Publications

ORCID iD iconorcid.org/0000-0002-4704-4997

NCBI MyBibliography

2024

[80] L. H. Vo, S. Hong, K. E. Stepler, S. M. Liyanaarachchi, J. Yang, P. Nemes, and Myles B. Poulin*, Mapping protein-exopolysaccharide binding interaction in Staphylococcus epidermidis biofilms by live cell proximity labeling, in peer review (Nat. Chem. Bio. Manuscript ID: NCHEMB-A230817176, submitted on 8/29/2023, awaiting for update from Myles Poulin)

[79] L. G. Rodriguez, C. Lombard-Banek, V. M. Quach, S. B. Choi, C. M. Manzini, and P. Nemes*, Multipoint validation of quantification in capillary electrophoresis mass spectrometry proteomics: isobaric multiplexing with tandem mass tags, ChemRxiv 2024, https://doi.org/10.26434/chemrxiv-2024-kqjt2, (Anal. Chem., manuscript ID ac-2024-06156q, submitted on 11/14/2024, awaiting review by the editor-in-chief)

[78] Jia and P. Nemes*, Development and validation of RoboCap, a robotic capillary platform to automate capillary electrophoresis mass spectrometry toward high-throughput single-cell proteomics, Anal. Chem. 2024, 96, 16985–16993, https://doi.org/10.1021/acs.analchem.4c04353

[76] B. Shen, F. Zhou, and P. Nemes*, Electrophoresis-correlative ion mobility deepens single-cell proteomics in capillary electrophoresis mass spectrometry, bioRxiv 2024, https://doi.org/10.1101/2024.09.11.612533, Mol. Cell. Prot. 2024, in print. Proteome Data: PRIDE PXD053023

[75] B. Shen, J. Chen, and P. Nemes*, Electrophoresis-correlative data-independent acquisition (Eco-DIA) improves the sensitivity of mass spectrometry for limited proteome amounts, Anal. Chem. 2024, 96, 15581–15587, https://doi.org/10.1021/acs.analchem.4c02330

  • Proteome Data: PRIDE PXD051717
  • Our original artwork was featured on the supplementary cover.

 

[74] B. Shen, L. R. Pade, and P. Nemes*, Data-independent acquisition shortens the analytical window of single-cell proteomics to 15 minutes in capillary electrophoresis mass spectrometry, J. Prot. Res. 2024, accepted (in print), https://doi.org/10.1021/acs.jproteome.4c00491, bioRxiv 2024 https://biorxiv.org/cgi/content/short/2024.02.15.580399v1

Our original artwork was featured on the supplementary cover.

 

[73] A. B. Baxi, J. Li, V. M. Quach, Leena R. Pade, Sally A. Moody, and P. Nemes*, Cell-lineage-guided mass spectrometry reveals increased energy metabolism and reactive oxygen species in the vertebrate organizer, Proc. Acad. Nat. Sci. USA 2024, 121, e2311625121, https://doi.org/10.1073/pnas.2311625121, bioRxiv https://doi.org/10.1101/2023.07.07.548174

[72] L. R. Pade, C. Lombard-Banek, J. Li, and P. Nemes*, Dilute to enrich for deeper proteomics: A yolk-depleted carrier for limited populations of embryonic (frog) cells, J. Prot. Res. 2024, 23, 692–793, https://doi.org/10.1021/acs.jproteome.3c00541. ChemRxiv 8/21/2023, https://chemrxiv.org/engage/chemrxiv/article-details/64e3b00e00bbebf0e690dc6f)

  • Our original artwork has been featured on the front cover page.
  • This paper has been selected for ACS Editor’s Choice by an ACS Editor.
  • SI Tables
  • SI Document
  • : Proteome Data: PRIDE PXD044787

2023

[71] S. Choi, T. Vatan, T. A. Alexander, C. Zhang, S. M. Mitchell, C. M. Speer*, and P. Nemes*, Microanalytical mass spectrometry with super-resolution microscopy reveals a proteome transition in the brain’s developing circadian pacemaker, in print, https://doi.org/10.1021/acs.analchem.3c01987

[70] L. R. Pade, C. Lombard-Banek, J. Li, and P. Nemes*, Dilute to enrich for deeper proteomics: A yolk-depleted carrier for limited populations of embryonic (frog) cells, ChemRxiv submitted on 8/21/2023, https://chemrxiv.org/engage/chemrxiv/article-details/64e3b00e00bbebf0e690dc6f

[69] K. E. Stepler, S. C. Hannah, L. A. Taneyhill, and P. Nemes*, Deep proteome of the developing chick midbrain, J. Prot. Res. 2023, in print, https://doi.org/10.1021/acs.jproteome.3c00291

[68] A. Baxi, P. Nemes, and S. A. Moody*, Time-resolved quantitative proteomic analysis of the developing otic vesicle reveals putative congenital hearing loss candidates and a novel role for Tgfbi, iScience 2023, 26, 107665, https://doi.org/10.1016/j.isci.2023.107665

[67] A. B. Baxi, J. Li, V. M. Quach, and P. Nemes*, Cell-lineage-guided mass spectrometry reveals increased energy metabolism and reactive oxygen species in the vertebrate organizer, bioRxiv https://doi.org/10.1101/2023.07.07.548174, in peer review

[56] L. R. Pade, K. E. Stepler, E. P. Portero, K. DeLaney, and P. Nemes*, Mass spectrometry enables spatiotemporal ‘omics: from tissues to cells to organelles, Mass Spec. Rev. 2023, e21824, https://doi.org/10.1002/mas.21824

[65] L. Gatto, R. Aebersold, J. Cox, V. Demichev, J. Derks, E. Emmott, A. M. Franks, A. R. Ivanov, R. T. Kelly, L. Khoury, A. Leduc, M. J. MacCoss, P. Nemes, D. H. Perlman, A. A. Petelski, C. M. Rose, E. M. Schoof, J. Van Eyk, C. Vanderaa, J. R. Yates III, N. Slavov*, Initial recommendations for performing, benchmarking, and reporting single-cell proteomics experiments, arXiv https://doi.org/10.48550/arXiv.2207.10815, Nat. Methods Nat. Methods 2023, 20, 375–386, https://doi.org/10.1038/s41592-023-01785-3

2022

[64] K. DeLaney, D. Jia, L. Iyer, Z. Yu, S. B. Choi, P. J. Marvar, and P. Nemes*, Microanalysis of angiotensin peptides in the brain using ultrasensitive capillary electrophoresis trapped ion mobility mass spectrometry, Anal. Chem. 2022, 94, 9018–9025, https://doi.org/10.1021/acs.analchem.2c01062

[63] B. Shen, L. R. Pade, S. B. Choi, P. Muñoz-LLancao, M. C. Manzini, and P. Nemes*, Capillary electrophoresis mass spectrometry for scalable single-cell proteomics, Front. Chem. 2022, 10, article no. 863979, https://doi.org/10.3389/fchem.2022.863979 (open-access), PRIDE dataset

[62] A. B. Baxi, L. R. Pade, and P. Nemes*, Cell-lineage guided mass spectrometry proteomics in the developing (frog) embryo, J. Vis. Exp. 2022, e63586, https://doi.org/0.3791/63586, PRIDE dataset

[61] S. B. Choi, A. M. Polter, and P. Nemes*, Patch-clamp proteomics of single neurons in tissue using electrophysiology and subcellular capillary electrophoresis mass spectrometry, Anal. Chem. 2022,  94, 1637, https://doi.org/10.1021/acs.analchem.1c03826, bioRxiv https://doi.org/10.1101/2021.09.02.458040

  • Featured on the cover page of the journal.

2021

[60] S. B. Choi, P. Muñoz-Llancao, M. C. Manzini, and P. Nemes*, A data-dependent acquisition ladder for capillary electrophoresis mass spectrometry based ultrasensitive (neuro)proteomics, Anal. Chem. 2021, 93, 15964, https://doi.org/10.1021/acs.analchem.1c03327, bioRxiv https://doi.org/10.1101/2021.08.03.454943, PRIDE dataset

[59] P. Nemes*, Mass spectrometry comes of age for subcellular organelles, Nat. Methods 2021, 18, 1157–1158, https://doi.org/10.1038/s41592-021-01287-0

[58] A. B. Baxi, L. R. Pade, and P. Nemes*, Mass spectrometry based proteomics for developmental neurobiology in the amphibian Xenopus laevis, in: Amphibian Models of Development and Disease, edited by S. Sokol, Current Topics of Developmental Biology, 145, Chapter 7, 205–227, ISBN 978-0-12-816833-2

[57] R. M. Onjiko, P. Nemes, and S. A. Moody*, Altering metabolite distribution at Xenopus cleavage stages affects left-right gene expression asymmetries, genesis 2021, e23418, https://doi.org/10.1002/dvg.23418

[56] C. Lombard-Banek, J. Li, E. P. Portero, R. M. Onjiko, C. D. Singer, D. Plotnick, R. Q. Al Shabeeb, and P. Nemes*, In vivo subcellular mass spectrometry enables proteo-metabolomic single-cell systems biology in a chordate embryo developing to a normally behaving tadpole (X. laevis), Angew. Chem. Int. Ed. 2021, 60, 23, 12852-12858, https://doi.org/10.1002/anie.202100923, Download

  • Featured on the research frontispiece cover in the journal.
  • “Hot” article (ranking by the journal).

[55] J. Li, R. Wu, M. Yung, J. Sun, Z. Li, H. Yang, Y. Zhang, S. Liu, A. Nga-Yin Cheung, H. Ngan, J. Braisted, W. Zheng, H. Wei, Y. Gao, P. Nemes, H. Pei, D. W. Chan, Y. Li, and W. Zhu*, SENP1-mediated deSUMOylation of JAK2 regulates its kinase activity and platinum drug resistance, Cell Death & Disease 2021, accepted

2020

[54] N. Drouin*, M. van Mever, W. Zhang, E. Tobolkina, S. Ferre, A-C. Servais, M-J. Gou, L. Nyssen, M. Fillet, G. S. M. Lageveen-Kammeijer, J. Nouta, A. J. Chetwynd, I. Lynch, J. A. Thorn, J. Meixner, C. Lößner, M. Taverna, S. Liu, N. T. Tran, Y. Francois, A. Lechner, R. Nehmé, G. Al Hamoui Dit Banni, R. Nasreddine, C. Colas, H. H. Lindner, K. Faserl, C. Neusüß, M. Nelke, S. Lämmerer, C. Perrin, C. Bich, C. Barbas, Á. López-Gonzálvez, A. Guttman, M. Szigeti, P. Britz-McKibbin, Z. Kroezen, M. Shanmuganathan, P. Nemes, E. P. Portero, T. Hankemeier, S. Codesido, V. González-Ruiz, S. Rudaz, R. Ramautar*, Capillary electrophoresis-mass spectrometry at trial by metabo-ring: Effective electrophoretic mobility for reproducible and robust compound annotation, Anal. Chem. 2020, 92, 14103–14112, https://doi.org/10.1021/acs.analchem.0c03129, Download

2019

[53] (Book Chapter) C. Lombard-Banek, Sam B. Choi, and P. Nemes*, Single-cell proteomics in complex tissues using microprobe capillary electrophoresis mass spectrometry, Methods in Enzymology: Enzymatic Activity in Single Cells, Elsevier 2019, Volume 628, 263–292, Eds. M. Kovarik and N. L. Albritton, ISSN 0076-6879, DOI: 10.1016/bs.mie.2019.07.001, Download

[52] T. Evers, M. Hochane, S. Tans, R. Heeren, S. Semrau, P. Nemes, and A. Mashaghi*, Deciphering metabolic heterogeneity by single-cell analysis, Anal. Chem. 2019, 91, 21, 13314–13323, DOI: 10.1021/acs.analchem.9b02410, Download

[51] Z. Liu, E. P. Portero, Y. Jian, Y. Zhao, R. M. Onjiko, C. Zeng*, and P. Nemes*, Trace, Machine learning of signal images for trace-sensitive mass spectrometry: A case study from single-cell metabolomics, Anal. Chem. 2019, 91, 9, 5768–5776, DOI: 10.1021/acs.analchem.8b05985, Download

[50] C. Lombard-Banek, Z. Yu, A. P. Swiercz, P. Marvar, and P. Nemes*, Response to Letter to the Editor regarding “A microanalytical capillary electrophoresis mass spectrometry assay for quantifying angiotensin peptides in the brain,” Anal. Bioanal. Chem. 2019, 411, 30, 8165-8166, DOI: 10.1007/s00216-019-02164-8, Download

[49] C. Lombard-Banek, Z. Yu, A. P. Swiercz, P. Marvar, and P. Nemes*, A microanalytical capillary electrophoresis mass spectrometry assay for quantifying angiotensin peptides in the brain, Anal. Bioanal. Chem. 2019, 411, 4661-4671, http://doi.org/10.1007/s00216-019-01771-9, Download

[48] C. Lombard-Banek, S. A. Moody, M. Chiara Manzini, and P. Nemes*, Microsampling capillary electrophoresis mass spectrometry enables single-cell proteomics in complex tissues: developing cell clones in live Xenopus laevis and zebrafish embryos, Anal. Chem. 2019, 91, 7, 4797–4805, DOI: 10.1021/acs.analchem.9b00345, Download

[47] P. Portero and P. Nemes*, Dual cationic–anionic profiling of metabolites in a single identified cell in a live Xenopus laevis embryo by microprobe CE-ESI-MS, Analyst 2019, 144, 892–900, DOI: 10.1039/C8AN01999A, Download

2018

[46] R. M. Onjiko, E. P. Portero, and P. Nemes*, Single-cell metabolomics with capillary electrophoresis mass Spectrometry, Chapter 10, in Capillary Electrophoresis-Mass Spectrometry Approaches for Metabolomics (Ed. R. Ramautar), Royal Society of Chemistry 2018, pp 209–224, ISBN: 978-1-78801-104-4, DOI: 10.1039/9781788012737, Download

[45] A. B. Baxi, C. Lombard-Banek, S. A. Moody, and P. Nemes*, Proteomic characterization of the neural ectoderm fated cell clones in the Xenopus laevis embryo by high-resolution mass spectrometry, ACS Chem. Neurosci. 2018, 9, 2064–2073, DOI: 10.1021/acschemneuro.7b00525, PMID: 29578674, Download

[44] J. Li, P. Nemes, and J. Guo*, Mapping intermediate degradation products of poly(lactic-co-glycolic acid) in vitro, J. Biomed. Mat. Res.: Part B – Applied Biomaterials, 2018, 106, 1129–1137, DOI: 10.1002/jbm.b.33920, Download

2017

[43] S. B. Choi, C. Lombard-Banek, P. Muñoz-LLancao, M. C. Manzini, and P. Nemes*, Enhanced peptide detection toward single-neuron proteomics by reversed-phase fractionation capillary electrophoresis mass spectrometry, J. Am. Soc. Mass Spectrom. 2017, 29, 913–922, DOI: 10.1007/s13361-017-1838-1, PMID: 29147852, Download

[42] R. M. Onjiko, E. P. Portero, S. A. Moody, and P. Nemes*, Microprobe capillary electrophoresis mass spectrometry for single-cell metabolomics in live frog (Xenopus laevis) embryos, J. Vis. Exp. 2017, 130, e56956, DOI: 10.3791/56956, PMID: 29286491, Download

[41] R. M. Onjiko, D. O. Plotnick, S. A. Moody, and P. Nemes*, Metabolic comparison of dorsal versus ventral cells directly in the live 8-cell frog embryo by microprobe single-cell CE-ESI-MS, 2017, Anal. Methods, 2017, 9, 4964–4970, DOI: 10.1039/C7AY00834A, PMID: 29062391, Download

  • Ranked among the top 5% of most highly cited paper in 2019

[40] R. M. Onjiko, E. P. Portero, S. A. Moody, and P. Nemes*, In situ microprobe single-cell capillary electrophoresis mass spectrometry: Metabolic reorganization in single differentiating cells in the live vertebrate (X. laevis) embryo, Anal. Chem. 2017, 89, 7069–7076, DOI: 10.1021/acs.analchem.7b00880, PMID: 28434226, Download.

  • Featured publication on the cover page of Analytical Chemistry 2017.

2016

[39] C. Lombard-Banek, E. P. Portero, R. M. Onjiko, and P. Nemes*, New-generation mass spectrometry expands the toolbox of cell and developmental biology, genesis 2016, 55, e23012, DOI: 10.1002/dvg.23012, Download (open-access)

[38] B. S. Choi, M. Zamarbide, M. Chiara Manzini, and P. Nemes*, Tapered-tip capillary electrophoresis nanoelectrospray ionization for ultrasensitive proteomics: The mouse cortex. J. Am. Soc. Mass Spectrom. 2016, 28, 597–607, DOI: 10.1007/s13361-016-1532-8, Download (open-access).

  • Invited Contribution to the 2016 Emerging Investigator Issue of JASMS.

[37] C. Lombard-Banek, Sally A. Moody, and P. Nemes*, High-sensitivity mass spectrometry for probing gene translation in single embryonic cells in the early frog (Xenopus) embryo, Frontiers in Cell and Dev. Biol. 2016, 4, Article no. 100, DOI: 10.3389/fcell.2016.00100, Download (open access)

[36] C. Lombard-Banek, Sally A. Moody, and P. Nemes*, Label-free quantification of proteins in single embryonic cells with neural fate in the cleavage-stage frog (Xenopus laevis) embryo using capillary electrophoresis electrospray ionization high resolution mass spectrometry (CE-ESI-HRMS), Mol. Cell. Prot. 2016, 15, 2756–2768, DOI: 10.1074/mcp.M115.057760, Download (open access).

  • Highlighted paper by the Editorial Board of Mol. Cell. Prot.
  • Featured on the cover page of Mol. Cell. Prot. 2016.

[35] R. M. Onjiko, S. Morris, S. A. Moody, and P. Nemes*, Single-cell mass spectrometry with multi-solvent extraction identifies metabolic differences between left and right blastomeres in the 8-cell frog (Xenopus) embryo, Analyst 2016, 141, 3648–3656, DOI: 10.1039/C6AN00200E, Download.

  • Featured publication on the cover page of Analyst 2016.
  • Highlighted contribution in the Young Investigator Issue.

[34] C. Lombard-Banek, S. A. Moody, and P. Nemes*, Single-cell mass spectrometry for discovery proteomics: quantifying translational cell heterogeneity in the 16-cell frog (Xenopus) embryo, Angew. Chem. Int. Ed. 2016, 55, 2454–2458, DOI: 10.1002/anie.201510411, Download (open-access)

[33] B. Shrestha, C. M. Walsh, G. R. Boyce, and P. Nemes*, Microprobe mass spectrometry imaging of live tissues, cells, and bacterial colonies using laser ablation electrospray ionization, in Advances in MALDI and Laser-induced soft ionization mass spectrometry, Springer 2016, Ed. R. Cramer, pp. 149–167, Springer International Publishing Switzerland 2016, ISBN 978-3-319-04818-5, DOI: 10.1007/978-3-319-04819-2, Download

2015

[32] H. Li, S. Wickramasekara, and P. Nemes*, One-hour screening of adulterated heparin by simplified peroxide digestion and fast RPIP-LC-MS2, Anal. Chem. 2015, 87, 8424–8432, DOI: 10.1021/acs.analchem.5b01788, PMID: 26168275, Download

[31] R. M. Onjiko, S. A. Moody, and P. Nemes*, Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo, Proc. Nat. Acad. Sci. USA 2015, 112, 6545–6550, DOI: 10.1073/pnas.1423682112, PMID: 25941375, Download (open-access)

[30] H. Li, B. K. Smith, L. Mark, P. Nemes, J. Nazarian, and A. Vertes, Ambient molecular imaging by laser ablation electrospray ionization mass spectrometry with ion mobility separation, Int. J. Mass Spectrom. 2015, 377, 681–689, DOI: 10.1016/j.ijms.2014.06.025, Download

[29] R. Shroff, K. Schramm, P. Nemes, A. Vertes, J. Gershenzon, and A. Svatos, Quantification of plant surface metabolites by MALDI mass spectrometry imaging: glucosinolates on Arabidopsis thaliana leaves, The Plant Journal 2015, 81, 961–972, DOI: 10.1111/tpj.12760, PMID: 25600688, Download (open-access)

[28] P. Nemes* and A. Vertes*, Laser ablation electrospray ionization mass spectrometry: mechanisms, configurations and imaging applications, in Ambient Ionization Mass Spectrometry, New Developments in Mass Spectrometry No. 2, Royal Society of Chemistry, Cambridge, 2015, Eds. M. Domin and R. Cody, Chapter 14, pp. 348–371; ISBN 1849739269; DOI: 10.1039/9781782628026-00348, Download

2014

[27] E. J. Lanni, S. J. B. Dunham, P. Nemes, S. S. Rubakhin, J. V. Sweedler, Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: Instrumentation, matrix enhancement and single cell analysis, J. Am. Soc. Mass Spectrom. 2014, 11, 1897–1907, DOI: 10.1007/s13361-014-0978-9, PMID: 25183225, Download

2013

[26]  P. Nemes*, W. J. Hoover, and D. A. Keire, Rapid differentiation of heparin from other glycosaminoglycans by pyrolysis mass spectrometry, Anal. Chem. 2013, 85, 7405–7412, DOI: 10.1021/ac401318q, PMID: 23841449, Download

[25] P. Nemes, S. S. Rubakhin, J. Aerts, and J. V. Sweedler, Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry, Nat. Protoc. 2013, 8, 783–799, DOI: 10.1038/nprot.2013.035, PMID: 23538882, Download (open-access).

  • Featured article on metabolomics in the March issue of Nature Protocols 2013.

[24] A. M. Knolhoff, K. M. Nautiyal, P. Nemes, S. Kalachikov, I. Morozova, R. Silver, and J. V. Sweedler, Combining small-volume metabolomic and transcriptomic approaches for assessing brain chemistry, Anal. Chem. 2013, 85, 3136–3143, DOI: dx.doi.org/10.1021/ac3032959, PMID: 23409944, Download (open-access)

[23] A. M. Knolhoff, P. Nemes, S. S. Rubakhin, and J. V. Sweedler, MS-based methodologies for single-cell metabolite detection and identification, in Methodologies for Metabolomics 2013, pp. 119–139, Experimental Strategies and Techniques, Eds. R. Wevers, N. Lutz, and J. V. Sweedler, Cambridge University Press, Download

[22] A. Vertes, B. Shrestha, and P. Nemes, Direct metabolomics from tissues and cells: new approaches for small molecule and lipid characterization, in Methodologies for Metabolomics, Experimental Strategies and Techniques, Cambridge University Press 2013, Eds. R. Wevers, N. Lutz, and J. V. Sweedler, pp. 140–158; ISBN: 9780521765909

2012

[21] P. Nemes, A. M. Knolhoff, S. S. Rubakhin, and J. V. Sweedler, Single-cell metabolomics: changes in the metabolome of freshly isolated and cultured neurons, ACS Chem. Neuro. 2012, 3, 782–792, DOI: 10.1021/cn300100u, PMID: 23077722, Download (open-access).

  • Featured on the 2012 October cover of ACS Chemical Neuroscience

[20] P. Nemes* and A. Vertes, Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging, TrAC-Trends in Analytical Chemistry 2012, 34, 2234, DOI: 10.1016/j.trac.2011.11.006, Download

[19] P. Nemes, H. Huang, and A. Vertes, Internal energy deposition and ion fragmentation in atmospheric-pressure mid-infrared laser ablation electrospray ionization, Phys. Chem. Chem. Phys. 2012, 14, 25012507, DOI: 10.1039/C2CP23411D, PMID: 22249858, Download

2011

[18] S. S. Rubakhin, E. V. Romanova, P. Nemes, and J. V. Sweedler, Profiling metabolites and peptides in single cells, Nat. Methods 2011, 8, S20S29, DOI: 10.1038/nmeth.1549, PMID: 21451513, Download. Featured in a special issue of Nature Methods 2011.

[17] P. Nemes, A. M. Knolhoff, S. S. Rubakhin, and J. V. Sweedler, Metabolic differentiation of neuronal phenotypes by single-cell capillary electrophoresis electrospray ionization mass spectrometry, Anal. Chem. 2011, 83, 68106817, DOI: 10.1021/ac2015855, PMID: 21809850, Download (open-access).

  • Highlighted in a virtual issue featuring 30 articles on advances in modern metabolomics.

2010

[16] P. Nemes and A. Vertes, Atmospheric-pressure molecular imaging of biological tissues and biofilms by LAESI mass spectrometry, Journal of Visualized Experiments 2010, 43, e2097, DOI: 10.3791/2097, PMID: 20834223, Download (open-access). Available in video format at http://www.jove.com/details.php?id=2097.

[15] P. Nemes, A. S. Woods, and A. Vertes, Simultaneous small metabolite and lipid imaging in rat brain tissues and atmospheric pressure by laser ablation electrospray ionization mass spectrometry, Anal. Chem. 2010, 82, 982988, DOI: 10.1021/ac902245p, PMID: 20050678, Download

[14] B. Shrestha, P. Nemes, and A. Vertes, Ablation and analysis of small cell populations and single cells by consecutive laser pulses, Appl. Phys. A 2010, DOI: 10.1007/s00339-010-5781-2, Download

[13] B. Shrestha, P. Nemes, J. Nazarian, Y. Hathout, E. P. Hoffman, and A. Vertes, Direct analysis of lipids and other metabolites in mouse brain tissue by AP IR-MALDI and reactive LAESI mass spectrometry, Analyst 2010, 135, 751758, DOI: 10.1039/B922854C, PMID: 20349540, Download.

  • Featured on the April cover of Analyst 2010.

[12] P. Nemes and A. Vertes, Laser ablation electrospray ionization for atmospheric pressure molecular imaging mass spectrometry, Methods in Molecular Biology: Mass Spectrometry Imaging, Principles and Protocols, Humana Press 2010, Eds. S. S. Rubakhin and J. V. Sweedler, Chapter 10, pp. 159171; ISBN 978-1-60761-745-7; DOI: 10.1007/978-1-60761-746-4_9, Download

2009

[11] P. Nemes, A. A. Barton, and A. Vertes, Three-dimensional imaging of metabolites in tissues under native conditions by laser ablation electrospray ionization mass spectrometry, Anal. Chem. 2009, 81, 66686675, DOI: 10.1021/ac900745e, PMID: 19572562, Download

2008

[10] P. Nemes, A. A. Barton, Y. Li, and A. Vertes, Ambient molecular imaging and depth profiling of live tissue by infrared laser ablation electrospray ionization mass spectrometry, Anal. Chem. 2008, 80, 45754582, DOI: 10.1021/ac8004082, PMID: 18473485, Download

[9] A. Vertes, P. Nemes, B. Shrestha, A. A. Barton, Z. Chen, and Y. Li, Molecular imaging by mid-IR laser ablation mass spectrometry, Appl. Phys. A 2008, 93, 885891, DOI: 10.1007/s00339-008-4750-5, Download

[8] P. Nemes, S. Goyal, and A. Vertes, Conformational and noncovalent complexation changes in proteins during electrospray ionization, Anal. Chem. 2008, 80, 387395, DOI: 10.1021/ac0714359, PMID: 18081323, Download

2007

[7] P. Nemes and A. Vertes, Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry, Anal. Chem. 2007, 79, 80988106, DOI: 10.1021/ac071181r, PMID: 17900146, Download.

  • Reported by more than 15 media channels worldwide upon publication.
  • With 350+ citations, this paper is a “Highly Cited Paper”

[6] P. Nemes, I. Marginean, and A. Vertes, Spraying mode effect on droplet formation and ion chemistry in electrosprays, Anal. Chem. 2007, 79, 31053116, DOI: 10.1021/ac062382i, PMID: 17378541, Download.

  • Featured on the April cover of Analytical Chemistry 2007

[5] I. Marginean, P. Nemes, and A. Vertes, Astable regime in electrosprays, Phys. Rev. E 2007, 76, 026320, DOI: 10.1103/PhysRevE.76.026320, PMID: 17930155, Download

2006

[4] I. Marginean, P. Nemes, L. Parvin, and A. Vertes, How much charge is there on a pulsating Taylor cone? Appl. Phys. Lett. 2006, 89, 064104, DOI: 10.1063/1.2266889, Download

[3] I. Marginean, P. Nemes, and A. Vertes, Oder-chaos-order transitions in electrosprays: The electrified dripping faucet, Phys. Rev. Lett. 2006, 97, 064502, DOI: 10.1103/PhysRevLett.97.064502, PMID: 17026172, Download

2005

[2] P. Nemes, G. Schlosser, and K. Vekey, Amino acid cluster formation studied by electrospray ionization mass spectrometry, J. Mass Spectrom. 2005, 40, 4349, DOI: 10.1002/jms.771, PMID: 15584012, Download

2004

[1] Z. Novak, P. Nemes, and A. Kotschy, Tandem Sonogashira coupling: An efficient tool for the synthesis of diarylalkynes, Org. Lett. 2004, 6, 49174920, DOI: 10.1021/ol047983f, PMID: 15606099, Download