Superficial Scald in Apples: Strategies and Solutions

By Agustina Salas (Candidate for B.S. in Biology Pontificia Universidad Católica de Chile) & Macarena Farcuh, Ph.D., UMD

What is superficial scald in apple fruits and what causes it?

Physiological disorders correspond to abnormalities that can occur in any of the apple tissues, and can result in loss of quality, marketability, and profitability, leading to increased loss and wastage of apples. These disorders are caused by abiotic factors such as genotype/genetic background, maturity at harvest, orchard/preharvest factors, seasonal variations, and postharvest storage conditions. It is important to mention that pathogens or mechanical damage do not lead to physiological disorders.

In particular, the physiological disorder of superficial scald in apples is the result of a chilling injury. Chilling injuries occur during cold storage at temperatures below the optimum range. During apple cold storage fruits can accumulate a-farnesene, a volatile compound present in the fruits’ wax layer. This compound can cause superficial scald when it oxidizes with atmospheric oxygen. Therefore, superficial scald generally develops during cold storage (more than 3 months in storage) but it is increased 3-7 days after taking the fruit out of cold storage.

Granny Smith apples with superficial scald on their skin.
Fig 1. Apples (Granny Smith) affected with superficial scald on their skin. Photo: Fresh Quarterly issue 9 June 2020.

Superficial scald is only restricted to the skin of the apples and usually on the shaded side. The symptoms appear as brown patches on the skin of the apple, which are diffuse (no defined edges between affected and unaffected skin) irregular, and light brown to dark brown to black in color. Superficial scald can also be accompanied by the development of a rough texture of the fruit.

Continue reading Superficial Scald in Apples: Strategies and Solutions

Tomato and Blossom End Rot

By Jerry Brust, IPM Vegetable Specialist, University of Maryland

This is just a reminder with the usual summer weather we have had lately with stretches of very high temperatures and the occasional very heavy down pour we have had over the last few weeks blossom end rot can become a real problem in tomatoes. Sunny days will suck water through a plant quickly and the downpours will disrupt calcium movement through the plant. The key is to try and maintain consistent soil moisture while the fruit is developing. Easier said than done I know, but soil moisture levels need to be monitored as best as they can. When you see something like figure 1, with all the tomatoes on a cluster with blossom end rot you know the soil moisture fluctuated greatly over a fairly long period of time. Applying some foliar calcium sprays may help, but the applications can’t overcome poor soil moisture management.

Cluster of green tomatoes with blossom end rot ( browning at the base).
Fig. 1 All the tomatoes on this one cluster have blossom end rot—indicating poor soil moisture management. Photo By J. Brust. 

Blossom End Rot Common so Far this Season.

Blossom End Rot Common so Far this Season.

By Jerry Brust, UME

This summer has been unusual as it has been about normal for temperatures if not a little cooler, but we have had greatly varying amounts of rainfall over the last month. Some areas have remained dry with storms just missing farms while others have been hit with some heavy rains. This can make watering vegetables challenging to avoid problems such as blossom end rot, which is caused by a calcium deficit in the developing fruit.

Figure 1. Fig 1. Several different vegetables with blossom end rot.

Calcium (Ca) moves to the plant via mass flow, i.e., where dissolved minerals like calcium move to the root in soil water that is flowing towards the roots. As it passes through the plant Ca is deposited in tiny amounts into the fruit. If anything slows or interrupts this stream the tiny amount of Ca needed at that moment is not deposited and the area furthest from the top of the fruit suffers—resulting in blossom end rot (BER). I have seen more BER this year on a large number of different vegetables than I have in the past several years (fig 1).

Figure two shows how precise and constant the Ca flow in a plant has to be to supply just the right amount of Ca at the right time. The large fruit on this particular plant developed before there was a Ca interruption, but the fruit a little younger suffered a Ca interruption, with the smallest (youngest) fruit suffering the greatest Ca interruption. At the time it was taken tissue analysis from this same plant showed that calcium was in the moderate range when the blossom end rot took place, demonstrating the importance of irrigation and water supply to reduce blossom end rot. Not much you can do about no rains or heavy rains, except try to maintain as even a water supply to your vegetables as is possible and remove any fruit from the plant you find that has blossom end rot.

Fig. 2 Older larger fruit received enough Ca, but younger (smaller) fruit did not so they are showing signs of blossom end rot.