral Fingerprints of Docosahexaenoic, Alpha-Linolenic and Gamma-Linolenic Acids in Binary Mixtures. J. Mol. Liq. 2022, 358: 119222. https://doi.org/10.1016/j.molliq.2022.119222
  6. Xu, J.; Ji, X.; Zhang, J.; Yang, C.; Wang, P.; Liu, S.; Ludwig, K.; Chen, F.; Kofinas, P. and Wang, C. Aqueous Electrolyte Design for Super-Stable 2.5 V LiMn2O4||Li4Ti5O12 Pouch Cells. Nat. Energy. 2022, 7: 186–193. https://doi.org/10.1038/s41560-021-00977-5
  7. Pan, N.; Lin, M.; Cui, H.; Fan, W.; Liu, C.; Chen, F.; Fan, C.; Xia, Y. and Sui, K. Accurate Control of All-Polymer Multishelled Hollow Spheres by One-Step Reaction-Diffusion. Chem. Mater. 2020, 32: 8442−8449. https://doi.org/10.1021/acs.chemmater.0c02437
  8. Li, A.M.; Wang, Y.; Zavalij, P.; Chen, F.; Muñoz-Castro, A. and Eichhorn, B.W. [Cp*RuPb11]3– and [Cu@Cp*RuPb11]2–: Centered and Non-Centered Transition-Metal Substituted Zintl Icosahedra. Chem. Commun. 2020, 56: 10859-10862. https://doi.org/10.1039/D0CC03656K
  9. Li, A.M.; Wang, Y.; Downing, D.O.; Chen, F.; Zavalij, P.; Muñoz-Castro, A. and Eichhorn, B.W. Endohedral Plumbaspherenes of the Group 9 Metals: Synthesis, Structure and Properties of the [M@Pb12]3- (M = Co, Rh, Ir) Ions. Chem. Eur. J. 2020, 26: 5824-5833. https://doi.org/10.1002/chem.201905451
  10. Schmidt, W.F.; Chen, F.; Broadhurst, C.L. and Crawford, M. Liquid Molecular Model Explains Discontinuity between Site Uniformity among three N-3 Fatty Acids and Their 13C and 1H NMR Spectra. J. Mol. Liq. 2020, 314:113376. https://doi.org/10.1016/j.molliq.2020.113376
  11. Schmidt, W.F.; Chen, F.; Broadhurst, C.L.; Nguyen, J.K.; Qin, J.; Chao, K. and Kim, M.S. GTRS and 2D-NMR Studies of Alpha and Gamma Linolenic Acids Each Containing the Same H2C14-(H–C=C–H)–C11H2–(H–C=C–H)–C8H2 Moiety. J. Mol. Struct. 2019, 1196: 258-270. https://doi.org/10.1016/j.molstruc.2019.06.046
  12. Wang, Y.; DeCarlo, S.; Wang, L.; Stevens, L.; Chen, F.; Zavalij, P. and Eichhorn, B. Synthesis and Characterization of the {Si(NHCH2CH2NH)3[Mo(CO)3]2}2- Complex Comprising a Si(NHCH2CH2NH)32- Central Ion. Inorg. Chem. 2019, 58: 8915-8917. https://doi.org/10.1021/acs.inorgchem.9b01122